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ABSTRACT 

In this paper, we describe the ASpIRE (Automatic Speech 
recognition In Reverberant Environments) challenge, which asked 
participants to construct automatic speech recognition systems that 
were robust to a variety of acoustic environments and recording 
scenarios without having access to matched training and 
development data.  We discuss the performance of the systems 
evaluated in the challenge, summarize how those systems were 
constructed, and draw conclusions about what contributed to the 
performance levels of the systems on the highly variable, noisy, 
reverberant evaluation data set constructed for this challenge.  

Index Terms— reverberation, speech recognition, mismatch, 
robustness 

1. INTRODUCTION 

Much progress has been made at reducing Word Error Rate (WER) 
on speech to text (STT) over the past 25 years, as can be observed 
in Figure 1 [1]. However, when a microphone is far from the 
speaker (e.g., in meeting rooms, distant talking command and 
control recordings), STT performance can be severely degraded.  
The NIST meeting room evaluations, shown in pink in Figure 1, 
demonstrate that distant microphones represent a significant 
challenge to the speech research community. The effect of close 
versus distant microphones can be observed by comparing the 
curves for close lapel microphones with distant microphones and 
distant microphone arrays.  For meeting room conditions with non-
stationary noise and reverberation, the measured WER values for 
distant microphones and arrays are significantly higher than those 
for the close lapel microphones. 

STT performance also degrades dramatically in the face of 
mismatch between training and test data conditions [2].  Despite 
the common wisdom that mismatch can be easily addressed by 
collecting and transcribing matched condition training and/or 
adaptation data, when STT is used in the field, the time, effort, and 
cost of transcribing data for the new conditions become 
prohibitive.  Mismatch can occur, for example, due to differences 
in background noise, recording conditions (different microphones 
and rooms), and speaker characteristics.  Changes in reverberation 
across rooms can be a significant source of mismatch.  The 
International Computer Science Institute (ICSI) meeting room [3] 
study described in [4] used Efron’s bootstrap [5] to analyze the 
sources of error in an STT system; when the conditions were 
matched (even if far-field), it was observed that model errors 
dominated, but in mismatched conditions, features were neither 
invariant nor separable, which caused significant error in addition 
to model errors.  Research using the Augmented Multi-party 

Interaction (AMI) meeting room corpus [6] and the Multi-channel 
Wall Street Journal Audio Visual Corpus (MC-WSJ-AV) corpus 
[7,8], for example, has also shown that STT performance degrades 
for distant microphones when data used for training are 
mismatched with data used in testing. 

 
Figure 1. NIST STT Benchmarks (Meeting Room results 
depicted in pink). 

1.1. Related Speech Recognition Challenges 

Several prior challenges have involved speech recognition in 
reverberant environments. The 1st CHiME Speech Separation and 
Recognition challenge [9] posed the task of recognizing digits and 
letters in spoken sentences mixed with reverberant backgrounds 
that were binaurally recorded in a domestic environment with no 
variability in the location of the speaker.  The challenge developers 
carefully constructed the development and evaluation data sets so 
they covered six different noise levels over different utterances 
containing digits and letters from the Grid speech corpus [10]. The 
utterances were prompted command and control phrases read by 
the speakers; the resulting speech was not conversational and had 
limited vocabulary.  The challenge was designed to cover 
important aspects of distant microphone speech recognition while 
limiting the complexity of the challenge to enable participation by 
a wide range of participants. 

The 2nd CHiME Challenge [11,12] evaluated the performance of 
STT systems in a domestic environment on a small-vocabulary 
task similar to that of the 1st CHiME challenge, except that the 
Grid speech audio was modified to simulate small speaker 
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movements, and an additional medium-vocabulary STT task was 
added that used the Wall Street Journal 5K vocabulary read speech 
corpus (WSJ0) [13] without speaker movements.  The difficulty of 
the challenge was increased by introducing head movements and 
increasing vocabulary size.   

