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ABSTRACT 
 

Reverberation is a phenomenon observed in almost all enclosed 

environments. Human listeners rarely experience problems in 

comprehending speech in reverberant environments, but automatic 

speech recognition (ASR) systems often suffer increased error 

rates under such conditions. In this work, we explore the role of 

robust acoustic features motivated by human speech perception 

studies, for building ASR systems robust to reverberation effects. 

Using the dataset distributed for the “Automatic Speech 

Recognition In Reverberant Environments” (ASpIRE-2015) 

challenge organized by IARPA, we explore Gaussian mixture 

models (GMMs), deep neural nets (DNNs) and convolutional deep 

neural networks (CDNN) as candidate acoustic models for 

recognizing continuous speech in reverberant environments. We 

demonstrate that DNN-based systems trained with robust features 

offer significant reduction in word error rates (WERs) compared to 

systems trained with baseline mel-filterbank features. We present a 

novel time-frequency convolution neural net (TFCNN) framework 

that performs convolution on the feature space across both the time 

and frequency scales, which we found to consistently outperform 

the CDNN systems for all feature sets across all testing conditions. 

Finally, we show that further WER reduction is achievable through 

system fusion of n-best lists from multiple systems. 

 

Index Terms— time-frequency convolution nets, deep 

convolution networks, robust feature combination, robust speech 

recognition, reverberation robustness, system fusion. 

 

1. INTRODUCTION 
 

With the introduction of deep learning techniques [1], ASR 

systems have seen a phenomenal reduction in error rates [2]. But 

ASR systems are quite sensitive to speech-signal degradations, 

such as reverberation, noise, and channel mismatch, which can 

result in significantly reduced speech recognition accuracy. ASR 

systems perform exceptionally well under matched conditions, but 

a subtle difference between the testing and training conditions 

reveals their vulnerability [3].  

Reverberation is a major source of performance degradation for 

ASR systems [4], where performance degradation (usually 

represented by WER increases with the increase in reverberation 

time (usually represented by the RT60 value in seconds). 

Typically, the environment where the speech sample is collected 

defines the degree of reverberation and its effect on speech. 

Reverberation is usually the effect of multiple reflections of the 

source sound on the ambient enclosure. The time (typically in 

seconds) required for the reflections of a direct sound to decay to 

60 dB is defined as the RT60 value of reverberation. Typically, the 

higher the RT60 values are, the more distorted the reverberated 

speech sounds, and vice versa. Such multiple reflections or 

reverberation seriously degrade speech-signal quality. Approaches 

to circumvent reverberation effects on speech are now an 

important research area, with microphone-array processing [5]; 

echo cancellation [6]; robust signal processing [7]; and speech 

enhancement [8] being major research thrusts. 

Reverberation introduces acoustic mismatch between training 

and testing conditions, which usually degrades ASR performance. 

ASR systems trained purely on clean data (i.e., data without any 

distortion and/or artifacts) typically suffer a substantial increase in 

error rates when deployed in reverberant conditions. Training the 

ASR system with reverberated data can mitigate this effect. The 

results from different research groups at the 2014 REVERB 

Challenge workshop [4] indicated that using an increased diversity 

of reverberation conditions during multi-conditioned training 

usually improves the robustness of acoustic models by reducing 

acoustic-condition mismatch between the training and testing data.  

In ASR systems, robustness against reverberation is usually 

improved through signal-processing techniques and de-

reverberation strategies as explored in [9-14]. These studies 

demonstrated that using suitable acoustic features improves 

robustness against reverberation for ASR systems.  

Recent advances in deep learning technology have redefined 

acoustic modeling in ASR systems, with more accurate 

discriminative learning techniques (such as neural networks) 

replacing traditional generative learning techniques (such as 

GMMs). DNNs have simplified many steps for ASR systems (e.g., 

primitive filterbank energies replace cepstral features [1]). Widely 

used speaker-normalization techniques, such as vocal tract length 

normalization (VTLN) [15], no longer offer significant gains in 

speech recognition accuracy, as DNNs can learn speaker-invariant 

data representations [16]. Specifically, it was observed [16] that 

VTLNs make much less impact on ASR accuracy for CDNNs [17] 

than for traditional DNNs. Recent results [16, 18] also showed that 

CDNNs are more robust to noise and channel degradations than 

DNNs. Traditionally, a single layer of convolutional filters are 

used on the input contextualized feature space to create multiple 

feature maps that, in turn, are fed to fully connected DNNs. 

