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ABSTRACT

This paper presents a novel system that exploits synchrony spec-
tra and deep neural networks (DNNs) for automatic speech recog-
nition (ASR) in challenging noisy environments. Synchrony spectra
measure the extent to which each frequency channel in an auditory
model is entrained to a particular pitch period, and they are used to-
gether with FO estimates either in a DNN for time-frequency (T-M)
mask estimation or to augment the input features for a DNN-based
ASR system. The proposed approach was evaluated in the context of
the CHiME 3 Challenge. Our experiments show that the synchrony
spectra features work best when augmenting the input features to the
DNN-based ASR system. Compared to the CHIME-3 baseline sys-
tem, our best system provides a word error rate (WER) reduction
of more than 14% absolute and achieved a WER of 18.56% on the
evaluation test set.

Index Terms— Deep neural network, noise-robust automatic
speech recognition, synchrony spectra, mask estimation

1. INTRODUCTION

Applications of automatic speech recognition (ASR) technology are
finally starting to become commonplace. Research on ASR has
made substantial progress in the last few years, especially with the
introduction of deep neural network (DNN) based acoustic mod-
elling [1]. However, adverse acoustic environments, such as the
presence of multiple sound sources and reverberation, remain a chal-
lenging task for many ASR systems. The CHiME-3 challenge [2] is
designed to allow evaluation of modern speech recognition systems
in such adverse conditions, by recording speech spoken in real noisy
environments.

There are many diverse techniques for noise-robust speech
recognition. A popular class of methods is based on time-frequency
(T-F) masking for speech separation. In such methods, estimated T-F
masks can be used to enhance noisy speech, and the enhanced sig-
nals can then be directly used as input to a well-trained ASR back-
end. Deep neural networks have been used to predict such a T-F
mask or clean speech features from a noisy signal. In [3] a two-stage
mask estimation framework using deep neural networks was pro-
posed. In the first stage, a separate neural network was used to pre-
dict a binary foreground/background assignment of each frequency
channel in a spectro-temporal representation. In the second stage,
a classifier (single-layer perceptron or support vector machine) was
used to refine the prediction given the output from the first stage.
In [4] a deep recurrent neural network (RNN) was proposed to pre-
dict clean speech features directly from noisy features. Weninger et
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al. [5] trained two long-short term memory (LSTM) RNNs for pre-
dicting speech and noise, respectively. The two source predictions
were used to create a mask in order to suppress the noise regions in
a noisy spectrum.

To improve noise robustness of DNN-based ASR systems, ad-
ditional features are often concatenated with conventional ASR fea-
tures. For example, in noise-aware training (NAT) [6], crude esti-
mate of noise spectra were used to augment noisy mel-spectrogram
as input to the DNN-AMs. In [7] cochleagrams were combined with
conventional spectrograms to improve ASR accuracy of a convolu-
tional neural network based system.

This paper presents a novel system that exploits deep neural net-
works (DNNs) and ‘synchrony spectra’ for robust automatic speech
recognition in the context of the CHiME-3 challenge. The pro-
posed synchrony spectra feature encodes pitch-related information
and have been shown to be effective in the past for both pitch analy-
sis and source separation [8], but have not been previously employed
in ASR systems. In the current paper we explore their use at two
points in a robust ASR system. First, as cues for speech detection
in a DNN-based speech enhancement front-end. Second, as auxil-
iary features that can augment the conventional acoustic modeling
features in the input to a DNN-based ASR system.

The synchrony spectra features and the DNN system are de-
scribed in detail in Section 2. Section 3 describes the evaluation
framework and presents a number of systems. Section 4 presents
speech recognition results and compares various techniques. Sec-
tion 5 concludes the paper.

2. SYSTEM

Figure 1 shows an overview of the two approaches described in the
paper. The main contribution of the paper is the synchrony-spectra-
driven single-channel enhancement component. However, to evalu-
ate single-channel enhancement in the context of the multi-channel
CHiME-3 ASR task, we have integrated it into a system with a stan-
dard beamforming front-end (Section 2.4) and an ASR system based
heavily on the CHiME reference system (Section 2.5).