The 3rd CHiME challenge [14] added new variability to the distant 
microphone speech recognition task by using a mobile tablet 
device to capture live speech with an array of six microphones 
positioned around the tablet frame in noisy environments rather 
than by using remixing as in the previous two challenges. Training, 
development, and evaluation sets were drawn from the WSJ0 
corpus sentences presented on a tablet and read by American 
English speakers in cafes, at street junctions, on public buses, and 
in pedestrian areas.  

The REVERB (REverberant Voice Enhancement and Recognition 
Benchmark) challenge [15] provided an evaluation framework 
with common datasets, tasks, and evaluation metrics for both 
speech enhancement and STT for speech recorded from stationary 
distant-talking speakers with 1-channel, 2-channel, or 8-channel 
microphone arrays placed at a fixed distance from the speakers.  
The training data consisted of clean recordings and simulated 
recordings (convolved with room impulse responses together with 
additive background noise) of sentences in the WSJ0 corpus read 
by a British English speaker (WSJCAM0) [16].  Two tasks were 
evaluated: (1) Enhancement of reverberant speech with single-
channel and multi-channel de-reverberation techniques measured 
with both objective and subjective metrics; (2) STT performance 
measured using WER.  Evaluation data consisted of simulated 
recordings of spoken words from WSJCAM0 [16] and from the 
Multi-Channel WSJ Audio Visual (MC-WSJ-AV) corpus [7,8], 
which contains utterances recorded in a single noisy and 
reverberant room with the above-mentioned microphone 
configurations. 

1.2. The ASpIRE Challenge 

The ASpIRE challenge encouraged participants to apply and refine 
state-of-the-art STT techniques to speech recordings of native 
speakers of American English where mismatch between training 
and test was high.  Participants were expected to build automatic 
speech recognizers for English that were trained on conversational 
telephone speech but were robust to a variety of unknown acoustic 
environments and recording scenarios, without having access to 
matched training and development data.  

For this challenge, we collected and transcribed a new evaluation 
speech database, the Mixer 8 Pilot corpus, recorded for the 
Intelligence Advanced Research Projects Activity (IARPA) by the 
Linguistic Data Consortium (LDC) and transcribed by Appen 
Butler Hill.  The goal of the collection was to capture the types of 
variability that can be observed when applying STT in the field.  
The data were collected using a set of different microphones 
placed in a wide range of locations in seven different rooms (some 
classrooms and some office space) with various different shapes, 
sizes, surface properties, and noise sources. Speakers were also 
recorded from several different positions in each room.  With the 
data simultaneously recorded using multiple distant microphones, 
the ASpIRE challenge offered two evaluation conditions:  

1. The Single Microphone Condition tested the ability to 
mitigate noise and reverberation on sessions recorded across 

seven different rooms on a single distant microphone (selected 
randomly).   

2. The Multiple Microphone Condition tested the ability to 
mitigate noise and reverberation on the same sessions as the 
single microphone condition recorded with a set of single 
distant microphones placed differently across the seven rooms.   

The ASpIRE Challenge was launched on November 17, 2014.  
InnoCentive developed and supported the challenge website 
(https://www.innocentive.com/ar/challenge/9933624) and MIT 
Lincoln Laboratory provided test-and-evaluation support.  
InnoCentive made available a real-time online scoring utility to 
provide participants with system scores on the development and 
development-test data.  In addition, a leaderboard was kept up to 
date on the challenge web site to allow participants competing in 
the single microphone condition to determine how their 
performance compared to top-scoring solutions on the 
development-test set.   

The evaluation data were first made available to participants for 
the Single Microphone Condition on February 11, 2015, and 
evaluation submissions were due by February 18, 2015, to be 
eligible for award. The evaluation data were made available to 
participants for the Multiple Microphone Condition on February 
19, 2015, and evaluation submissions were due by February 26, 
2015, to be eligible for award.  Participants were allowed to submit 
system outputs to either or both conditions. ASpIRE was a 
“Reduction-to-Practice Challenge”; participants were required to 
submit a system description of their solution together with the 
output from their STT system on the evaluation data to be eligible 
for a prize.  Separate awards for the best system in the single 
microphone and the multiple microphone conditions were made 
after the winning systems were validated on a small set of new 
data, once the evaluation was completed. 

