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ABSTRACT

This paper describes the application of deep neural networks

(DNNs), trained to discriminate among speakers, to improv-

ing performance in text-independent speaker verification. Ac-

tivations from the bottleneck layer of these DNNs are used as

features in an i-vector based speaker verification system. The

features derived from this network are thought to be more

robust with respect to phonetic variability, which is gener-

ally considered to have a negative impact on speaker verifica-

tion performance. The verification performance using these

features is evaluated on the 2012 NIST SRE core-core con-

dition with models trained from a subset of the Fisher and

Switchboard conversational speech corpora. It is found that

improved performance, as measured by the minimum detec-

tion cost function (minDCF), can be obtained by appending

speaker discriminative features to the more widely used mel-

frequency cepstrum coefficients.

Index Terms— Speaker verification, deep neural net-

work, i-vector.

1. INTRODUCTION

This paper presents an approach for applying deep neural net-

works (DNNs) to an i-vector based text-independent speaker

verification in an attempt to improve its performance. In a

text-independent speaker verification task, the users are al-

lowed to utter any phrases with no constraints. This com-

plicates the verification problem, since the phonetic contents

of the reference and test utterances might be completely dif-

ferent. As a result, effective methods must be developed to

account for phonetic variability.

Basically, any mismatch between the training and test

conditions is regarded as session variability and is the major

source of degradation in the performance of a speaker verifi-

cation system [1]. Compensating for session variability can

be performed in three spaces: feature space, model space and

score space. In the feature space, the unwanted variabilites

are removed from the acoustic features before model training

or verification. This includes cepstral mean and variance
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normalizations [2] and feature mapping [3]. In the model

space, methods are used to eliminate the irrelevant informa-

tion during training the speaker model, such as speaker model

synthesis [4] and joint factor analysis [5]. In the score space,

the raw verification scores are shifted and scaled accordingly

in an attempt to produce scores within a similar dynamic

range so that a common threshold can be applied. Tnorm is

an example of such methods [6].

In this paper, a feature space compensation method is

proposed. The method is based on the DNN framework. Re-

cently, DNN has demonstrated state-of-the-art performance

for automatic speech recognition (ASR) tasks [7]. A phonetic

discriminative DNN is used directly to estimate the prob-

ability distribution of context-dependent phones, given the

input features [8]. DNN can also be used to improve the per-

formance of conventional Gaussian mixture model (GMM)-

based ASR systems by providing additional features [9].

Here, tandem features generated by DNN are appended to the

original features.

It is often argued that phonetic discriminative DNNs are

performing implicit feature normalization across speakers

in ASR systems [10]. Similar argument might be true for

speaker discriminative DNNs. In the other words, these kind

of networks might be performing implicit feature normaliza-

tion across phonetics. The goal in this paper is to investigate

this conjecture. We use a speaker discriminative DNN to

generate bottleneck features. We speculate that this will en-

hance the speaker discriminative ability of the features, while

reducing irrelevant information such as phonetic variability.

Concatenating the bottleneck and original features will pro-

duce features which are more specific for speaker verification

task. The features will then be used in training i-vector based

speaker verification system.

Over recent years, the i-vector has become the state-of-

the-art technology for text-independent speaker verification

tasks [11]. The technique is inspired by joint factor anal-

ysis (JFA) framework [5, 12], where the Gaussian mixture

model (GMM) mean is factorized into the speaker and chan-

nel factors using separate subspaces. In the i-vector frame-

work, however, a single subspace is defined which contains

both the speaker and channel factors simultaneously.

There had been, of course, attempts in building neural net-
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work based speaker verification before advent of DNN [13,

14, 15]. However, due to inadequate hardwares and learn-

ing algorithms for building big networks, the obtained gains

were very limited. In [16], DNN is used as a feature extractor

to improve the performance of a GMM-universal background

model (GMM-UBM) based text-dependent speaker verifica-

tion system.

The paper is organized as follows. Section 2 briefly de-

scribes the i-vector framework and deep neural network. Sec-

tion 3 describes our proposed method. An experimental study

is performed to evaluate the proposed approach in Section 4.