The single channel enhancement employs a deep neural network
to estimate a time-frequency mask, which can then be used to filter
out the interfering sounds. As input the DNN takes two types of
feature: (i) features that encode the pitch and harmonicity of the
target speech source, and (ii) features that are related to the presence
of this pitch in each subband, i.e. the synchrony spectra (Section
2.1). The DNN is trained to map these features onto the probability
that each time-frequency point is dominated by the target (Section
2.2). Beyond the enhancement stage, the synchrony spectra features
can also be used as direct input to the DNN backend, where they are
used to augment that standard acoustic features (Section 2.3).
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A. Single channel speech enhancement approach
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Fig. 1: Two approaches described in the paper, both of which
take their input from a beamformer front-end and are evaluated on
the CHIME-3 challenge task. A: synchrony-spectra based single-
channel enhancement is used to derive an enhanced speech signal,
which is passed to the DNN ASR backend for evaluation. B: con-
ventional spectral features derived from a gammatone filterbank are
augmented with pitch and synchrony spectrum features. The com-
bined features are passed to the DNN ASR backend for evaluation.

2.1. Synchrony spectra

The ‘synchrony spectra’ features describe the extent to which each
frequency channel in the auditory model is entrained to a particu-
lar pitch period. These features are derived from the autocorrelo-
gram (ACG), a model of auditory pitch estimation that combines
both spectral and temporal information [9].

The ACG was computed as follows. An auditory front-end was
employed to analyse the input signals with a bank of N = 32
overlapping Gammatone filters, with centre frequencies uniformly
spaced on the equivalent rectangular bandwidth (ERB) scale be-
tween 50 Hz and 8 kHz [10]. Inner-hair-cell processing was approxi-
mated by half-wave rectification. Following this, the autocorrelation
function of each channel was computed using overlapping frames
with a shift of 10ms. At a given time step ¢, the autocorrelation
A(i, t, T) for channel 7 with a time lag 7 is given by

K—-1

AGi,mt) =Y gl t+ k)w(k)gli,t+k—m)wk—7) (1)

k=0

where g is the simulated hair-cell response and w is a Hann window
of width K time steps. Here, we set K = 640 corresponding to
a window width of 40 ms. The autocorrelation delay 7 is computed
from O to L — 1 samples, where L = 320 corresponds to a maximum
delay of 20 ms.

The ACG is therefore defined as a three-dimensional volumetric
function A(i,t,7), where the dimensions correspond to frequency
channel (¢), autocorrelation lag (7), and time step (¢). Fig. 2 shows
an example of a single correlogram frame (i.e., the value of A(4, ¢, 7)
at a specific time ¢) for an utterance from the CHiME-3 corpus. Most
channels contain a peak at a lag corresponding to the pitch period of
the sound, creating a characteristic ‘spine’ in the plot. In the exam-
ple, the spine is centered on a lag of approximately 4 ms, correspond-
ing to a fundamental frequency of 250 Hz. Since the autocorrelation
function is periodic, similar spines also appear at multiples of this
period. The pitch-related structure in the ACG can be emphasised
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by summing the ACG over all frequency channels, as follows:
N
S(rt) =Y A(j,7t) ©)
j=1

The resulting ‘summary ACG’ S(r,t) is shown in the bottom panel
of Fig. 2. The position of the largest peak in the summary ACG cor-
responds to the pitch period of the strongest periodic sound source.

3600

1370

Centre Frequency (Hz)

440

10
Autocorrelation Delay (ms)

Fig. 2: Illustration of autocorrelogram and synchrony spectrum. The
summary ACG is plotted in the bottom panel where the circle indi-
cates the delay corresponding to the period of the fundamental. The
rectangle shows the corresponding synchrony spectrum.

The ‘synchrony spectrum’ is defined as the degree of synchrony
to the period of the fundamental in each channel [8]. The funda-
mental of the strongest source was identified by selecting the largest
peak in the summary ACG, corresponding to the lag 7y.x. The syn-
chrony spectrum was then derived by sampling each channel of the
ACF at T (as shown by the boxed region in Fig. 2). The result-
ing 32-D synchrony spectra were supplemented with the fundamen-
tal frequency (£'0) identified from the summary ACG and the pitch
strength, which is the amount of periodic energy at the fundamental
period normalised by the energy at lag zero, i.e., S(Tumu, t)/S(0, t).
This produces a 34-D vector of ACG features. The ACG features
were used in two different ways in this study:

1. They were used to estimate a soft spectro-temporal mask that
represents the probability of each time-frequency cell being
dominated by the foreground speech. The mask was then
used to synthesise the corresponding speech from the noisy
mixtures (Fig. 1A).