Compared to prior speech recognition challenges, the ASpIRE 
challenge addressed far field microphone recordings and 
introduced the following conditions: 

1. Conversational speech was used rather than read speech, 
increasing difficulty. 

2. The vocabulary of the data sets was not controlled or limited; 
hence, the vocabulary was large and the development and 
evaluation data contained words that were not seen in training. 

3. Evaluation data were explicitly designed to differ substantially 
from training data, as well as from the development data, to 
measure system robustness.   

4. No information was provided for the audio files that might 
enable systems to make use of microphone type, room 
configuration, speaker position, or speaker identity. 

In the next section, the data used in the challenge are described.  
The evaluation metric and scoring procedures for the ASpIRE 
challenge are discussed in Section 3. Results are presented in 
Section 4 and conclusions in Section 5. 

2. ASPIRE DATA 

To maximize mismatch, ASpIRE participants were expected to 
train their speech recognizers on conversational telephone speech, 
as described in Section 2.1. Testing was on far-field microphone 
recordings.  Microphone recordings were provided as development 
data to participants (see Section 2.2), but these differed 
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substantially from the recordings developed for the final evaluation 
(see Section 2.3). 

2.1. Training Set 

The training set for the ASpIRE challenge was the Fisher 
conversational telephone training corpus [17]: 

1.  LDC2004S13 Fisher English Training Speech Part 1: 5,850 
complete conversations, each lasting up to 10 minutes; 

2. LDC2004T19 Fisher English Training Transcripts Part 1: 
transcripts for LDC2004S13 conversations with 12% 
transcribed at LDC and the rest by BBN and WordWave; 

3.  LDC2005S13 Fisher English Training Speech Part 2: 5,849 
complete conversations, each lasting up to 10 minutes; and 

4.  LDC2005T19 Fisher English Training Transcripts Part 2: 
transcripts for LDC2005S13 conversations with 12% 
transcribed at LDC and the rest by BBN and WordWave. 

This data set consisted of approximately 2,000 hours of transcribed 
telephone speech (8 KHz sampling rate).   Subjects were primarily 
native speakers of American English recruited from all parts of the 
United States to ensure dialectal diversity.  A small number of 
English speakers from outside the U.S., as well as non-native 
speakers of English, were also recruited for the corpus.  Gender 
was balanced (53% female, 47% male). Each subject was assigned 
a topic to speak about that was randomly selected from a list that 
changed daily.   

ASpIRE required that participants use only these data and 
algorithmic transformations of these data for training their 
systems. Participants were only allowed to use the transcripts 
provided for the challenge as described above to prepare language 
models and pronunciation lexicons. 

2.2. Development Sets 

The development data sets consisted of a 15 hour subset of the 
1,425 multi-microphone sessions in the Mixer 6 corpus 
(LDC2013S03) [18] collected by LDC in 2009-2010.  Native 
American English speakers were recorded while making 10 minute 
long telephone calls on a daily topic announced at the start of the 
call on 15 microphones installed similarly in two different office 
rooms at LDC.  Care was taken to ensure that microphones were 
placed similarly in terms of distance, mounting, and orientation in 
both rooms, and that microphone levels were checked and 
calibrated. Microphone recordings were captured at 24 kHz, 16-
bit.  The development data were divided into a 5-hour 
development set and a 10-hour development-test set (dev-test).  
The files in each set were transcribed by Appen Butler Hill using 
the LDC transcription guidelines in [19]. 

The development sets were chosen to provide a good 
representation of microphone recordings in real rooms with 
transcription conventions matching those of the evaluation set.  
However, the recording environment of the evaluation set differed 
substantially from the development data in that there were a 
greater number of rooms, different microphones, and different 
placements of speakers with respect to the microphones.   