However in [19], it was shown that adding multiple convolutional 

layers (usually up to two) potentially improves the performance of 

CDNN systems beyond their single-layer counterparts. 

In this work, we explore a set of robust acoustic features in 

different acoustic modeling setups and analyze their performance 

in a speech recognition task under reverberant conditions. We 

compare the performance of traditional GMM-based acoustic 
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models with more recent DNN and CDNN architectures, and we 

demonstrate how deep learning can improve ASR performance. 

We analyze the number of hidden layers and the hidden layer size 

on a held-out development set to obtain the neural network 

parameters.  

We present a modified version of the conventional CDNN that 

deploys two separate convolution layers, one layer operating 

across frequency, and the other layer operating across time, and we 

name this new variant the time-frequency convolution neural 

network (TFCNN). Finally, we demonstrate that using TFCNNs 

can further reduce ASR error rates compared to the best-

performing CDNN systems.  

Recently [20], i-vectors [21] have been used to perform 

speaker adaptation in DNNs. In this work, we explored both 

utterance-level and 20 second window-based i-vectors, and used 

them in addition to robust features for training the DNN systems. 

We used the data distributed through the ASpIRE 2015 challenge 

[22] to train and evaluate our systems.  

 

2. TASK AND DATASET 
 

The goal of the ASpIRE challenge was to perform the ASR task on 

native American English speakers where mismatch between the 

training and test conditions was quite high [22]. For the ASpIRE 

evaluation, each participant was expected to build an ASR system 

for conversational telephone English speech that would be robust 

to a variety of unknown acoustic environments and recording 

scenarios. The participants were given English Fisher 

conversational telephone speech (CTS) to train their models, and 

ad-hoc corruption of the training data was allowed. Evaluation for 

ASpIRE was performed with support from the MIT Lincoln 

Laboratory. During the submission process, the participants were 

required to provide written documentation and to deliver output 

from their Speech-to-Text system on the evaluation data to the 

ASpIRE organizers. 

The Fisher-CTS dataset contained single-speaker utterances 

recorded at an 8 kHz sampling rate. The training corpus was 

artificially reverberated using 12 different room conditions (split 

equally among small, medium, and large rooms) with RT60s of 

approximately 0.5 and room signal-to-noise ratios (SNRs) between 

10 to 20 dB using the setup of the REVERB2014 Challenge [4]. 

The noisy and reverberant training data (NR-train) was obtained by 

combining 25% of the training dataset after adding reverberation 

with 12.5% of the clean training data (mutually non-overlapping). 

The clean training data (CL-train) was comprised of 37.5% of the 

clean Fisher-CTS data. Unless otherwise mentioned, all acoustic 

models were trained with the NR-train data. For only two systems, 

we used the full, reverberated Fisher-CTS training data, where no 

clean data was used, and we name that training set the NR-train-

full set. 

The development dataset is partitioned into a development (dev) 

set and a development-test (dev-test) set containing real recordings 

distributed through the ASpIRE challenge. Because the dev data 

came with references, we artificially reverberated that data and 

used the reverberated data to evaluate the performance of our 

system. The performance on the dev-test set can only be obtained 

by uploading the ASR outputs to the ASpIRE challenge website or 

by emailing the organizers. Because the dev data came with 

manual segmentation, we used it to produce a manually segmented 

dev set, and created two versions by artificially reverberating one 

with a fixed RT60 of 0.5 (RT60_0.5) and the other with a fixed 

RT60 of 0.7 (RT60_0.7). In addition to the manually segmented 

dev data, we used a speech activity detector (SAD) [23] developed 

for noisy channel data under the DARPA RATS project (without 

further optimizing on reverberated data), to automatically segment 

the dev data (we call this as SAD segmented data). We also added 

reverberation to the dev data at two RT60 values (0.5s and 0.7s) 

and then performed SAD segmentation. In this paper, we report 

our results on the different versions of the dev, dev-test, and eval 

data, with the performances reported in terms of word error rates 

(WERs).  