2. They were used directly as supplementary ASR features to
the DNN-based ASR backend (Fig. 1B).
2.2. Mask estimation with synchrony spectra

We use a DNN to model the mapping between noisy speech features
and a spectro-temporal mask. The learning target of the DNN is an



oracle mask that represents ideal foreground/background segrega-
tion. In the CHiME-3 data sets there exist both real data and simu-
lated data. For the real data such oracle masks are difficult to obtain.
However, for the simulated data we can compute oracle masks from
the separate speech and noise signals that were used to create the
simulated data. Hence, in this study the mask-estimation DNN is
trained only on the simulated data.

The instantaneous Hilbert envelope is computed at the output of
each gammatone filter in the auditory front end. This is smoothed by
a first-order low-pass filter with an 8 ms time constant, sampled at
10 ms intervals, and finally log-compressed to give an approximation
to the auditory nerve firing rate — the ‘ratemap’ representation [11].
‘We then concatenate the 34-D ACG features with the 32-D ratemap
features, producing a 66-D feature vector. The 66-D feature vectors
were further spliced with the adjacent +1 frames, forming a final
198-D feature vector as the input to the DNN.

The DNN consists of an input layer, three hidden layers, and an
output layer. The input layer contained 198 nodes and each node
was assumed to be a Gaussian random variable with zero mean and
unit variance. Therefore the 198-D feature input was Gaussian nor-
malised before being fed into the DNN. The hidden layers had sig-
moid activation functions, and each layer contained 1024 hidden
nodes. The number of hidden nodes was heuristically selected. The
output layer contained 32 nodes corresponding to the 32 frequency
channels used in the auditory model. A sigmoid activation function
was applied at the output layer.

The neural net was initialised with a single hidden layer, and
the number of hidden layers was gradually increased in later training
phases. In each training phase, mini-batch gradient descent with
a batch size of 256 was used, including a momentum term with
the momentum rate set to 0.5. The initial learning rate was set to
0.05, which gradually decreased to 0.001 after 10 epochs. After the
learning rate decreased to 0.001, it was held constant for a further 5
epochs. At the end of each training phase, an extra hidden layer was
added before the output layer, and this training phase was repeated
until the desired number of hidden layers was reached.

The estimated T-F soft mask is then used to enhance the noisy
signals by applying the mask to the gammatone filterbank output of
the noisy signal, which is resynthesised using the overlap-add tech-
nique. Fig. 3 shows examples of enhanced signals using the ratemap
representation as well as estimated masks. For comparison, the orig-
inal noisy signal and the beamformed signal are also included in
Fig. 3.

Note that the synchrony spectra were measured at the funda-
mental of the strongest source (i.e. the biggest peak in the summary
ACG). This makes the assumption that the strongest source will cor-
respond to the target source in the mixture. This is typically a good
assumption in the CHiME challenge data where the target talker is
the closest source to the microphone and where the target has been
enhanced by beamforming. In other situations the target pitch would
have to be estimated more robustly, e.g. using a multipitch tracking
algorithm.

2.3. Synchrony spectra as auxiliary DNN-ASR features

The synchrony spectra were primarily designed for supporting
source segregation. The information they contain is related to pitch
and would not traditionally be considered useful for phone classi-
fication. However, there have been several recent works showing
that DNN-based ASR systems can take advantage of features that
are only indirectly related to phonetic state. For example, perfor-
mance improvements have been achieved by supplementing tradi-
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tional speech features with i-vectors capturing speaker identity [12]
or with features characterizing the speech excitation signal [13]. It
is unclear how the networks are exploiting these inputs, but it can be
imagined that they are useful for normalising against some aspects
of within-class variability. Motivated by these results, we have ex-
plored the use of synchrony spectra as auxiliary features that can be
directly appended to the conventional ASR features being input into
the DNN-based ASR back-end (approach B in Figure 1).

