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ABSTRACT

In this paper, we describe our work on the ASpIRE (Au-
tomatic Speech recognition In Reverberant Environments)
challenge, which aims to assess the robustness of automatic
speech recognition (ASR) systems. The main characteristic of
the challenge is developing a high-performance system with-
out access to matched training and development data. While
the evaluation data are recorded with far-field microphones in
noisy and reverberant rooms, the training data are telephone
speech and close talking. Our approach to this challenge
includes speech enhancement, neural network methods and
acoustic model adaptation, We show that these techniques
can successfully alleviate the performance degradation due to
noisy audio and data mismatch.

Index Terms— ASpIRE challenge, robust speech recog-
nition

1. INTRODUCTION

The ASpIRE (Automatic Speech recognition In Reverberant
Environments) challenge aims to assess robustness of auto-
matic speech recognition (ASR) systems to a variety of acous-
tic environments and recording scenarios [1]. The evaluation
data are recorded with far-field microphones in noisy and re-
verberant rooms. The main characteristic of the challenge is
developing a high-performance system without having access
to matched training and development data.

In order to minimize the mismatch between the training
and test conditions we explored three methods. The first
method is motivated by the fact that models trained on a spe-
cific corpus will perform well when incorporated into an ASR
system evaluated on new speech of a similar nature. The chal-
lenge is to create a corpus that matches unseen reverberant
and noisy conditions. While this is a nearly unattainable goal,
the hope is that by adding enough variability in the training
data, the model—trained on such data—will be more robust

to unseen conditions. This method is the most straightforward
but requires training and using a separate acoustic model for
noisy and reverberant conditions.

A reciprocal approach that alleviates the need of training
a noisy acoustic model is to enhance (i.e. de-noise and de-
reverberate) the test audio. This method utilizes a Neural Net-
work (NN) auto-encoder for speech enhancement [2, 3, 4].
In simple terms, a NN is trained using a parallel clean-to-
degraded corpus to learn a transformation that maps degraded
speech to clean. Thus, a typical (i.e. trained on clean corpus)
ASR system can be used to process the enhanced test audio.

The final method is using neural network based acoustic
modeling techniques to enhance the performance of a typical
ASR system. In this work, we first explore feature extrac-
tion techniques based on Stacked bottleneck (SBN) hierarcy;
a tandem structure with features generated by a hierarchy of
two Neural Networks (NN) [5]. We employ this SBN scheme
so that the first NN is responsible for low-level feature extrac-
tion and the second one fits the features to the following dis-
criminatively trained acoustic model. In addition to the fea-
ture extraction, we also investigate a unsupervised adaptation
technique for neural network based on a linear least squares
method (LLS) [6]. In this paper, we show that the adaptation
technique is effective to alleviate the data mismatch issues for
NN based acoustic models.

All three methods rely on a parallel artificially-generated
clean-to-degraded (i.e. reverberant and noisy) corpus. Since
the essence of the challenge is robustness to various unseen
test conditions the crux of the problem is how to synthesize
data that would be close to the target speech conditions. We
employed a large and diverse noising and reverberation pro-
cedure first presented in [7].

This paper is organized as follows: In Section 2 we de-
scribe the ASpIRE data and our approach to augmenting the
training data to improve the system performance. Section 3
explains our method for audio enhancement using a neural
network auto-encoder. We then describe our systems in Sec-
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Table 1. Amount of training and testing data.

Data-set No. of conversation sides Size [h]
Fisher 1+2 23398 1800
ASpIRE Dev 30 3.4
ASpIRE Dev-test 60 5.8
ASpIRE Eval 120 6.1

tion 5 and conclude our work in Section 6.

2. THE DATA AND ITS AUGMENTATION

Fisher English database Part 1 and 2, comprised of over 20k
telephone conversation sides, was the only data allowed for
training in the ASpRIRE challenge. Three sets of test data
were defined by the ASpIRE challenge. The ASpIRE dev set
contains 30 recordings from various rooms and noisy condi-
tions recorded with 16 kHz sampling rate (as opposed to the
8 kHz telephone data in Fisher). Similarly, the dev-test set
and evaluation set contain 60 and 120 recordings respectively
in a similar condition. Therefore, all test data were first down-
sampled to 8 kHz to match the training data. For sizes of the
data-sets, see Table 1.