The evaluation data was collected and transcribed by the 

organizers specifically for the ASpIRE evaluation and was called 

the Mixer 8 Pilot corpus [22]. The data was recorded for 

Intelligence Advanced Projects Activity (IARPA) by the Linguistic 

Data Consortium (LDC) and transcribed by Appen Butler Hill. The 

data was collected by using multiple simultaneous microphones 

placed in a wide range of locations in seven different rooms (some 

classrooms and some office space) with various different shapes, 

sizes, surface properties, and noise sources. Speakers were also 

recorded from several different positions in each room. Two 

specific evaluation conditions were included: (a) Single 

Microphone condition and; (b) Multiple Microphone condition. 

This work focuses on only on the single microphone evaluation 

condition. In (a) the participants were allowed to train and test their 

systems on data from a single microphone only, where the single 

microphone (selected randomly) test data came from sessions 

recorded across seven different rooms 

 

3. ACOUSTIC FEATURES 
 

We explored an array of robust features for our experiments, and 

they are briefly outlined in this section.  

 
 

3.1 Non-negative Matrix Factorization Enhanced Mel-

Filterbank Features (NMF-MFB) 

Using the approach outlined in [24], non-negative matrix 

factorization (NMF) was used to estimate relatively cleaner speech 

from the reverberated speech. The default NMF parameters as 

outlined in [24] were used in our experiments. We applied NMF to 

the training and testing data to produce their possibly enhanced 

versions and extracted 40-dimensional mel-filterbank (MFB) 

energies from them. These 40-D features were used as the NMF-

MFB features in our experiments reported here. 

 

3.2 Damped Oscillator Coefficients (DOC) 

In DOC processing, the hair cells within the human ear are 

modeled as forced damped oscillators [25]. DOCs try to model the 

dynamics of the hair-cell oscillations to auditory stimuli within the 

human ear. The hair cells detect the motion of incoming sound 

waves and excite the neurons of the auditory nerves, which then 

transduce the relevant information to the brain. In DOC 

processing, the incoming speech signal is analyzed by a bank of 

gammatone filters that split the signal into bandlimited subband 

signals. We used 40 gammatone filters that were equally spaced on 

the equivalent rectangular bandwidth (ERB) scale. The 

bandlimited subband signals from these 40 gammatone filters 

served as the forcing functions to an array of 40 damped oscillators 

(more details in [25]) whose response was used as the acoustic 

feature. We analyzed the damped oscillator response by using a 

Hamming window of 26 ms with a frame rate of 10 ms. The power 

signal from the damped oscillator response was computed, then 

root compressed using the 15th root, and the resulting 40-
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dimensional features were used as the DOC feature in our 

experiments. 

 

3.3 Normalized Modulation Coefficients (NMC) 

Studies [26, 27] have shown that amplitude modulation (AM) of 

subband speech signals plays an important role in human speech 

perception and recognition. The NMC feature tries to capture and 

use the AM information from bandlimited speech signals. NMCs 

were obtained by using the approach outlined in [28], where the 

features are generated from tracking the AM trajectories of 

subband speech signals in a time domain by using a Hamming 

window of 26 ms with a frame rate of 10 ms. The speech signal 

was analyzed by using a time-domain gammatone filterbank with 

40 channels equally spaced on the ERB scale. The subband signals 

were then processed by using a modified version of the discrete 

energy separation algorithm (DESA) (outlined in [28]), which 

produced instantaneous estimates of AM signals. The powers of 

the AM signals were then root compressed using the 15th root. The 

resulting 40-dimensional feature vector was used as the NMC 

feature in our experiments. 
 

