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ABSTRACT

In recent work, we presented mathematical theory and al-

gorithms for time-frequency analysis of non-stationary sig-

nals. In that work, we generalized the definition of the Hilbert

spectrum by using a superposition of complex AM–FM com-

ponents parameterized by the Instantaneous Amplitude (IA)

and Instantaneous Frequency (IF). Using our Hilbert Spectral

Analysis (HSA) approach, the IA and IF estimates can be far

more accurate at revealing underlying signal structure than

prior approaches to time-frequency analysis. In this paper,

we have applied HSA to speech and compared to both nar-

rowband and wideband spectrograms. We demonstrate how

the AM–FM components, assumed to be intrinsic mode func-

tions, align well with the energy concentrations of the spec-

trograms and highlight fine structure present in the Hilbert

spectrum. As an example, we show never before seen intra-

glottal pulse phenomena that are not readily apparent in other

analyses. Such fine-scale analyses may have application in

speech-based medical diagnosis and automatic speech recog-

nition (ASR) for pathological speakers.

Index Terms—
Hilbert Space, Signal Analysis, Speech Analysis

1. INTRODUCTION

The short-time speech spectrum is the de facto analysis tool

used in nearly all areas of speech analysis and applications

[1, 2]. The spectrogram is a visualization of the energy struc-

ture of a signal in the coordinates of time and frequency ob-

tained from the Short-Time Fourier Transform (STFT) [3].

The spectrogram can display a great deal of information about

the properties of the speech utterance, including fundamental

and formant frequencies [4].

We have recently proposed Hilbert Spectral Analysis

(HSA) as a generalized time-frequency analysis framework

consisting of a superposition of complex AM–FM compo-

nents [5]. We have also proposed a novel 3-D visualization of

the Hilbert spectrum, and a numerical method for performing

HSA based on a modified version of Empirical Mode De-

composition (EMD) that utilizes Intrinsic Mode Functions

(IMFs). By using HSA, we gain a degree of freedom in our

analysis that may be more useful in describing the underlying

physical phenomena. Although the STFT has been widely

successful for many speech applications such as automatic

speech recognition (ASR), coding, and speaker recognition

(SR), other applications such as speech-based medical diag-

nosis and ASR for pathological speakers may require a more

sensitive analysis, such as HSA, before finding practical use.

The contributions of the paper are as follows. First, we

compare and contrast the Hilbert speech spectrum to both nar-

rowband and wideband spectrograms for an example vowel in

order to illustrate advantages of HSA. HSA components of-

ten align well with the energy concentrations in the wideband

spectrogram but are not constrained by the inherent structural

assumptions in the STFT. Utilizing the Instantaneous Ampli-

tude (IA)/Instantaneous Frequency (IF) parameterization of

the AM–FM components, we propose a novel method for for-

mant estimation. Second, we illustrate the fine structure in

the intra-glottal pulse revealed by the Hilbert spectrum that

does not appear in spectrograms. Third, we argue that this

fine structure obtainable in HSA can provide new insights in

speech production models. For example, in both HSA and

STFT we can compute the average fundamental frequency f0,

but with HSA we may quantify variations in f0 more accu-

rately.

This paper is organized as follows. In Section 2, we

briefly review traditional speech analysis based on the spec-

trogram. In Section 3, we provide a summary of HSA theory

and the HSA–IMF algorithm to numerically compute the

IA/IF parameterization of the Hilbert spectrum. In Section

4, we describe the 2-D and 3-D visualizations of the Hilbert

speech spectrum. Using the Hilbert spectrum, we propose a

novel formant estimation technique and discuss the fine spec-

tral structure that is present. Finally, in Section 5 we provide

conclusions and future research directions for this work.
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2. SPECTROGRAPHIC ANALYSIS OF SPEECH

The spectrogram is by far the most widely-used speech anal-

ysis tool and presents the structure of a signal’s energy in

time and frequency [6]. One of the parameters in the spec-

trogram is the window length, which controls the frequency

band structure and leads to a well-known tradeoff between

narrowband and wideband spectrograms. Each of these spec-

trogram types has its uses in speech analysis. In wideband

spectrograms f0 can be determined from the spectrogram by

counting the number of individual vertical lines per unit time.