2.4. The beamforming front-end

The CHiME-3 challenge is a multimicrophone ASR challenge with
6 audio channels and is distributed with a minimum variance distor-
tionless response (MVDR) beamformer enhancement baseline [2].
This baseline was reported to perform well on CHiME’s simulated
test data but performed poorly on the CHiME real data set. Although
reasons for the poor performance of the baseline are unclear, it was
found that a substantial performance improvement could be obtained
by replacing the front-end with the filter and sum beamformer im-
plementation of Anguera et al. [14] which is freely distributed as
the Beamformlt tool.! This implementation was developed for ro-
bust meeting diarization and has a number of features not present
in the CHiME baseline which might account for its superior perfor-
mance, e.g. Wiener filtering of the channels prior to beamforming
and post-processing of the TDOA estimates to filter out those that
are unreliable.

We applied the Beamformlt algorithm using its default configu-
ration and using the five front-facing CHiME-3 microphones (chan-
nels 1 and 3-6). CHiME has a noisier rear-facing microphone (chan-
nel 2) which was found to be unhelpful and so was ignored. The
output of the beamformer was then used as the single-channel input
to the rest of the system (see Figure 1).

2.5. DNN backend

We use the Time Delay Neural Network (TDNN) architecture and
training procedure presented by Peddinti et al. [15] to estimate the
HMM-state posteriors for each frame of the audio stream. In this
architecture, each hidden layer takes as input the concatenation of
the previous layer’s output at multiple time steps.

The input layer of the network receives the LDA transformation
of the feature stream spliced with two frames at each side. The neural
network consists of six hidden layers. The indices of the time steps
concatenated at each hidden layer are: -1, 2 for the second, -3, 3 for
the third and -7, 2 for the fourth. A p-norm non-linearity is used for
neurons activations [16], with p=2, an input dimension of 3500 and
an output of 350. Finally a mix-up of 12000 was used for the final
layer.

The training strategy is similar to that employed for the mask
estimation. Hidden layers are added gradually every two epochs.
During each epoch a batch of 512 samples was used. The effective
learning rate was gradually decreased from 0.0015 to 0.00015. The
training consisted in 12 epochs. Training is performed in parallel
using natural gradients and parameter averaging as described in [17]
The LDA transformation and the DNN are trained using an align-
ment produced by the baseline GMM system.

The frames at the input layer of the DNN are augmented with i-
vectors [12]. Asin [15] the i-vector estimator was trained on a subset
of the training set. Then i-vectors for the entire training set were esti-
mated in an online fashion, with a history reset every two utterances.
In order to increase i-vector variability and reduce the influence of

I'See http://www.xavieranguera.com/beamformit/
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Fig. 3: Ratemaps representations of enhanced signals using various techniques. In each panel from top to right: original noisy signal;
beamform-enhanced signal; DNN-estimated soft mask; Synthesised signal from the DNN-estimated mask. All signals are taken from the real

data set of the CHiME 3 corpus.

environment noise, only utterances belonging to the same speaker
and environment were paired together and considered as part of the
same speaker. In the decoding stage the i-vectors are extracted on a
per-utterance basis, one single i-vector is computed from the entire
utterance and used for all of its frames.

The setup and training procedure is readily available in the Kaldi
toolkit [18].

3. EVALUATION

The proposed systems have been evaluated using the data and rules
of the CHiME-3 Challenge. A full description of the challenge is
provided in [2] but essential details are summarised below for the
sake of completeness.

Training and test data come from recordings made by US-talkers
speaking to tablet PC device fitted with six microphone around its
frame. The data are WSJO sentences: either original recordings
(‘Real’), or simulated mixtures made by adding clean recordings
to separately recorded background noise (‘Simu’). Recordings are
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made in four different noisy environments: ‘BUS’ — on a public bus;
‘CAF’—in a café’; ‘PED’ — a pedestrian area; ‘STR’ — a busy traffic
intersection.

Training data consist of 1600 real utterances collected from 4
speakers in the 4 environments, and 7138 simulated mixtures con-
structed by adding noise to the standard WSJO training set. The
challenge provides separate development (dev) and evaluation (eval)
test sets based on the original WSJO test sets, containing 330 x 4
and 410 x 4 utterances respectively, again with separate sets for real
mixtures and simulated mixtures. The dev and eval sets each use
four different talkers none of which appear in the training data.

The baseline systems include a GMM-based ASR system using
MEFCC features and a DNN-based ASR system using filter-bank fea-
tures. In this study we employ the ratemap features obtained from
the auditory front-end. 32 Gammatone filters were used for fre-
quency analysis between 50 Hz and 8k Hz. The filter outputs were
low-pass filtered and downsampled at 10 ms intervals. They were fi-
nally log-compressed to give an approximation to the auditory nerve
firing rate.