Section 5 concludes the paper.

2. BACKGROUND

2.1. i-Vector Framework

The essence of the i-vector framework is to define a single

subspace which represents the speaker and channel variabil-

ities simultaneously [11]. A given speaker- and channel-

dependent GMM supervector s can be modeled as:

s = m+Tw, (1)

where m is the UBM speaker- and channel-independent mean

supervector. The low-rank matrix T is referred to as total

variability matrix and consists of bases representing main di-

rections of speaker and channel variabilities and the vector w
has a prior standard normal distribution. The i-vector ŵ is the

MAP point estimate of the variable w. In the other words, the

i-vector is the mean of posterior probability of w, p(w|X),
for a given set of features X.

The i-vector framework can be regarded as feature extrac-

tor rather than a modeling framework. A fast scoring method

can then be used to determine if test and target i-vectors are

from the same speaker. It is believed that the magnitude of i-

vector conveys non-speaker information [11]. Hence, only the

angle between two i-vectors can be considered as the score:

score(ŵtarget, ŵtest) =
〈ŵtarget, ŵtest〉
‖ŵtarget‖‖ŵtest‖ . (2)

2.2. Deep Neural Network

Deep neural networks (DNNs) are a generalization of sin-

gle hidden layer feed forward neural networks, in that they

are generally assumed to include multiple hidden layers [7].

DNNs have been widely used in many classification prob-

lems in machine learning. For example, DNNs are used

to predict state observation probabilities in context depen-

dent phone models for hybrid DNN-hidden Markov models

(DNN-HMMs). ASR systems based on these models have

demonstrated state-of-the-art performance on a variety of

speech recognition tasks [8]. A DNN is parameterized by the

weights associated with its input, hidden and output layers.

Each layer consists of a number of units where each unit

contains a non-linear activation function and a bias vector.

The outputs of each layer are multiplied by a weight matrix

and presented as inputs to the following layer. For the hidden

layers, the sigmoid function σ(zj) = 1/(1 + exp(−zj)) is

often used as the activation function. For the output layer,

which is the classification layer, the softmax non-linearity,

softmax(zj) = exp(zj)/
∑

j exp(zj), is used as the activa-

tion function. The parameters of the DNN model, θ, i.e. the

set of weight matrices and bias vectors, can be estimated by

optimizing a cross entropy based criterion:

C(θ) = −
∑

j

dj logP (j|x, θ), (3)

where P (j|x, θ) is the posterior probability of class j and x
is the input feature vector to the DNN. The target value, dj ,

for class j takes the value of one if j is the target class and

zero otherwise. These target values are used as supervision

during DNN training. A stochastic gradient descent (SGD)

based algorithm, referred to as the back-propagation (BP) al-

gorithm [17], is used to minimize (3). The gradient of the cost

function is computed over a randomized minibatch of training

data and used in updating the model parameters. Generally,

gradient based algorithms are susceptible to local optima. Ini-

tialization of DNN parameters seems to be a practical solution

for this problem. Unsupervised restricted Boltzmann machine

(RBM) pre-training is used to initialize the DNN parameters

before performing the BP algorithm [7, 8].

3. DEEP BOTTLENECK FEATURES

Speaker verification involves automatically verifying the

claimed identity of an individual given an utterance spo-

ken by that individual. However, human speech utterances

exhibit many sources of variability that are not relevant to

determining a speaker’s identity. Depending on the applica-

tion, such as robustness and speaker discrimination, different

feature engineering methods can be used to characterize the

speech utterances [18]. The spectral-based features, including

Mel-frequency cepstrum coefficient (MFCC) and perceptual

linear predictive (PLP), are the most widely used features in

practice. However, these features are mainly engineered for

speech recognition tasks and were originally developed for

discriminating the phonetic information, rather than speaker

information.