Also, the frequencies and relative strengths of the first two

formants, F1 and F2, are visible as dark, blurry concentrations

of energy. The wide bandwidth in this type of analysis allows

for excellent time resolution—the energy peaks from each in-

dividual vibration of the vocal folds are visible in the spectro-

gram. However, poor frequency resolution limits the ability

to pick out individual harmonics. The narrowband spectro-

gram is the complement to the wideband spectrogram where

one is able to pick out individual harmonics. However, time

resolution may not be good enough to isolate each individual

cycle of vibration, and the formant structure is not rendered

as clearly as with a wideband analysis [7].

We first note that throughout this paper, we utilize a

perceptually-motivated colormap in order to improve inter-

pretation over other colormaps [8, 9]. For the narrowband

spectrogram, we used a length 2048 Hamming window and

for the wideband spectrogram we used a length 256 Hamming

window; for both spectrograms we advanced the window by

one sample in order to provide the most comparable repre-

sentation to the Hilbert spectrum, despite the redundancy of

such a large window overlap. Figures 1(a) and (b) show the

narrowband and wideband spectrograms1, respectively of the

vowel /3~/ in an /hVd/ context, spoken by the first author of

this paper, zoomed in on the vowel portion.

With a long window, the spectral harmonicity is better

captured, and results in harmonic amplitudes that better re-

flect the underlying vocal tract spectral envelope [10]. Thus

from the narrowband spectrogram in Figure 1(a), we visually

estimate f0 = 135 Hz by noting the frequency of the first

harmonic. The formants are estimated as F1 = 385 Hz and

F2 = 1275 Hz by noting the frequency associated with the

strongest harmonic amplitudes.

With a short window, the spectral harmonicity is blurred

and the harmonic amplitudes are degraded, but changes in

the harmonicity and the spectral envelope are better captured

[10]. Thus from the wideband spectrogram in Figure 1(b), we

estimate f0 = 126 Hz by noting 11 glottal cycles over a 87 ms

timespan. The formants are visually estimated as F1 = 470
Hz and F2 = 1400 Hz by noting the center of the energy

concentrations.

1In a strict sense the spectrogram plots the magnitude-squared of the

STFT. In this paper, we plot the STFT magnitude in order to facilitate com-

parisons to the Hilbert spectrum.

Figure 2(a) shows the vowel waveform x(t) of the exam-

ple vowel /3~/ and Figure 2(b) shows the ten dominant Simple

Harmonic Components (SHCs)2 resulting from Fourier anal-

ysis of the waveform.

3. HSA THEORY AND HSA–IMF ALGORITHM

In this section, we summarize the key points of HSA and for

additional details, encourage the reader to see [5]. We as-

sume a real observation x(t) of a complex “latent signal” z(t)
which are related by

x(t) = �{z(t)}. (1)

In HSA, we decompose the latent signal into complex AM–

FM components,

z(t) ≡
K−1∑
k=0

ψk (t; ak(t), ωk(t), φk) (2)

and the AM–FM component is defined as

ψk(t; ak(t), ωk(t), φk) ≡ ak(t) exp

⎧⎨
⎩j

⎡
⎣ t∫
−∞

ωk(τ)dτ+ φk

⎤
⎦
⎫⎬
⎭

(3a)

= ak(t)e
jθk(t) (3b)

= sk(t) + jσk(t) (3c)

parameterized by the IA ak(t), IF ωk(t), and phase reference

φk. The component can also be represented in terms of phase

θ(t) as in (3b) or the real part sk(t) and imaginary part σk(t)
as in (3c).

As a note to the reader, HSA as developed in [5] relaxes

the overly-constrictive assumption of harmonic correspon-
dence resulting in a completely new formulation of AM–FM

modeling unlike previous AM–FM models. Previous AM–

FM models for signal analysis/synthesis usually fall into one

of three main groups: 1) Hilbert Transform (HT) [13, 14, 15,

16], 2) peak tracking/sinusoidal modeling [17, 18, 19, 20],

and 3) Teager energy operator [21, 22, 23, 24, 25, 26]. How-

ever, some models exist that do not fall into any of these

groups [27, 23]. A historical summary of AM–FM modeling

is presented by Gianfelici [28].