Discrete cosine transform (DCT) can be applied to the ratemap
features for orthoganalisation, and this produces cepstral features
similar to MFCCs. We refer to these cepstral features as GFCCs.
The GMM-based ASR system employed the GFCC features. How-
ever, the DNN-based ASR system directly used the ratemap features.

4. RESULTS AND DISCUSSIONS

Table 1 lists the word error rates (WERs) obtained by various sys-
tems evaluated in this study. First, results using the GMM-ASR
backend are given at the top half of the table. For single channel
noisy signals, our GMM baseline using the GFCC features achieved
similar WERSs to those of the MFCC baseline. The beamforming
front-end using the 5 front channels substantially reduced the WER
by on both the development set and the evaluation set.

The DNN-based mask estimation was applied on top of the
enhanced signals from the beamforming front-end. Although the
DNN-enhanced signals show better signal-to-noise ratios (SNR)
than the beamforming signals (Fig. 3), the masking technique im-
proved very little over the beamforming signals. One explanation
could be that the masking technique may introduce some distor-
tions despite improving the SNR. In this study the system was sim-
ply retrained using the masked signals. Such distortions can some-
times degrade the performance of the acoustic models with retrain-
ing [19]. A better strategy would be to perform joint or adaptive
training [20, 21].

The results using the DNN-based acoustic models were listed
at the bottom half of Table 1. First, we show the result of our
DNN backend using the same filter-bank features employed by the
CHiME-3 DNN baseline. Our DNN system reduced WER on both
the development set and the evaluation set, although larger improve-
ment was achieved on the evaluation set (33.43% WER on reported
by the CHiME-3 DNN baseline vs 29.61% WER achieved by our
DNN system).

All the other DNN-based systems included the development set
during training. Compared to the GMM-based acoustic models, the
DNN system reduced the WER by an average of 4% absolute on the
evaluation test set. The beamforming frontend again substantially
improved the performance by 7% absolute WER reduction on the
evaluation set.

Augmenting the ratemap features with the synchrony spectra
features further reduced the WER of the beamforming DNN-based
ASR system. The synchrony spectra features include FO estimates
and pitch strength. We further evaluated a system where the ratemap
features were only augmented with these two features. This is our
best performing system which scored 18.56% WER on the evalua-
tion test set and is about 1% absolute WER reduction over the beam-
forming DNN system. It should be noted that with the full syn-
chrony spectra features the total feature dimension of the input to
the DNN-ASR system become 66-D, while with only the FO fea-
tures the feature dimension is 34-D. However, we did not re-tune the
DNN system to handle the increased dimension.

Overall the use of a beamforming frontend, the DNN backend
and augmenting the recogniser features with FO estimate provides an
improvement of more than 14% in absolute WER over the baseline
system on the evaluation test set.

5. CONCLUSIONS

This paper presented a novel system that exploits synchrony spectra
and deep neural networks for noise-robust automatic speech recog-
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nition in challenging noisy environments. Synchrony spectra are re-
lated to harmonicity of sound and they were used in this study either
in a DNN for T-F mask estimation or to augment the input features
for a DNN-based ASR system. The proposed approach was eval-
uated in the context of the CHiME-3 Challenge. Our experiments
show that the synchrony spectra features work best when augment-
ing the input features to the DNN-based ASR system. Compared to
the CHiME 3 baseline system, our proposed system provides a WER
reduction of more than 14% absolute on the evaluation test set.

The attempts to improve ASR performance using single-channel
enhancement proved disappointing. Although the DNN was able to
estimate masks that visibly reduced the noise in the T-F representa-
tion, this noise reduction did not translate into ASR gains. Note,
beamforming by itself is already a very effective strategy for the
CHIME-3 data and leaves little scope for further signal enhance-
ment. It is possible that synchrony-spectra enhancement could be
effective in single microphone systems where beamforming is not
an option.

The current study only evaluated the synchrony-spectra-based
mask estimation in a GMM-based ASR system. In future we plan
to feed the enhanced features directly to the DNN-based ASR or in
combination with other ASR features.

Another future direction is to tightly couple the mask estimation
problem and speech recognition. Currently they are done in two
separate DNNs. A more optimal way would be to combine the two
in a unified DNN framework [19].
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