Development transcripts were not allowed for either acoustic 
model or language model training or for supervised adaptation.  
Challenge participants were also prohibited from listening to or 
transcribing the development-test speech data.   

2.2.1. Single Microphone Condition 

ASpIRE_single_dev contained five hours of recorded speech 

sessions with transcripts.  These data were provided for 
optimization, training selection, and tuning purposes.  For each 
session selected, one microphone from a set of 12 microphones 
was randomly chosen.  Although 14 microphones were available; 
microphones 12 and 14 were consistently poor in quality and so 
were not used in the single microphone condition. 

ASpIRE_single_dev_test contained ten hours of recorded speech 
sessions.  Transcripts were withheld but participants could 
evaluate their progress using the online scoring tool and monitor 
their progress relative to other scores posted on the leaderboard.  
For each session selected, one microphone from a set of 12 
microphones was randomly chosen. 

2.2.2. Multiple Microphone Condition 

ASpIRE_multi_dev contained audio and transcripts for the same 
recording sessions as ASpIRE_single_dev. However, these 
recordings were made from six different microphones selected 
from among the set of all 14 possible microphones placed around 
the room, with different sessions using different sets of 
microphones. 

ASpIRE_multi_dev_test contained audio and transcripts for the 
same recording sessions as ASpIRE_single_dev_test. However, 
these recordings were made from six different microphones 
selected from among 14 possible microphones placed around the 
room, with different sessions using different sets of microphones.  
Transcripts were withheld but participants could evaluate their 
progress using the online scoring tool. 

2.3. Evaluation Sets 

The evaluation set contained 120 5-minute sessions from the Mixer 
8 Pilot Corpus.  Unlike Mixer 6, which captured the variability of 
two different room types, the Mixer 8 Pilot Corpus was collected 
to test whether increasing the number and type of rooms and 
varying microphone placement would have a greater impact on 
error than simply changing microphones.  By contrast to Mixer 6, 
where the need to instrument rooms up front for the entire period 
of the collection limited the variability of the resulting corpus, for 
the Mixer 8 Pilot Corpus, LDC used portable collection platforms 
to enable the collection of speech in a variety of rooms with 
different room dynamics.   

The Mixer 8 Pilot Corpus was collected in seven rooms of 
different shapes and sizes using eight different distant 
microphones, positioned differently within each room, with subject 
speakers positioned in one of 2-3 locations in each room (3 for 
larger rooms).  The room properties are summarized in Table 1.   

Room Description Volume (ft^3) # Pos. 
117 Recording Room 1013 2 
477 Small Office 1278 2 
481 Conference Room 1759 2 
126 Recording Room 1776 3 
478 Conference Room 3496 3 
460 Seminar Room 3547 3 
470 Conference Room 13205 3 

Table 1: Properties of rooms in the Mixer 8 Pilot Corpus, 
including room number, brief description, approximate 
volume, and number of different subject speaker positions 
tested. 

549



For the evaluation corpus, 39 native speakers of North American 
English (22 males and 17 females) were recorded. Each subject  
participated in a single day of recording, with 5-6 different 
conversations taking place across several different pre-determined 
positions in one small room (117, 477, or 481) and one larger room 
(126, 478, 460, or 470).  The acoustic environments in this corpus 
were constructed within seven rooms using eight different 
microphones, varying microphone height and orientation across 
rooms, and varying distances between microphones and subject 
speakers.  

An example of a room layout used in the collection is shown in 
Figure 2.  Eight microphones (denoted Microphones 1-8 in Table 
2) and one simultaneous telephone-recording system were used to 
capture one side of a telephone call between each participant and 
an interviewer. Microphones 1, 2, 6, and 7 were omnidirectional 
microphones, while all others had a directional response. 
Microphone 3, 6, and 7 used wireless channels; all others were 
wired.  Microphone positions and orientations were fixed for each 
room, but across sessions subjects were placed at one of 2-3 
different positions in each room to further increase variability. 
Interviewers elicited freeform conversations from subjects on a set 
of predetermined topics. Microphone recordings were captured at 
48 kHz, 24-bit.   