In this section, a DNN is used as a feature generator to

provide features which are more relevant to the speaker veri-

fication task. The tandem approach is the most common ap-

proach in extracting features from a DNN [19]. In this ap-

proach, the activations of a hidden layer or output layer are

considered as high-level features. If the hidden layer is nar-

row, i.e. its number of units is less than other hidden layers,

the features are called bottleneck features.
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Fig. 1. Deep bottleneck features for speaker verification. The

example network consists of an input layer, five hidden layers

and an output layer. The first hidden layer is the bottleneck

layer.

DNNs used in hybrid HMM-DNN speech recognition

systems are trained to discriminate between state labels asso-

ciated with context dependent phonetic classes. However, the

bottleneck DNNs used in this work are trained using speaker

labels as targets. It is hoped that the activations obtained from

the bottleneck layer of these networks will provide an embed-

ded representation that is in some way optimal for speaker

discrimination. After training the DNN, the dimensionality

of bottleneck features are reduced using principal compo-

nent analysis (PCA). They are then appended to the original

MFCC features. The combined feature set are referred to

here as deep bottleneck features. These features can be used

in any speaker verification system including systems based

on GMM-UBM, joint factor analysis (JFA) and i-vector.

Figure 1 displays the proposed deep bottleneck features for

speaker verification where the first hidden layer is considered

as the bottleneck layer. Here, the deep bottleneck features are

being fed into an i-vector based speaker verification system.

As we will discuss in Section 4, the amount of speech

data available in this work for speaker verification training

is limited. As a result, we are facing with data scarcity prob-

lem. This problem, however, is interesting since for some lan-

guages it is difficult to obtain large speech corpora for config-

uring speaker verification systems for that language. The pro-

posed method provides a solution for this problem by extract-

ing additional information from existing speech data, which

has effectively no cost.

4. EXPERIMENTAL STUDY

This section presents an experimental study evaluating the

performance of the approach described in Section 3. Perfor-

mance is reported as the equal error rate (EER) and minimum

detection cost function (minDCF) on the female part of Fisher

and Switchboard conversational speech corpora. minDCF is

defined as the point where the detection threshold mini-

mizes the cost function 0.1 × P (False Rejection) + 0.99 ×
P (False Acceptance). After introducing the task domain

and describing how the baseline text-independent speaker

verification system is trained, we will present the speaker

verification results using the proposed approach. Acoustic

feature extraction was done using the HTK toolkit [20] and

all the speaker verification training was done using ALIZE

toolkit [21]. The DNN training was carried out on CUDA-

capable GPU hardware1. A Python-based DNN trainer2 based

on Gnumpy [22] was adapted for this work. The evaluation

of the system, such as plotting the DET curves, is done using

the DETware toolbox (for MATLAB) by NIST3.

4.1. Baseline System

The baseline text-independent gender-dependent system is

constructed using the female part of Fisher English conver-

sational speech corpus part 1. This corpus is the first half

of conversational telephone speech (CTS) dataset. It con-

sists of 5850 two-sided speech conversations, each with a

duration of up to 10 minutes. The corpus is collected from

4174 female speakers, with approximately 328 hours of data.

The evaluation of the verification system is done using the

Switchboard1-Phase1 corpus. This corpus consists of 1022

5-minute two-sided speech conversations from 88 female

speakers. We used only a subset of this data which does not

suffer from the crosstalk problem. The subset consists of 60

female speakers with 531 utterances.

In both corpora, the speech is parameterized using 19

MFCCs, normalized energy and the first and second differ-

ences of these parameters to give a 60 dimensional acoustic

vectors. An energy detector is used to determine the speech

segments. Zero mean and unit variance normalizations are

then performed on speech segments of each conversation. A

UBM of 2048 Gaussians with diagonal covariances is trained

using the Fisher data. The UBM is then used to train a 100-

dimensional i-vector extractor. Consine distance between the

i-vectors of target and test speakers is used as the score.

Evaluation is performed using the 2012 NIST SRE core-

core condition. Here, the entire speech utterance is used to

train the target i-vector. However, to train the test i-vector, we

carry out the experiments using three different speech dura-

tions including 10 seconds, 30 seconds and entire utterance.

