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ABSTRACT

This paper presents a robust speech recognition system using a mi-
crophone array for the 3rd CHiME Challenge. A minimum variance
distortionless response (MVDR) beamformer with adaptive micro-
phone gains is proposed for robust beamforming. Two microphone
gain estimation methods are studied using the speech-dominant
time-frequency bins. A multichannel noise reduction (MCNR) post-
processing is also proposed to further reduce the interference in the
MVDR processed signal. Experimental results for the ChiME-3
challenge show that both the proposed MVDR beamformer with mi-
crophone gains and the MCNR postprocessing improve the speech
recognition performance significantly. With the state-of-the-art deep
neural network (DNN) based acoustic model, our system achieves
a word error rate (WER) of 11.67% on the real test data of the
evaluation set.

Index Terms— robust speech recognition, MVDR beamform-
ing, microphone gain, multichannel noise reduction, CHiME 3.

1. INTRODUCTION

Performance of automatic speech recognition (ASR) has been signif-
icantly improved in recent years due to adoption of the deep neural
network (DNN) based acoustic models and large amount of train-
ing data [1]. However, the robustness remains a major challenge
when the ASR systems are deployed in real world scenarios where
the speech signal is severely distorted by noise and reverberation. In
this paper, we present a robust ASR system using beamforming and
postprocessing for a recent robust ASR benchmarking task, the 3rd
CHiME Speech Separation and Recognition Challenge [2].

Microphone array beamforming [3] is a widely used technique
to improve the speech signal quality for both speech enhancement
and ASR. It tunes the array beam-pattern to the target direction of
arrival (DOA) to attenuate sound sources from other directions. The
minimum variance distortionless response (MVDR) beamformer [4,
5] and its associated algorithm, the generalized sidelobe canceller
(GSC) [6, 7], have been popular choices. However, the performance
of the MVDR and GSC is affected by several factors, such as the
DOA mismatch and the uncertainties of microphone phase and am-
plitude responses. In the literature, a class of robust adaptive beam-
formers has been extensively studied to deal with DOA mismatch
such as minimizing the optimization problem in the DOA region

[8, 9, 10] and the diagonal loading techniques [11, 12, 13, 14]. How-
ever, few efforts have been paid for the design of robust beamform-
ers against microphone gain errors. In fact, the microphone gain
mismatches have more effects on the performance of the adaptive
beamformers than the DOA uncertainties [15]. In the CHiME-3
challenge, the microphone array is in the near field and the signal
levels are observed to be different in the six channels of the array.
Therefore, it will be beneficial to explicitly incorporate the micro-
phone gains for robust beamforming. The existing designs of robust
beamformers against array gain errors require the knowledge of the
gain probability density [16] or the white noise field [17] and are
not very practical for the CHiME-3 challenge. In [18], a parametric
method for microphone gain estimation was presented for applying
on a RoundTable device. However, the parameter setting was de-
pendent on the reverberation to signal ratio and the noise covariance
matrix was assumed to be diagonal. Thus, this approach is not suit-
able for the complex noise environments in the CHiME-3 dataset.
In this work, we address the microphone gain estimation problem
in an utterance based framework without any assumptions on the
noise field. A cross-correlation method and an eigen-decomposition
method are presented for gain estimation. The MVDR beamformer
with the estimated microphone gains will be used in the proposed
ASR system.

After the robust beamforming stage, a postprocessing filter is
usually used to further attenuate residual noise in speech enhance-
ment. In the literature, many single and multichannel post-filtering
techniques have been proposed. The most popular techniques are the
multichannel Wiener filter [19, 20], the Zelinski post-filter [21], the
minimum mean square error (MMSE) short-time spectral amplitude
estimator (STSA) [22] and the MMSE log-STSA estimator [22], the
McCowan post-filter [23], and the Cohen multichannel post-filtering
[24] as well as the linear and nonlinear microphone array post-filters
presented in [25]. In general, all these post-filters can achieve fur-
ther noise reduction for the output of the MVDR beamformer. How-
ever, the existing post-filters are either difficult to realize in prac-
tice or are designed for a particular noise field. They may not work
effectively for many complex noise environments in the CHiME-3
dataset. In this work, we present a novel technique for robust mul-
tichannel noise reduction (MCNR) without any assumptions on the
noise field.

The rest of the paper is organized as follows. In Section 2,
the proposed beamforming with microphone gain estimation is de-
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scribed. In Section 3, the proposed multichannel noise reduction
postprocessing technique is introduced. In Section 4, experimental
results on the CHiME-3 challenge is presented. Finally, we conclude
this study in Section 5.