2.1. Noising

Our training data was processed by artificially adding the fol-
lowing types of noises:

• real fan stationary noises: 115 samples (4 minutes long)
were taken from the Freesound library1. These samples
belong to categories: fan, AC, hvac, street, ventilation.
Their character is stationary (sound of fan or AC).

• real background stationary noises: 170 samples (4 min-
utes long) from Freesound. These samples belong to
categories: city, fan, AC, restaurant, shop, crowd, li-
brary, office, workshop. Their character is mainly sta-
tionary, with some minor portion of transient noises and
babbling.

• real background transient noises: 60 samples (4 min-
utes long) from Freesound. These samples belong to
categories: dishes, motor, workshop, doors, city, key-
board, library, office. The character is mainly transient,
with some minor portion of stationary noises.

• babbling noises: 25 samples (4 minutes long), each
created by merging speech from 100 random speakers
from Fisher database using speech activity detector.

• ASpIRE noises: 140 samples (10-60 second long) of
noises extracted from ASpIRE dev data using speech

1http://www.freesound.org

activity detector. This was conforming to the evaluation
rules.

• Artificial noises: 7 samples (4 minutes long) of artifi-
cial generated noises: various spectral modifications of
white noise + 50 and 100 Hz hum.

2.2. Reverberation

We generated artificial room impulse responses (IR) using
”Room Impulse Response Generator” tool from E. Habets2.
The tool can model the size of a room (3 dimensions), re-
flectivity of each wall, type of microphone, position of source
and microphone, orientation of microphone toward the au-
dio source, and number of bounces (reflections) of the signal.
Each room model consists of a pair of IR. One is used to rever-
berate (convolution with IR) the speech signal and the other
is used to reverberate the noise signal that are then mixed into
a single recording. Only the coordinates of the audio sources
(speech/noise) differ for each of the IRs in each pair. We ran-
domly set all parameters of the room for each room model.

2.3. Composition of the training set

We used the fant tool [8] to mix reverberated speech and
reverberated noise with a given SNR. The speech signal was
compensated for the delay caused by the reverberation (to
match the timing with the original one). The following train-
ing datasets with artificially corrupted speech were created:

Large rooms dataset consists of 1800 hours of clean Fisher
data augmented with another 3 copies of artificially corrupted
Fisher data. IRs were generated for rooms where each dimen-
sion was limited to the range of 2–22 meters. Noises were
added at SNRs ranging from 0dB to 45dB. The noise types
used are: real fan stationary noises, real background station-
ary noises, babbling noises, and artificial noises.

Small rooms is a dataset similar to large rooms with the
addition of real background transient noises and ASpIRE
noises. After listening to the data from large rooms dataset
and comparing it with the relatively less reverberant ASpIRE
dev data, we also decided to limit the room dimensions to the
range of 2–5 meters.

Auto-encoder training dataset is similar to small rooms.
Two noises were always added into one recording: one ran-
dom stationary noise and one random transient noise.

Enhanced dataset uses room dimensions 2–5 meters
and real fan stationary noises, real background stationary
noises, babbling noises, artificial noises added to speech at
SNRs ranging from 15–45dB.This data is further enhanced
(cleaned) by the auto-encoder described in section 3. This
training was created in order to learn the artifacts, which

2http://www.audiolabs-erlangen.de/content/
05-fau/professor/00-habets/05-software/
01-rir-generator/rir generator.pdf
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can be introduced into the speech signal during the speech
enhancement.

3. AUDIO ENHANCEMENT BY DNN
AUTO-ENCODER

The role of the auto-encoder is to enhance (de-noise and de-
reverberate) the speech signal. It is trained on the artificially
created parallel clean-noisy Fisher corpora as described in the
previous section. The input to the NN is 129 dimensional
vectors of log spectra stacked over 31 frames (i.e. 3999 di-
mensional vector). The desired output is a 129 dimensional
vector (again log spectrum) corresponding to the clean ver-
sion of the central input frame. A standard feed-forward ar-
chitecture is used: 3999 inputs, 3 hidden layers with 1500
neurons, 129 outputs, and tanh nonlinearities in the hidden
layers. The NN is initialized in such a way that it (approx-
imately) passes its input to the output and it is trained us-
ing conventional stochastic gradient descent to minimize the
MSE objective.