We call these conditions as core-10sec, core-30sec and core-

core during reporting the results. These conditions comprise

4959, 1510 and 471 files, respectively. Table 1 summarizes

speaker verification results. The first row of the table shows

1http://www.calculquebec.ca/index.php/en/
2http://www.cs.toronto.edu/∼gdahl/gdbn.tar.gz
3http://www.itl.nist.gov/iad/mig/tools/DETware v2.1.targz.htm
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Table 1. Speaker verification performance in terms of EER

(%) and minDCF on 2012 NIST SRE core-core condition.

The bottleneck features are obtained from the first hidden

layer with 512 units. BL and BN stand for baseline and bot-

tleneck, respectively.

core-10sec core-30sec core-core

System EER DCF EER DCF EER DCF

BL 5.59 2.50 5.10 2.21 4.67 1.98

BN 7.70 2.74 6.71 2.31 5.94 2.25

BN+MFCC 6.56 2.36 5.76 2.05 4.88 1.93

the baseline system performance for three test conditions.

It is important to note that the size of training corpus in

our experiments is considered very small compared to those

which are used nowadays to configure a speaker verification.

As a result, the baseline EER and minDCF are higher than

those reported elsewhere for this core task. Of course, it is

difficult to assess whether the trends in performance obtained

for the techniques evaluated here would also be observed with

a larger training corpus. However, one of the motivations

of this work is to determine whether speaker discriminative

DNNs can be used to improve detection performance with

limited data, and without the use of any additional data being

collected for training DNNs. Hence, the goal is, not only to

produce a feature set that is more robust with respect to known

sources of variability, but also to achieve better performance

with less training data.

4.2. Evaluation of Deep Bottleneck Features

To evaluate the proposed deep bottleneck features, a speaker-

discriminative DNN is trained. The DNN consists of an input

layer, 5 hidden layers and an output layer. A context win-

dow of 7 frames is used over 60-dimensional MFCC features

to yield input features of size 420. All the 5 hidden layers,

except the bottleneck layer, have 1024 units each. The posi-

tion of the bottleneck layer and its number of units are deter-

mined empirically. It will be shown in this section that having

the first hidden layer as the bottleneck layer with 512 units

achieves the best performance. For output layer, 2000 speak-

ers (out of 4174 speakers) are used as the output classes. The

speakers used as the output classes contain the majority of

the Fisher training data which is used in DNN training. DNN

is initialized using RBM pre-training with a learning rate of

0.004. The learning rate of 0.08, along with a L2-norm regu-

larization of coefficient 10−6 and a momentum of 0.9 are used

for DNN fine-tuning. The DNN training is converged when

the cross entropy cost on the validation set becomes flat over

multiple epochs.

Once the DNN training is finished, the original MFCC

features are passed through the network and bottleneck fea-

tures are extracted. A zero mean normalization is performed

on the bottleneck features and principal component analysis

(PCA) is used to reduce the dimensions to 60 as the original

MFCC features. Finally the features are unit variance normal-

ized and appended to the original MFCC features to form the

deep bottleneck features of size 120. These features are then

used to train an i-vector based speaker verification system as

explained in Section 4.1.

Second and third rows of Table 1 display the speaker ver-

ification results when bottleneck features and deep bottleneck

features are used, respectively. We report the results in terms

of EER and minDCF. The minDCF measure is used by the

NIST as the primary evaluation figure, since EER uses an

arbitrary detection threshold, which is not practically appli-

cable [18]. We can see that an i-vector based speaker veri-

fication system trained on deep bottleneck features provides

better performance in terms of minDCF in all test conditions.

However, its performance is worse than the baseline in terms

of EER.

Figure 2 displays the detection error trade-off (DET) plot

for the same three test conditions displayed in Table 1 for

baseline and deep feature systems. The plot shows that using

deep features provides a significant improvement in perfor-

mance at lower false alarm rates (FARs). One can speculate

that this occurs because the cost function used for training the

DNN and extracting bottleneck features is specially designed

to perform classification. It can be argued that optimizing the

speaker discriminative DNN for closed set speaker classifica-

tion may not be a good criterion when the final task is actually

open set speaker verification. Since the cost function associ-

ated with minDCF emphasizes operating points with very low

false alarm rates, using deep features results in better minDCF

performance compared to baseline. On the other hand, since

the EER falls on the regions where the deep features perform

more poorly, we do not get an improvement in terms of EER.