 
Figure 2. Speaker locations and microphone positions and 
orientations in room 470. 

Microphone Model Features

1 Earthworks M23
Flat frequency response, omnidirectional, 
measurement applications

2 DPA 4090

High sensitivity, flat frequency response, 
omnidirectional, condenser, high quality studio 
applications

3 Samson SAC02
High sensitivity, directional, pencil microphone,  
low-cost home studio applications

4 RODE NT6
Directional, miniature microphone, various 
applications

5 Shure MX185
Diaphragm condenser microphone, directional, 
used as a lavalier

6 Sony ECMAW3

Blue tooth microphone, omnidirectional, miniature 
electret condenser microphone element, home 
video applications

7 Canon WM-V1
Blue tooth microphone, omnidirectional, prosumer 
camcorder/outdoor applications

8
Audio Technica 

AT8035
Shotgun microphone, directional, high off-axis 
rejection, outdoor recording applications  

Table 2: Microphones used in the Mixer 8 Pilot Corpus. 

All evaluation files were transcribed by Appen Butler Hill using 
the LDC transcription guidelines in [19]. As with the development 

data, two evaluations sets were created, one for each of the 
microphone conditions: 

ASpIRE_single_eval contained ten hours of recorded speech 
sessions from the Mixer 8 Pilot Corpus that were selected to 
evaluate final submissions to the challenge under the Single 
Microphone Condition.  For each session selected, one microphone 
from the set of eight different microphones placed around the room 
was randomly chosen. 

ASpIRE_multi_eval contained ten hours of recorded speech 
sessions from the Mixer 8 Pilot Corpus that were selected to 
evaluate final submissions to the challenge under the Single 
Microphone Condition.  Six of the eight microphones for a session 
were provided, with different sessions using different sets of 
microphones. 

Challenge participants were prohibited from listening to or 
transcribing the evaluation data.   

3. STT SCORING 

Challenge systems were required to produce a verbatim, case-
insensitive transcript of all uttered lexical items within the audio 
input according to Standard Normal Orthographic Representation 
(SNOR) rules.  Transcripts were required to be whitespace-
separated case-insensitive lexical tokens.  Non-alphabetic 
characters were not to be transcribed, except for apostrophes for 
contractions and possessives and hyphens for hyphenated words 
and fragments.  Spelled letters were to be represented as a letter 
followed by a period (e.g., “a. b. c.”).  The format for the system 
output was a Conversation Time Marked (CTM) file of the lexical 
tokens and their begin- and end-time for all recordings.  For 
scoring purposes, three types of tokens were processed: (1) Scored 
tokens that must be recognized; (2) Optionally deletable tokens 
that may be omitted by the STT system without penalty; and (3) 
Non-scored tokens.  Scored tokens included all words transcribed 
as specified in the LDC transcription guidelines [19].  An example 
of an optionally deletable token would be a word fragment, which 
appears in reference transcripts with a leading or trailing hyphen 
(e.g.,  /-tter/ or  /th-/).  System tokens matching the beginning or 
ending of the fragment’s text were scored as correct (e.g., /latter/ 
would be scored as a match to /-tter/ and /theory/ to /th-/).  Non-
scored tokens were expected to be removed from the CTM output 
file before submission for scoring.  Examples of non-scored tokens 
would be unintelligible speech or sounds such as coughing, 
laughing or sneezing. 

A global map file (GLM) was made available to participants on the 
challenge website in order to transform both the reference and 
system output token strings via a set of rules to normalize spelling 
variants prior to scoring.  For example, the GLM rules expanded 
contractions in the system output to all possible expanded forms, 
thereby generating several alternative token strings in the system 
output. These rules may also split a token string into two or more 
strings (e.g., compound words, hyphenated words).   