We have experimented with different strategies of normal-
izing NN input and output. To achieve good performance, ut-
terance level mean and variance normalization is applied to
both the NN input and the desired NN output. To synthe-
size the cleaned speech log spectrum, the NN output is de-
normalized based on the global mean and variance of clean
speech. Prior to passing the data through the NN, the ASpIRE
data is passed through a filter to simulate the characteristics
of a telephone channel.

4. SYSTEM DESCRIPTION

4.1. BUT GMM System

The BUT ASR system was a GMM-HMM with cross-word
tied-states triphones. Twelve Gaussian mixtures per state
were trained from scratch using mix-up maximum likelihood
training. Final word transcriptions were decoded using a
3-gram Language Model (LM) trained only on the Fisher
corpus. The GMM-HMM was trained via MPE. The features
used by the BUT GMM system consist of 39-dimensional
PLP-HLDA features, 30-dimensional Stacked Bottleneck
Neural Network (SBN) features, and four pitch features.
These features are combined using the region dependent
transform (RDT) method [9]. The GMM and the SBN fea-
tures are trained on the augmented Fisher corpus consisting
of artificial noises described in Section 2.

4.2. BBN GMM System

The BBN GMM training was similar to the procedure de-
scribed in previous work [9, 10]. We use multi-layer percep-
tron (MLP) and PLP features. The MLP and PLP features are
first projected to a lower dimensional feature vector through

the RDT method [9]. The GMM models are finally trained on
the RDT-projected features. In the training for this work we
made a few changes,

• As described in [10], frequency domain linear predic-
tion (FDLP) features [11] were used to train MLP. The
FDLP features were extracted with a 10-second long
window, producing a 476-dimensional vector. Such
high-dimensional features not only require large stor-
age spaces but also could cause I/O burdens during
training, especially when the amount of training data
becomes big. Instead, we used Mel filter bank (MelFB)
features to train the MLP. For each frame, we compute
17 MelFB features and the energy with a 25ms window.
The final feature vector was produced by concatenating
31 frames, giving a 558-dimensional vector (31x18).
17 MelFB features were computed

• Rather than training with the SBN features described
in [12, 10], we trained only one MLP for generat-
ing bottleneck features, reducing the MLP training
time by half. The configuration of the MLP was
558x1500x1500x150x1500xN, where N is the number
of cross-word state clusters and the third hidden layer is
the bottleneck layer. From this MLP, 150-dimensional
bottleneck features were generated.

• Instead of concatenating 11 PLP frames, we concate-
nated 15 frames. Also, we increased the dimension of
the RDT-projected features from 46 to 60.

The changes made in the generation of MLP features are
mainly due to the time limit of the ASpIRE evaluation.

Compared to the BUT system, the BBN GMM system
is trained on the original Fisher corpus without the artifi-
cial noises. We used the entire Fisher training data (1800
hours) to train the MLP features. The GMM acoustic mod-
els were trained on 800 hours of Fisher. The lexicon and
language model were derived from the entire Fisher training
transcripts. All models were based on cross-word tied-states
quinphones. The GMM models were trained using MPE.
The language model is similar to the BUT system which
is a 3gram model trained on Fisher corpus. Decoding was
performed with unsupervised speaker adaptation. We also
utilized cross-adaptation between models. The models were
used to decode the various versions of the enhanced ASpIRE
audio.

4.3. BBN DNN and Adaptation

The BBN DNN acoustic model uses the same 46-dimension
RDT features used by the BBN GMM system. The input to
the DNN concatenates 11 frames to form a 506-dimension
input. The DNN also consists of six hidden layers and each
layer contains 2048 sigmoid units. The DNN is first ini-
tialized by a layer-wise discriminative pretraining procedure.
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Then we perform cross entropy training and one iteration of
sequence discriminative training.