 

3.4 Modulation of Medium Duration Speech Amplitudes 

(MMeDuSA) 

MMeDuSA [29] is similar in essence to the NMC features, where 

it tracks the subband AM signals of speech by using a medium 

duration analysis window. On top of tracking the subband AM 

signals, MMeDuSA also tracks the overall summary modulation 

information. The summary modulation plays an important role in 

both tracking voiced speech and locating events such as vowel 

prominence/stress, etc. Unlike NMCs, MMeDUSA does not use 

the DESA algorithm to track the AM signals, but instead directly 

uses the nonlinear Teager energy operator [30] to crudely estimate 

the AM signal from the bandlimited subband signals. The 

MMeDuSA-generation pipeline used a time-domain gammatone 

filterbank with 40 channels equally spaced on the ERB scale. The 

MMeDuSA pipeline used a Hamming analysis window of ~51 ms 

with a 10 ms frame rate. The powers were root compressed, and 

the resultant information was used as the acoustic feature in our 

experiments. More details regarding MMeDuSA feature extraction 

can be obtained in [29]. 

 

 

3.5 Gammatone Filterbank (GFBs) Energies 

Gammatone filters are a linear approximation of the auditory 

filterbank of the human ear. We used a time-domain 

implementation of the gammatone filters, where a bank of 40 

gammatone filters equally spaced on the equivalent rectangular 

bandwidth (ERB) scale was used to analyze speech signal. The 

power of the bandlimited time signals from the gammatone filters 

were analyzed by using a Hamming window of ~26 ms with a 10 

ms frame rate. The subband powers were then root compressed 

using the 15th root, and the resulting 40-dimensional feature vector 

was used as the GFBs. 

 

 

 

3.6 I-Vectors 

I-vectors of 200 dimensions were extracted from a subspace 

trained on all the training data. The subspace was based on a 

universal background model (UBM) with 512 components trained  

with mel-frequency cepstral coefficients (MFCCs) (20 cepstra 

including C0 with both Δ and ΔΔ appended to produce 60D 

MFCCs). Speech activity detection (SAD) for extracting the i-

vectors was based on a GMM SAD (using MFCCs with 13 cepstra 

including C0 with both Δ and ΔΔ appended) that was robust to 

microphone and telephone noise. The i-vector was extracted for a 

single whole conversation side of the data and appended to all 

stacked DOC features for the same conversation side, resulting in 

the DOC-IV features.  

In addition to the utterance-level i-vectors, we also explored 

short-term dynamic i-vectors (we name these as sIV), which were 

based on 20 seconds of speech (as detected by the SAD). The 20-

second i-vectors should better capture the dynamic nature of 

conversations (i.e., excitement, anger, disinterest, etc.) over time, 

compared to those extracted from the whole conversation side. The 

short-term i-vectors were appended with the NMC features, 

resulting in NMC-sIV features. Note that the i-vector extractor was 

trained using the CL-train data.  

 

3.7 Max Kurtosis-Based Enhancement 

Reverberation is typically caused by delayed reflections of sound 

from ambient surfaces. Reverberation usually affects the excitation 

signal, or in a linear prediction (LP) model, the LP residual. As 

reverberation effect increases, the kurtosis of the LP residual 

decreases [31]. The goal of the enhancement used in this 

processing was to maximize the kurtosis of the LP residual of 

reverberated speech, assuming that the LP residuals were 

unaffected by background contamination. An LMS-like adaptive 

filtering was used to maximize the kurtosis of the LP residual, and 

the resultant was used to generate the enhanced speech. The 

enhanced speech was used to produce DOC features, and we name 

the resulting features as DOC-Kurtosis. 

 

Note that all filterbank features used in the experiments 

reported in this paper were mean and variance normalized before 

being fed to the acoustic models for training and testing. The i-

vectors were length normalized and then appended with the other 

features. 