Once the GLM was applied, the scorable lexical token sequences 
from the system CTM and reference STM were aligned using a 
global minimization of a Levenshtein distance function which 
weighted the cost of correct words, insertions, deletions and 
substitutions as 0, 3, 3 and 4 respectively.  Given this alignment, 
word error rate (WER) of the STT output of a system was 
calculated as follows:  
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where 

NDel = the number of unmapped reference tokens (i.e., deletion 
errors), 
NIns = the number of unmapped STT output tokens (i.e., 
insertion errors), 
NSubst = the number of mapped STT output tokens with non-
matching reference spelling (i.e., substitution errors), and 
NRef  = the maximum number of reference tokens. 

The NIST Scoring Toolkit (SCTK) was used to evaluate the 
performance of system-generated STT output in CTM format. The 
following command was used to score a CTM-formatted file with 
hubscore (hubscr) using segment time marked (STM) formatted 
reference file: 

% hubscr.pl -V -g glm_filename.glm –l english –h hub4 -r 
ref_filename.stm hyp_filename1.ctm 

4. RESULTS AND DISCUSSION 

Five prize-eligible primary systems were submitted to the single 
microphone condition challenge.  In addition to submitting their 
primary system (the system that was, in their judgment, their best), 
teams were allowed to submit other systems for independent 
scoring.  These other systems are identified as contrast systems in 
Table 3, which reports the WER scores on dev-test and evaluation 
data for all the systems that were submitted with evaluation 
outputs1, as required by the challenge rules.  Other teams 
submitted system outputs for development and development-test 
scoring, but did not complete the challenge by submitting 
evaluation outputs, so their scores are not reported in Table 3.  
Only one prize-eligible submission was received for the multiple 
microphone condition. 

Prize winning systems [20] appear in green in Table 3.  In the 
single microphone condition challenge, three prizes were awarded, 
one to each of the top three scoring systems, which all scored 
within 1% of each other.  The prize in the multiple microphone 
condition was awarded to the only system submitted to that 
challenge.  It is significant to note that this multiple microphone 
system was by far the most accurate system submitted to the 
ASpIRE Challenge in terms of WER.  This team’s developers were 
able to derive benefit from six microphones compared to a single 
microphone system.   

WER scores on the dev-test data set were consistently better than 
scores from the same system on the evaluation data set.  Two 
factors may explain this observation.  First, during the 
development period, the challenge participants had feedback on 
the performance of their systems on the dev-test data.  The dev-test 
data had ground truth against which teams could measure their 
performance continually.  Moreover, WER scores on the dev-test 
set were accessible via the InnoCentive scoring server.  By 
contrast, the systems were only scored once on evaluation data at 
the end of the challenge.  Second, there was a greater diversity of 
recording conditions in the evaluation set than in the dev-test set.  
This increased diversity also explains why the error rates were 
higher on the evaluation data set compared to the dev-test data set.  
In general, systems with the best scores on the dev-test set also 

                                                 
1 Some teams did not publish on their submission and are 
anonymous in this paper due to the ASpIRE challenge agreement. 

tended to perform the best on the evaluation set; however, this was 
not always the case (e.g., system 15 and 16 performed as well as or 
better than systems 4, 6, 8, and 11 on dev-test but not on 
evaluation data).  Systems that were consistently high scoring 
across test sets were clearly more robust to the new recording 
conditions in the Mixer 8 Pilot corpus. 

System ID Team Primary? Dev-Test WER Evaluation WER
13 A Primary 27.1 44.3
14 B Primary 27.5 44.3
4 C Primary 29.9 44.8

11 D Primary 39.8 52.7
15 E Primary 27.6 53.4
8 A Contrast 29.0 43.9
9 A Contrast 27.4 44.0
6 D Contrast 40.0 52.8

16 E Contrast 27.9 54.1
7 D Contrast 40.0 54.4

12 D Contrast 39.9 54.7
17 D Contrast 39.4 50.7

System ID Team Primary? Dev-Test WER Evaluation WER
18 C Primary 28.2 38.5

Single Microphone

Multiple Microphone

 
Table 3. Results from the ASpIRE Challenge rank ordered 
by the WER score on the evaluation data set. 