To deal with the data mismatch between the train set and
the test, we perform unsupervised speaker adaptation using
the linear least square algorithm [6] (LLS). To describe our
LLS adaptation algorithm, we define the DNN using the fol-
lowing notions: a DNN may contain N + 2 layers where the
first layer (indexed with 0) is the input layer and the last layer
(indexed with N + 1) is the output layer. Layer 1 to N are
the hidden layers and each layer contains Ki units. Each unit
has an activation function. Mathematically, each layer of the
DNN can be evaluated by the following equations,

zi
t = fi(yi

t) (1)
yi

t = Aix
i
t + bi (2)

xi
t = zi−1

t if i > 0 (3)

where zi
t is the output of the i-th layer; fi is the activation

function of the i-th layer, say a sigmoid function for the hid-
den layers and a softmax function for the output layer; Ai and
bi are the weights of the i-th layer; xi

t is the input to the i-
th layer and zi−1

t is the output of the (i − 1)-th layer which
serves as an input to the i-th layer.

Suppose E is the objective function, say cross entropy
function, gradient descent would compute ∂E

∂Ai
and ∂E

∂bi
and

optimize the model parameters directly. However, LLS de-
composes the optimization problem into two steps. In the first
step, it uses gradient descent to optimize the internal represen-
tation of a DNN, i.e. yi

t. Once the internal representation is
optimized, we solve a linear least square problem to optimize
the DNN weights, i.e. Wi ≡ [Ai, bi], so that it is closest to
the optimized internal representation.

Using the cross entropy function as an example, we com-
pute

∂E

∂yi
t

=
∂E

∂zi
t

∂zi
t

∂yi
t

(4)

ŷi
t = yi

t − λ
∂E

∂yi
t

(5)

so yi
t can be optimized by back-propagation. The target inter-

nal representation ŷi
t is then approximated by,

W ∗
i = arg min

Wi

1
2

∑
t

||ŷi
t −W ′x̃i

t||2 (6)

= (
∑

t

ŷi
tx

i′

t )(
∑

t

x̃i
tx̃

i′

t )+ (7)

≡ Ŷ i
T (Xi

T )+ (8)

There are some advantages of using LLS algorithm for
unsupervised adaptation. To solve equation 8, one has to per-
form pseudo inverse for Xi

T which is not full rank. As a re-
sult, the optimization is implicitly regularized by the Frobe-
nius norm which prefers a sparse solution. Also, in our pre-
vious work [6], we found that the LLS algorithm is robust for

unsupervised adaptation and it is not sensitive to the learning
rate used for optimizing yi

t. In this work, we use the LLS algo-
rithm to adapt the entire network, which is different from [6]
where we only adapt the last layer of the DNN.

5. EXPERIMENTAL RESULTS

5.1. Experiments on Audio Enhancement and Data Aug-
mentation

For the BBN GMM system, we enhanced the ASpIRE audio
using the techniques described in Section 3. In addition, we
experimented with several variants of the normalization and
noise enhancement procedure:

• small rooms MVN1: Utterance level mean and vari-
ance normalization is applied independently to each of
the 129 dimensions of the log spectra. Both the NN
input and the desired NN output are normalized. To
synthesize the cleaned speech, the NN output is un-
normalized based on the global mean and variance of
clean speech.

• small rooms MVN2: the same as the previous case,
except that the NN is trained with more iterations to
achieve better convergence.

• small rooms MN1: Utterance level mean normaliza-
tion but global variance normalization is applied

• small stat aspi tran rooms MVN1: same processing
as for small rooms MVN1, but the noisy data also
includes transient noises.

• small stat aspi tran 3ch midhigh MVN1: same pro-
cessing as for small rooms MVN1, but the noisy data
also includes transient noises and lower SNR levels.

Table 2. WER(%) of the BBN GMM system with different
audio enhancement procedures.

System Enhancement Dev
GMM small rooms MVN1 37.8
GMM small rooms MVN2 37.6
GMM small rooms MN1 37.6
GMM small stat aspi tran rooms MVN1 37.9
GMM small stat aspi tran 3ch midhigh MVN1 38.0

Table 2 shows the WERs of the BBN GMM system on
the ASpIRE dev set using different procedures for audio en-
hancement. The best WER (37.6%) is obtained by using the
small rooms MVN2 procedure.
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Table 3. WER(%) of the BUT GMM system with different
data augmentation and audio enhancement procedures.