 

4. ACOUSTIC MODEL 
 

For acoustic modeling, we used traditional GMMs, DNNs, and 

CDNNs in our experiments. The GMM-HMM acoustic model 

training was performed by using SRI’s DECIPHER® LVCSR 

system, which used 13 NMC Cepstral features (NMCCs) (these are 

the cepstral features obtained from discrete cosine transform 

(DCT) of the NMC features) and their Δs, Δ2s, and Δ3s. Global 

mean and variance normalization was performed on the acoustic 

features prior to acoustic model training, and heteroscedastic linear 

discriminant analysis (HLDA) transform was performed similar to 

[13]. The acoustic models were trained as cross-word triphone 

HMMs with decision-tree-based state clustering using a recipe 

similar to [13].  
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Figure 1. Block diagram showing time-frequency convolution neural nets (TFCNN). The top dotted block shows convolution filters 

working across time, and the bottom dotted block shows convolution filters across frequency. The max-pooled outputs of these convolution 

filters are fed to a fully connected 4-layered deep neural net.  

 

To generate alignments to train the DNN and CDNN systems, 

a Kaldi Speech Recognition toolkit [40] based GMM-HMM model 

using MFCCs (standard 39 dimenisons) was trained using the CL-

train data to produce the senone labels. The reverberated and noisy 

data of NR-train were time-aligned with their clean counterparts, 

such that the alignments from the clean data could be used as 

alignments for the noisy and reverberated training data. Altogether, 

the GMM-HMM system produced 7827 senones in our 

experiment. The DNN/CNN systems were trained using Theano. 

The input layer of the DNN/CDNN systems was formed by 

using a context window of 15 frames (7 frames on either side of 

the current frame). The DNN/CDNN acoustic model was trained 

by using cross-entropy on the alignments from the GMM-HMM 

system, where NR-train was used. The input features were 

filterbank energy coefficients with a context of seven frames from 

each side of the center frame for which predictions were made. We 

used 200 convolution filters of size eight in the convolution layer 

and set the pooling size to three without overlap. Note that only 

one convolution layer was used in the CDNN. The resulting 

CDNN included four hidden layers with 1024 nodes each and an 

output layer with 7827 nodes representing the senones. The 

networks were trained by using an initial few iterations with a 

constant learning rate of 0.008, followed by learning-rate halving 

based on cross-validation error decrease. Training stopped either 

when no further significant reduction in the cross-validation error 

was noted or when the cross-validation error started to increase. 

Backpropagation was performed using stochastic gradient descent 

with a mini-batch of 256 training examples. The HMM decoding 

of the DNN/CNN lattices was performed using Kaldi [40]. 

We also explored the time-frequency convolution neural nets 

(TFCNN) [32], shown in Figure 1. In TFCNNs, two levels of 

convolution are performed on the input contextualized feature 

space, where a context of 17 frames was used. We used 75 filters 

to perform time convolution and 200 filters to perform frequency 

convolution. The filter band sizes were eight in both cases. A max-

pooling over three samples was used for frequency convolution, 

while max-pooling over five samples was used for time 

convolution. The feature maps after both the convolution 

operations were concatenated and then fed to the fully connected 

neural net, which had 1024 nodes and four hidden layers. The 

delayed acoustic reflections in reverberation usually introduce 

distortion or artifacts along the time axis, and hence the motivation 

behind time-convolution and max-pooling across the time axis is to 

mitigate that distortion. Figure 1 briefly outlines the TFCNN 

architecture. 

All training data was used for training the language model 

(LM). SRILM [33] was used to train the 4-gram LM by using 

modified Kneser-Ney smoothing, which produced about 650K 4-

grams, 1.39M 3-grams, 2.46M 2-grams, and 38K 1-grams. We also 

used an approach that explores n-gram statistics to extract 

multiwords from the language model training data. The details of 

the approach can be found in [34]. In addition, a recurrent neural 

net (RNN)-based LM was also used. An RNN-LM [35] has a 

recursive structure that predicts a current word wj given the 

previous word wj-1 and previous hidden state vector hj-1. An RNN-

LM can be learned by using backpropagation through time to 

maximize the log-likelihood of the training sentences. To take 

advantage of full sentence context, we employed a backward 

RNN-LM p(wj|wj+1,hj+1) trained with sentences in reverse word 

order. We used the same language model training text for the 

baseline word n-gram language models to train forward and 

backward RNN-LMs with 500 hidden nodes, and applied the 

forward and backward RNN-LMs to rescore n-best lists extracted 

from Kaldi lattices. RNN-LM scores were used for n-best ROVER.  