In [29], Huang proposed the original EMD algorithm

that sequentially determines a set of IMFs, which are in fact

AM–FM components, via an iterative sifting algorithm. The

Ensemble Empirical Mode Decomposition (EEMD) [30] and

tone masking [31] introduced ensemble averaging in order

to address the mode mixing problem. The complete EEMD

was proposed to address some of the undesirable features of

2The term SHC refers to the complex exponential with fixed amplitude

and frequency that is a solution to the differential equation for simple har-

monic motion [11, 12].
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(a) (b)

(c) (d)

Fig. 1. Spectral analysis of the vowel /3~/ taken at the midpoint of ‘herd’: (a) Narrowband spectrogram, (b) wideband spec-

trogram, (c) 3-D Hilbert spectrum (real part of component vs. frequency vs. time), and (d) orthographic projection of the 3-D

Hilbert spectrum onto 2-D (frequency vs. time). Plot line color indicates short-time magnitude in the spectrograms and instan-

taneous amplitude in the Hilbert spectra. The 2-D Hilbert spectrum shows fine spectral structure not available in the Fourier

spectra. Note that the spectrograms are shown with linear color scaling, rather than logarithmic color scaling typically used in

speech analysis, to better facilitate comparison to the Hilbert spectrum.

EEMD by averaging at the component-level as each compo-

nent is estimated rather than averaging at the conclusion of

EMD [32]. Several improvements to the sifting algorithm

have also been proposed including those by Rato [33].

In [5], we presented a numerical algorithm, by combining

the most desirable features of complete EEMD, tone mask-

ing, and Rato’s improvements to the sifting algorithm, for

computing the Hilbert spectrum under the assumption that the

AM–FM components are IMFs [29]. Unlike previous studies,

close attention is paid to the assumptions made in the defini-

tion of the IMF which are carried forward to the demodulation

step, where the IA and IF parameters are estimated. In [5],

we proposed a mathematically equivalent method to obtain

the IF that is more numerically stable than Huang’s [34] and

leverages Rato’s IA estimation technique [33]. We incorpo-

rate the proposed demodulation and our numerical algorithm

into a single HSA–IMF algorithm which gives very good es-

timates for the IA and IF parameters of the AM–FM model.

Finally, for the interested reader, we have posted online MAT-

LAB scripts for HSA–IMF and HSA visualization at [35].

The effects of sampling in the context of EMD have been

considered by Rilling and it is generally recommended to

oversample but not resample before application of EMD, so

that EMD effectively behaves like a continuous operator [36].

For this reason, the speech recordings used in this work were

made in a sound booth using a high-quality microphone and

a sampling rate of 44.1 kHz.

In prior work, we used filtered white Gaussian noise as the

masking signal [5]. While this provides a simple method for

masking signal design given no other information about the

latent signal, it may not be optimal once we know the latent

signal consists of speech. We have found that for speech, the

use of a high-frequency, high-amplitude tone in the first two

iterations of sifting can result in more stable performance than

using noise. Other parameters used in HSA–IMF in this paper

include: scale factor for mean envelope removal α = 0.95,

stopping threshold of 27 dB for the sifting algorithm, number

of sifting iterations I = 15, stopping threshold of 8 dB for

571



HSA–IMF termination, scale factor for the additive masking

signal β = 0.5, and range parameter L = 3 used in demodu-

lation.

As a final note, we point out that the assumption with tra-

ditional Fourier analysis is an infinite superposition of har-

monics which is almost certainly not representative of the un-

derlying physics in speech production. On the other hand,

even though IMFs may also not represent the true underlying

components for speech, they can prove useful for may prob-

lems just as with the Fourier spectrum.

4. SPEECH ANALYSIS USING THE HILBERT
SPECTRUM

4.1. Visualization of the Hilbert Spectrum

By plotting ωk(t) vs. sk(t) vs. t as a line in a 3-D space

and coloring the line with respect to |ak(t)| for each com-

ponent, the simultaneous visualization of multiple parameters

for each component is possible. Further, orthographic projec-

tions yield common plots: the time-real plane (the real signal

waveform), the time-frequency plane (2-D Hilbert spectrum),

and the real-frequency plane (analogous to the Fourier mag-

nitude spectrum).

4.2. Hilbert Spectrum of Vowel /3~/

Figure 1(c) shows the 3-D visualization of the Hilbert spec-

trum for the vowel /3~/ and Figure 1(d) shows the orthographic

projection onto the time-frequency plane. Color variation in

the plot line indicates the IA of the component at that time,

i.e. the magnitude of the component. The value of the plot

line along the frequency axis indicates the IF of the compo-

nent at that time, i.e. the instantaneous angular velocity of the

component. In the 3-D plot, displacement along the vertical

axis shows the real part of the components sk(t). The su-

perposition of sk(t) yields the speech signal x(t) which can

easily be seen by substituting (3c) into (2) and the result into

(1).