4.3. Evaluation of Different Bottleneck Layer Position

It is believed that each hidden layer in a DNN captures a par-

ticular level of feature representation, depending on its po-

sition. The higher layers, i.e. layers close to output layer,

produce more abstract representations compared to lower lay-

ers. It means that the features obtained from higher layers are

more suitable for classification purposes. In this section, we

examine the effect of bottleneck layer position in the perfor-

mance of speaker verification system. Table 2 displays the

result of this experimentation. The results show that when the

bottleneck layer is situated at the first hidden layer it gives

the best performance. Even though the results seem in con-

tradiction with the feature representation property of DNN,

however, the conclusion is consistent with the one obtained

in [16]. We believe that this is because different training

and test datasets have been used for this experiment and the

speaker populations do not overlap. Therefore, none of the
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Table 2. Speaker verification performance for different bot-

tleneck layer position in terms of EER (%) and minDCF on

2012 NIST SRE core-core condition. In all experiments the

number of bottleneck layer units is 512.
core-10sec core-30sec core-core

Position EER DCF EER DCF EER DCF

1st Layer 6.56 2.36 5.76 2.05 4.88 1.93
2nd Layer 7.76 2.75 7.09 2.65 6.79 2.69

3rd Layer 8.05 3.06 7.68 2.99 7.86 3.02

4th Layer 8.57 3.31 8.34 3.19 8.70 3.28

5th Layer 9.22 3.53 8.91 3.44 8.92 3.64

speakers in the test corpus has representative in the output

layer. As a result, going higher in the network might harm

rather than help.

4.4. Evaluation of Different Number of Bottleneck Layer
Units

Table 3 summarizes the results of speaker verification system

for different number of bottleneck layer units. The effect of

different units number ranging from 60 to 1024 have been

examined. The results show that varying the units number

has a minor impact on the verification performance.

Table 3. Speaker verification performance for different

number of bottleneck layer units in terms of EER (%) and

minDCF on 2012 NIST SRE core-core condition. In all ex-

periments the bottleneck layer is situated at the first hidden

layer.
core-10sec core-30sec core-core

#units EER DCF EER DCF EER DCF

60 7.36 2.74 6.69 2.49 6.00 2.53

100 6.80 2.41 6.03 2.11 5.10 1.96

200 6.84 2.47 5.89 2.19 5.15 2.03

348 6.52 2.39 5.50 2.05 5.10 1.98

448 6.65 2.40 5.76 2.11 5.10 1.93

512 6.56 2.36 5.76 2.05 4.88 1.93
768 6.53 2.45 5.56 2.18 5.10 2.01

1024 6.55 2.41 5.76 2.18 5.07 2.04

5. CONCLUSIONS

Deep bottleneck features were proposed for improving per-

formance in i-vector based text-independent speaker verifica-

tion. A speaker-discriminative deep neural network with a

bottleneck layer was used to extract features. The features

were then concatenated with MFCC features. Several exper-

iments were performed to examine the effect of multiple po-

sitions of the bottleneck layer and multiple numbers of units

in the bottleneck layer. We observed that when the first hid-

den layer was used as the bottleneck layer with 512 units, the

speaker verification system provided the best performance.

The minDCF results for this configuration outperformed the

baseline i-vector based speaker verification system.

The ultimate goal was to produce feature vectors which

are more relevant for speaker verification task by reducing

the impact of sources of undesired variability. The hope was

also to circumvent the issue of data scarcity by providing

additional information to MFCC features. Since the bottle-

neck features were extracted from a DNN which is trained to

discriminate between speakers, using deep features provided

better performance in regions of the operating characteristic

curve with low false alarm rates. Future work will investigate

whether it is possible to obtain more uniform improvements

in detection performance by using an alternative optimization

criterion for training the speaker discriminative DNN. One

solution is that instead of maximizing the classification rate,

one can directly maximize the detection rate [23].
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