4.1. Single Microphone System Designs 

Team A [21]: The single microphone systems submitted by Team 
A used a Rover combination of systems [22]. System 13, the 
primary system, was a 26-way combination; contrast system 8 was 
a 2-way system combination; and contrast system 9 was a 7-way 
combination of Gaussian Mixture Models (GMMs) and Deep 
Neural Networks (DNNs).  To minimize the mismatch between the 
training and test conditions, these systems were developed using a 
combination of neural network-based speech enhancement 
together with multi-condition training.  The developers added 
additional copies of training data convolved with noise and room 
impulse responses in an attempt to better model the evaluation 
recording conditions.  The approach used the parallel clean and 
noisy, reverberant data to learn a transformation that mapped the 
more challenging speech to clean speech, while also using the 
reverberant and noisy portion to train acoustic models to address 
challenging audio conditions.  Although the 26-way combination 
had the lowest WER on the dev-test, the 2-way system, while 
simpler, performed slightly better on the evaluation set. 

Team B [23]: System 14, the single microphone system submitted 
by Team B, was a multi-splice DNN system [24].  It used 6 hidden 
layers with an effective input context of  t-16 to t+12, that  was 
designed to tackle longer-term interactions between the direct 
speech signal and reverberation by processing longer, asymmetric 
durations of speech.  The system was trained on all of the Fisher 
data and on multiple additional versions of the data created by 
distorting the audio with various room impulse responses and 
noise.  The system used 40-d Mel Frequency Cepstral Coefficients 
(MFCCs) together with i-vectors [25]. The i-vectors characterized 
both the speaker and environment of the recording as inputs to the 
multi-splice DNN.  In addition, the system benefitted from learned 
pronunciation probabilities and word position-dependent silence 
probabilities.  The resulting system was able to deliver among the 
lowest WERs on both the dev-test and evaluation sets.   

Team C [26]: System 4 was among the top performing systems on 
both the dev-test and evaluation sets.  This system was a DNN 
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trained on 500 hours of clean training data augmented with data 
created by adding noise and reverberation.  The system used 
restricted Boltzmann machine (RBM) pre-training, cross-entropy 
training, and sequential minimum Bayes risk discriminative 
training.  A tri-phone GMM was used to generate alignments and 
speaker-adapted features. Speech activity detection made use of 
the harmonic to sub-harmonic ratio [27] as a feature for voiced 
speech detection; this approach was expected to be robust in 
mismatched and severe noise conditions.  The speech files were 
down sampled to 8 kHz, a telephone filter was applied, followed 
by a dereverberation algorithm that used kurtosis as a measure of 
the reverberation [28].  Evaluation data was used for semi-
supervised retraining [29].   

Team D [30]: System 11 team D’s primary system, was a 5-way 
Rover combination [22] of three convolutional deep neural nets 
(CDNNs) [31, 32] and 2 DNNs.  While this system was trained on 
reverberant transformations of the Fisher data and with a wide 
range of speech features (e.g., Damped Oscillator Coefficients, 
Gammatone Filterbank coefficients, and i-vectors) and speech 
enhancement techniques (e.g., Non-negative Matrix Factorization 
[33]), its speech activity detection system was trained on data 
(from the DARPA RATS program) that was highly mismatched 
with the recording conditions of both Mixer 6 and Mixer 8. The 
primary system used a Recurrent Neural Network (RNN) language 
model (LM) for rescoring in addition to a more standard 4-gram 
LM.  The contrast systems were similar to system 11 except that 
system 6 did not use the RNN LM; system 7 replaced one DNN 
with a GMM and eliminated the RNN LM; system 12 replaced one 
DNN with a GMM and used slightly different neural network 
configurations; and system 17 replaced Gammatone Filterbank 
coefficients with Normalized Modulation Coefficients and 
eliminated the RNN LM. 