SBN GMM Enhancement Dev
Clean Clean No 42.3
Large Large No 35.6
Clean Clean Yes 37.9
Small Clean No 38.2

Enhanced Clean Yes 36.7

For data augmentation, we evaluated the large rooms and
small rooms augmented data sets using the BUT GMM sys-
tem. Table 3 shows the performance on the ASpIRE dev set.
The results demonstrate that training on the noisy data gives
the best performance. However, this requires the processing
of the augmented data, a potentially significant computational
cost. In this experiment, the large rooms data set consists of
three copies of artificially corrupted Fisher data, containing
over 5000 hours of audio data. In contrast, the systems using
enhanced audio had comparable performance while the size
of the train set did not increase three fold.

5.2. Cross Adaptation for DNN

We evaluated the performance of the DNN acoustic model
and study whether unsupervised adaptation could alleviate the
degradation due to noisy environment. Similar to the BBN
GMM systems, the DNN system is trained on clean audio
and tested on enhanced audio . Prior to training the DNN
system, the BBN GMM systems were used to perform feature
MLLR (fMLLR) for speaker adaptation. In this experiment,
we focused on the effect of cross adaptation using the LLS
algorithm. For this DNN, we used the audio enhanced by the
small rooms MVN2 procedure which yields the best results
in the GMM experiments.

Table 4. WER(%) of unsupervised speaker adaptation for the
BBN DNN system.

System Algorithm Xadapt Dev Dev-test
DNN fMLLR GMM 38.6 33.8
DNN fMLLR BUT 38.3 33.5
DNN fMLLR+LLS GMM 37.5 30.6
DNN fMLLR+LLS BUT 36.4 30.2

The results in Table 4 show that our proposed LLS al-
gorithm can improve the cross adaptation performance from
38.3% to 36.4% on the dev set, and from 33.5% to 30.2%
WER on the dev-test set. This result suggests the DNN
can benefit from unsupervised adaptation in noisy and mis-
matched data conditions.

Table 5. Results (WER %) using ROVER for system com-
bination. The first three results use the standard ROVER ap-
proach. The final result weights the confidence scores from
the individual systems before combination.

Systems Dev Dev-test
Unweighted Combination
1 35.6 30.3
2 33.5 29.0
7 32.4 27.4

Weighted Combination
7 32.2 27.4

5.3. ROVER and System Combination

We performed system combination using ROVER with the
maxconf setting. The alpha and null confidence parameters
were tuned on the development set. In ROVER, each system
is treated equally. The final output is chosen through a voting
scheme at the word level. We noticed that combining large
numbers of systems does not always improve performance.
To address this issue, we also explored weighting the confi-
dence scores of the individual systems based on their WER.
While this produced improvements on the development set,
they did not carry over to the evaluation set. Results can be
seen in Table 5. The two system combination refers to the
cross-adapted BBN GMM and the BUT GMM. The seven
system combination further adds the BNN DNN system, a
BUT GMM decoding of enhanced data, and three BBN GMM
decodings of various enhanced audio. Combining system out-
puts significantly improved performance over a single system.

Table 6. WER(%) of the BBN GMM, BBN DNN and BUT
GMM systems on ASpIRE evaluation set.

System Combine Eval
BBN GMM xadapt BUT GMM 46.8
BBN DNN xadapt BUT GMM 47.1
BUT GMM - 46.3

BBN GMM + BUT GMM ROVER 43.9

Table 6 summarizes the performance of BBN GMM, BBN
DNN and BUT GMM system on the ASpIRE evaluation set.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we describe our work in the ASpIRE challenge.
We experiment and evaluate different approaches to tackling
the performance degradation due to noise and data mismatch.
Our approaches include audio enhancement, data augmenta-
tion, unsupervised DNN adaptation, and system combination.
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They show significant improvement over the baseline. In the
future, we will explore combining audio enhancement and
data augmentation, and also more neural network based adap-
tation techniques.
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[5] F. Grézl, M. Karafiát, and L. Burget, “Investigation into
Bottle-neck Features for Meeting Speech Recognition,”
in Proceedings of the INTERSPEECH, 2009.

[6] R. Hsiao, S. Tsakalidis T. Ng, L. Nguyen, and
R. Schwartz, “Unsupervised Adaptation for Deep Neu-
ral Network using Linear Least Square Method,” in Pro-
ceedings of the INTERSPEECH, 2015.

[7] Martin Karafiát, František Grézl, Lukáš Burget, Igor
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