 

5. RESULTS 
 

The acoustic models were trained by using batch processing, for 

which no prior information about the speakers, room conditions, or 

background noise was used. Table 1 presents the results for the six 

systems broken down by the four feature types: (1) the MFCC-

GMM system trained with the CL-train data (note that this is the 

only model that was trained only with CL-data in our 

experiments); (2) the NMCC-GMM system trained with the NR-

train data; (3) the DNN/CDNN systems trained using mel-

filterbank (MFB); and (4) the DNN/CDNN systems trained using 

the NMC features extracted from the NR-train data.  

Table 1 presents the WERs from these six different systems 

and shows that the CDNN-based system performed much better 

than either of the GMM and DNN systems, which we have also 

observed in our earlier ASR experiments [13, 16, 36] using noise- 

and reverberation-corrupted speech data.  

Table 1 show that the WERs for the CDNN/DNN systems were 

significantly lower than the GMM systems. It also shows that 

using robust features (NMCs for DNN/CDNN, and NMCC for 

GMM) reduced the WER significantly compared to those of the 

systems using mel-filterbank features (MFCC for GMM, and MFB 
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for DNN/CDNN). A relative 9% and 11% reduction in WER was 

noted for the DNN and CDNN systems, respectively, when NMCs 

replaced MFBs. 

 

Table 1. WERs from different baseline systems using reverberated 

dev (manually segmented using transcription) data for decoding. 

System Feature WER (%) 

RT60-0.5 RT60-0.7 Avg. 

GMM MFCC 85.5 91.2 88.4 

GMM  NMCC 72.3 79.9 76.1 

DNN MFB 66.1 70.6 68.4 

CDNN MFB 63.8 68.1 65.9 

DNN NMC 59.5 64.5 62.0 

CDNN NMC 56.1 61.0 58.6 

 

In Table 2, we present the detailed results from all the features 

discussed in Section 3 for the DNN systems trained with the NR-

train data. Table 2 shows that all but the NMF-MFB- and DOC-

Kurtosis-based systems gave lower WERs for all the conditions 

compared to the MFB features. DOC performed the best for all the 

conditions, showing 10% or more absolute reduction in WER 

compared to the MFBs. Note that the forced damped oscillators 

[25] used in the DOC feature-generation pipeline have a long-term 

memory, whereas the other features treat speech as a piece-wise, 

independent signal. The DOCs’ long-term memory might help 

them to efficiently cope with the temporal artifacts introduced by 

the background reverberations. Interestingly, the IV-based fused 

feature systems did not show any improvement beyond their 

individual counterparts, and hence, we did not use the IV-based 

fused features for training the CDNN systems. Table 3 shows the 

performance of the different features in the four-layered CDNN 

systems, trained with the NR-train data. Tables 2 and 3 indicate 

that the robust features help in reduction of WERs compared to 

baseline mel-filterbank features in noisy and reverberated 

conditions. An independent study [39] using multi-channel noisy 

data processed through beamforming and using MMeDuSA and 

DOC robust features, demonstrated similar reduction in WERs 

compared to beamformed MFB features.  

 

Table 2. Dev (Manually segmented and SAD segmented) WERs 

from the DNN systems trained with different features. 

Feature WER (%) for dev 

Manually segmented SAD segmented 

RT60-0.5 RT60-0.7 RT60-0.5 RT60-0.7 no_rev 

MFB 66.1 70.6 69.2 73.2 67.5 

NMC 59.5 64.5 61.3 65.5 47.9 

DOC 56.2 60.7 58.4 62.1 46.2 

GFB 58.6 63.7 60.7 64.9 47.3 

MMeDuSA 57.2 61.5 59.3 62.6 48.4 

NMF-MFB 69.6 73.8 70.6 73.8 58.4 

DOC-Kurtosis 71.6 75.8 73.6 76.9 59.2 

DOC-IV 58.0 61.0 62.9 65.2 48.4 

NMC-sIV 62.9 65.2 68.8 68.0 49.1 

 

From Table 3, we observe that the CDNN systems always 

produced lower WERs compared to their DNN counterparts for all 

the features. Note that, although the CDNN systems had only four 

hidden layers, the DNN systems had five layers, except the DOC-

IV system, which had six layers. Also note that the CDNN systems 

had only one convolution layer applied to the first layer of the 

network. Tables 2 and 3 confirm our prior observations from ASR 

experiments on noise- and channel-degraded speech [13, 16, 36], 

where we observed that (1) the CDNN systems always perform 

better than the DNN systems and (2) the robust features always 

gave a sizeable performance gain compared to the MFB features.  