Team E: System 15, Team E’s primary submission, was a Rover 
combination [22] of three subsystems made up of DNNs and/or 
CNNs with various types of input features along with a single 
GMM.  The first subsystem was a combination of two DNN 
systems trained on Feature space Maximum Likelihood Linear 
Regression (FMLLR) transformed Perceptual Linear Prediction 
and Frequency Domain Linear Prediction (FDLP) features 
appended with i-vectors estimated on power-normalized cepstral 
coefficients (PNCC) and FDLP features.  The second subsystem 
was a discriminatively trained HMM-GMM system that used 
bottleneck features from a DNN trained on FMLLR and i-vector 
features. The third subsystem combined two hierarchical DNNs, 
one using bottleneck and i-vector features and the other using 
bottleneck features from a DNN trained on FMLLR transformed 
features, i-vectors, and features using an inverse filtering approach 
to suppress reverberation.  It also incorporated a maxout DNN 
using annealed dropout on log-Mel spectrograms with projections 
of the input layer constrained to local receptive fields (LRFs) of 
the input features.  The subsystems of system 15 were trained on 
different 600 hour subsets of a clean version of the training set.  A 
two-step de-noising algorithm was applied to the test sets after 
down-sampling to 8 kHz, and cepstral mean subtraction was 
applied during feature extraction.  The contrast system 16 was 
similar to the primary submission except that it added a fourth 
subsystem consisting of three DNNs to the Rover combination.  
Both of Team E’s systems scored among the best WERs on the 

dev-test, but did not perform equally well on the evaluation set.  
Their submissions, like those of group D, used speech activity 
detection trained on DARPA RATS data.   

All of the top performing single microphone systems used multi-
condition training by augmenting the clean training data with 
additional degraded data (noise and room impulses) and performed 
some form of enhancement and adaptation.  In addition, the best-
performing systems used speech activity detection appropriate for 
far field microphone data.  In fact, in post-challenge analysis by 
Lincoln Laboratory, the systems with the best WERs were also 
more accurate at speech activity detection (see [34]). 

4.2. Multiple Microphone System Design 

Team C [26] was the only participant to submit to this condition.  
Fortunately, this group also submitted a top performing single 
microphone system that helped in the interpretation of the 
improved performance using multiple microphones.  System 18 
was comparable to system 4, except that the signal processing 
pipeline used a beam-forming algorithm [35], and semi-supervised 
training was based on six times the evaluation data used in the 
single microphone condition.  This system benefited from access 
to a larger sampling of test conditions in the multiple microphone 
condition. 

5. CONCLUSIONS 

The ASpIRE challenge participants exploited a wide range of 
approaches to make impressive progress toward fieldable solutions 
to the very hard problem of building robust speech recognition 
systems when there is no matched training and development data.  
Neural networks, speech activity detection, multi-condition 
training, speech enhancement, and unsupervised adaptation all 
contributed to lower WER under both evaluation conditions.  It is 
clear that lack of matched supervised adaptation data is no longer 
an insurmountable challenge for making progress on robust speech 
recognition.  The individual lessons learned in the ASpIRE 
challenge are likely to lead to better systems in the future, and 
mixtures of methods from each of the teams may contribute to 
further progress.   

The ASpIRE challenge also demonstrated that working continually 
on the same test data and making progress on that data may not 
guarantee robustness to data collected in new, but related, 
recording conditions.  Reverberation was clearly important in both 
the development and evaluation sets; however, microphone 
variability was greater in Mixer 6 and room variability in Mixer 8.  
This suggests that new challenges that aim to measure system 
robustness need to creatively collect new test data with mismatch 
and then limit testing on these data until after systems are 
developed. 
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