The IA/IF parameterizaton of the components provides an

alternate and very simple method of estimating a formant fre-

quency F , via an IA-weighted average of the IF [37]

F =

∫
ωk(t)ak(t)dt∫

ak(t)dt
. (4)

For the example given, this method yields F1 = 431 Hz and

F2 = 1314 Hz. With the spectrogram a weighted average

technique for formant estimation is in theory possible, though

it is not nearly as convenient or simple as (4). Thus HSA

of speech provides a unique method for automatic formant

estimation.

Figure 2(c) shows the real part of three AM-FM compo-

nents resulting from the HSA. The components in red, green,

and blue are associated with the voice bar, F1, and F2, re-

spectively. The superposition of the components yields the

original waveform shown in Figure 2(a)

x(t) = �
{∑

k

sk(t)

}
. (5)

4.3. Spectral Fine Structure

We believe the real advantage of HSA of speech signals lies in

the ability to analyze and quantify fine spectral structure that

exists in speech. In our example, this fine structure is most

apparent in the upper component or F2 where this detail is

lost in the spectrogram regardless of the window length cho-

sen. For the upper component, four regions in a single glottal

cycle are labeled in the call out shown in Figure 1(d). In re-

gion 1, the component’s IF rapidly approaches the weighted

average IF with the IA approaching peak intensity for the cy-

cle. Region 2 corresponds to the area of the glottal pulse with

strongest energy concentration. In this region, the IF deviates

about 100 Hz from the weighted average IF. Region 3 is de-

scribed by rapid energy decay while IF deviation increases to

∼ 650 Hz deviation. Finally, region 4 exhibits a very large

IF deviation with increasing IA prior to the start of the next

glottal pulse.

4.4. Example Hilbert Spectra for Other Vowels

We have performed HSA for the following twelve vowels and

three diphthongs in /hVd/ context: heed, hid, hayed, head,

had, hod, hawed, hoed, hood, who’d, hud, herd, hoyed, hide,

and how’d [1, 2]. This analysis includes the /hVd/ utterances

from a female speaker and two male speakers. The result-

ing Hilbert spectral plots and spectrograms are collected into

contact sheets to facilitate comparison and can be found on-

line at [38]. In the online Hilbert spectral plots, we have

used a Savitzky-Golay filter to smooth the IF while preserving

the fine structure necessary for speech analysis [39, 40, 41].

We used one of two Savitzky-Golay filters depending on the

level of smoothing desired. The filter parameters are order

k = 1 and frame length f = 255 for aggressive smoothing

and k = 9 and f = 65 for reserved smoothing.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have computed and visualized the Hilbert

spectrum of speech using our recently proposed HSA–IMF

algorithm. We compare the Hilbert spectrum of an example

vowel to that of the narrowband and wideband spectrograms

to illustrate the advantages of using HSA. One of the advan-

tages is revealing spectral fine structure on small time-scales

such as within a single glottal pulse, which may not be ap-

parent in the spectrogram. We also leveraged the IA/IF pa-

rameterization of the AM–FM components to provide a sim-

ple formula to compute formant frequencies. Although the
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Fig. 2. (a) The waveform x(t) associated with the vowel /3~/ at the midpoint of ‘herd’, (b) the ten dominant harmonics from

the Fourier transform of x(t), and (c) the real part of the three AM-FM components sk(t) comprising x(t). The components in

red, green, and blue are associated with the voice bar, F1, and F2, respectively.

573



HSA–IMF algorithm is iterative and requires more compu-

tation than the FFT used for spectrographic analysis, Hilbert

spectra of speech sounds may be computed in a few seconds

on an ordinary PC.

We believe there is potential in utilizing the spectral fine

structure obtained through HSA for evaluating aspects of

speech that have traditionally been difficult such as evalua-

tion of vocal quality. For example, measures similar to jitter

and shimmer, which have have proven useful in the detection

of vocal tremor and vocal flutter, may be accessible from the

fine-grained analysis obtainable though HSA. Finally, we are

currently investigating the efficacy of features extracted from

the Hilbert spectrum for classification of dysarthic speech

with the goal of providing new methods for speech-based

medical diagnosis and monitoring.
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