 

Table 3. Dev (Manually segmented and SAD segmented) WERs 

from the CDNN systems trained with different features. 

Feature WER (%) for dev 

Manually segmented SAD segmented 

RT60-0.5 RT60-0.7 RT60-0.5 RT60-0.7 no_rev 

MFB 63.8 68.1 67.7 71.8 66.6 

NMC 56.1 61.0 60.9 66.7 45.7 

DOC 54.4 58.8 56.8 60.4 44.9 

GFB 56.5 61.0 58.2 61.6 45.6 

MMeDuSA 54.8 58.7 57.3 60.8 47.1 

NMF-MFB 67.8 72.1 69.3 72.0 56.5 

DOC-Kurtosis 70.3 74.7 72.2 75.3 57.6 

 

We evaluated the top-performing features from our CDNN 

experiments on TFCNNs. The TFCNNs used four hidden layers 

with 1024 neurons in each layer. Table 4 shows the WERs 

obtained from the TFCNN systems. 

 

Table 4. Dev (Manually segmented and SAD segmented) WERs 

from the TFCNN systems trained with different features. 

Feature WER (%) for dev 

Manually segmented SAD segmented 

RT60-0.5 RT60-0.7 RT60-0.5 RT60-0.7 no_rev 

NMC 55.8 60.1 57.7 61.6 45.3 

DOC 53.7 58.0 56.1 59.8 44.1 

GFB 55.6 59.7 57.6 60.9 45.4 

 

Table 4 shows that the TFCNN systems always gave lower 

WERs compared to their CDNN counterparts for all features, 

indicating that time-convolution helps increase the robustness of 

the acoustic models.  

Next, we performed n-way ROVER [37] combination of all the 

GMM, DNN, CDNN and TFCNN systems trained in this work. 

We observed consistent improvement in performance from system 

combination, and the results are shown in Table 5. The rationale 

behind system combination is that different portions of the n-best 

lists from different sub-systems may be correctly recognized, and 

these portions can be combined to produce a better hypothesis by 

using the system-combination technique called ROVER [37]. 

Stolcke et al. [38] extended ROVER to n-best lists from multiple 

systems. We applied the n-best ROVER implemented in the 

SRILM toolkit [33], to n-best lists generated for each utterance 

from the multiple subsystems. Note that in Table 5, the results 

from the DOC DNN, CDNN, and TFCNN systems have improved 

from those reported in Tables 2, 3, and 4. This is because, to have a 

fair comparison with the ROVER results, we ran forced alignment 

with the DOC DNN and CDNN 1-best hypotheses and the ROVER 

output using a PLP-GMM model trained on English broadcast 

news audio data, and then scored the CTM files against the STM 

references. The improvement happened because the PLP-GMM 

model could discard some hypothesized words in the hypothesis 

that could not align well with the audio, which resulted in reduced 

insertions and, hence, better WERs. In table 5 we present two 

system fusion results from 3-way ROVER combination, where 

ROVER 1 consists of NMC-CDNN, MMeDuSA-CDNN and 

NMC-sIV-DNN systems and ROVER 2 consists of DOC-TFCNN, 
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MFB-CDNN and DOC-CDNN systems. Note that we have 

exhaustively performed up to 3-way ROVER combinations and are 

presenting the top two systems from that experiment in Table 5. 

 

Table 5. SAD segmented dev WERs from the best DNN, CDNN, 

and TFCNN systems, and the best n-way ROVER combinations. 

System WER (%) for SAD segmented dev 

RT60-0.5 RT60-0.7 no_rev 

DOC-DNN 56.6 61.1 42.6 

DOC-CDNN 55.3 59.5 41.4 

DOC-TFCNN 54.4 58.9 40.7 

3-way ROVER 1 53.4 57.0 40.5 

3-way ROVER 2 53.3 57.5 40.6 

 

As evident from the Tables 2, 3, and 4, the DOC-TFCNN 

system was the top-performing system and, hence, was selected as 

one of the candidate systems during ROVER combination. Note 

that although the DOC-IV system did not perform as accurately as 

some systems using other features, it was surprisingly found to 

help during ROVER combination. We also explored using RNN-

LM during system rescoring and observed that for the DOC-

CDNN system, it reduced the WER by 0.2% to 0.5% absolute 

compared to the standard LM.  

Finally in table 6 we show the recognition performance on the 

dev-test and eval datasets. Our best system on the eval data came 

from a 4-way ROVER combination (shown in table 6), where the 

subsystems were DOC-CDNN, NMC-CDNN, NMF-MFB-CDNN 

and DOC-IV-DNN systems. Interestingly, we observed (see table 

6) that the performances in dev-test and eval datasets did not 

correlate well, for example the 3-way ROVER-1 system gave 

lowest WER amongst the 3 ROVER combined systems shown in 

table 6, but it produced the highest WER on eval data. On the other 

hand the best performing system, which is the 4-way ROVER 

combined system, gave lower WER on eval data but highest WER 

on dev-test. This may indicate that the eval data is much different 

than either of the dev and dev-test datasets and hence performing 

system fusion or system selection based on dev-test or dev datasets 

may not be optimal for the ASpIRE task. 

 

Table 6. dev-test and eval WERs from the top performing systems. 

System WER (%)  

dev-test eval 

DOC-TFCNN 39.5 51.9 

3-way ROVER 1 38.7 51.6 

3-way ROVER 2 38.8 51.3 

4-way ROVER 39.4 50.7 

  

6. CONCLUSION 
 

In this paper, we presented our results for IARPA’s ASpIRE 

Challenge evaluation. Using artificially reverberated development 

data we demonstrated that CDNNs can significantly reduce WERs 

compared to other standard acoustic modeling techniques such as 

GMMs or DNNs. We presented a time-frequency CNN (TFCNN) 

and demonstrated that under reverberant conditions TFCNNs gave 

lower WERs than traditional CNNs. We investigated several 

robust acoustic features and found that they help in reducing the 

WERs compared to the baseline MFB energies. We obtained 

further reduction in WER by combining multiple systems. 

Interestingly, we found that even if the NMC-IV-DNN system 

produced quite high WERs compared to other systems, it was 

selected in ROVER combination, indicating that suboptimal 

systems are relevant for system combination, as they provide 

sufficient complementary information with respect to the top-

performing systems. With ROVER, we observed 2%, 3%, and 

0.5% relative reductions in WERs compared to the best-

performing DOC-TFCDNN system for the SAD segmented 

reverberated dev data with RT60s 0.5 and 0.7, and the SAD 

segmented non-reverberated dev data, respectively. 

From our experiments, we observed convincingly that the 

CDNN systems always performed better than the DNN. Adding an 

additional convolution layer for performing time-convolution was 

found to be useful. Studies [19] have shown that using multiple 

convolution layers typically improves ASR performance compared 

to using only one layer and in a separate study [32] we have 

validated this fact on a different reverberated speech dataset. In the 

future, we wish to explore using multiple convolution layers and 

explore fusing that with the time convolution presented in this 

work. The NMF-based speech enhancement used in our 

experiments was built specifically to combat reverberation effects; 

however, we did not observe that this enhancement offered 

sufficient performance improvement compared to other features. 

One possible reason for this performance gap might be because 

NMF distorts the speech spectra, which, in turn, results in less-

sharp models.  

Finally, we observed that the WERs from the dev-test and 

eval datasets for different ROVER combined system did not 

correlate well. This indicates that system fusion and system 

selection based on dev and dev-test may have been a poor choice. 

This may also indicate that the use of suitable adaptation 

techniques may help in improving WERs on eval data. In future we 

intend to explore adaptation techniques and report results. 
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