2. ROBUST BEAMFORMING USING ADAPTIVE
MICROPHONE GAINS

2.1. Signal Model

Let us consider the six-microphone array setting in noisy environ-
ments in the CHiME-3 challenge. Given a speech signal s(t) in the
target speaker position, the signals received at these microphones are
time delayed and amplitude attenuated versions of the speech signal
with additional noise and interference. As a result, the signals re-
ceived at these microphones can be generally modeled as [18]:

xi(t) = gis(t− τi) + ni(t), (1)

where i = 1, 2, ...,M is the microphone index; τi is the time of ar-
rival from the speaker location to the ith microphone location; gi is
a gain factor to reflect the effects of the propagation energy decay,
the amplification gain of the corresponding microphone setting, the
directionality of the source and the microphone, etc, and ni(t) is the
noise received by the ith microphone. In the CHiME-3 dataset, this
noise term could include a combination of ambient noise, interfer-
ence and reverberation.

In the short-time Fourier transform (STFT) domain, the model
(1) can be rewritten as:

Xi(k, l) = gi(k)S(k, l)e
−j2πkfsτi/K +Ni(k, l), (2)

where k is the frequency bin index and l is the frame index; K is
the length of short-time Fourier transform (STFT); fs is the signal
sampling rate; Xi(k, l), S(k, l), and Ni(k, l) with i = 1, . . . ,M are
the frequency-domain signals of xi(t), s(t), and ni(t), respectively;
gi(k) is the ith microphone gain in the kth frequency bin correspond-
ing to the target speaker. Here we assume the gain term is constant
for each test utterance.

We rewrite Equation (2) into a vector form as:

x(k, l) = e(k, l)S(k, l) + n(k, l), (3)

where

x(k, l) = [X1(k, l), · · · , XM (k, l)]T ,

e(k, l) = [g1(k)e
−j2πkfsτ1/K , · · · , gM (k)e−j2πkfsτM/K ]T ,

n(k, l) = [N1(k, l), · · · , NM (k, l)]T .

The complex vector e(k, l) is the frame-based steering vector or
the array manifold and incorporates all the spatial characteristics of
the array [3]. In the CHiME-3 challenge, the steering vector is not
known exactly and an estimation is required.

The ASR performance is the final evaluation of the CHiME-3
challenge. To improve the ASR evaluation, estimation of S(k, l)
from noisy observation x(k, l) is necessary. Our overall framework
for estimating S(k, l) is depicted in Fig 1. We first use the MVDR
beamformer as the spatial filter to attenuate noise and interference.
We then apply a multichannel noise reduction (MCNR) method for
post-filtering. To estimate the steering vector for the MVDR beam-
former, we use the same sound source localization (SSL) method
given in the baseline system of the CHiME 3 challenge to compute
the time delays τi, i = 1, 2, ...,M . We propose two microphone
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Fig. 1. Block diagram of the proposed system.

gain estimation approaches for gi(k) which are based on the time-
frequency (TF) sparsity of the speech and interference. Their ef-
fectiveness is compared in the evaluation results. The MCNR pro-
vides spectral gains that can be directly applied to the frequency-
domain output of the MVDR beamformer. The enhanced speech of
the MCNR is used as the input for ASR assessment.

2.2. The MVDR Formulation

Assuming the steering vector e(k, l) is known, the MVDR beam-
former applies a set of weights w(k, l) to the signal vector x(k, l)
such that the variance of the noise component of w(k, l)Hx(k, l) is
minimized, subject to a constraint of unity gain in the target direc-
tion. The solution of the MVDR beamformer can be found from the
following constrained optimization problem:

min
w(k,l)

wH(k, l)Rnn(k, l)w(k, l), s.t. wH(k, l)e(k, l) = 1, (4)

where Rnn(k, l) is the covariance matrix of noise and interference:

Rnn(k, l) = E[n(k, l)nH(k, l)]. (5)

In the CHiME-3 baseline system, the noise context n(k, l) is se-
lected from immediately before each test utterance. The same ap-
proach is used in our ASR system.

The closed-form solution of (4) is given by [26]

w(k, l) =
Rnn(k, l)

−1e(k, l)

eH(k, l)Rnn(k, l)−1e(k, l)
(6)

In the next section, we will present two approaches to estimate
the microphone gain gi(k) for the steering vector e(k, l) to be used
in the MVDR beamformer.

2.3. Microphone Gain Estimation

In this section, we first derive methods for estimating the relative
microphone gains in a noise-free case. We then present a robust pro-
cedure for selecting the speech-dominant TF bins for each utterance.
The effectiveness of the microphone gain estimation methods can be
justified by the time-frequency sparsity of the speech and interfer-
ence [27, 28].

Assuming a noise-free recording scenario, the array signal
model (2) can be rewritten without the noise term as:

Xi(k, l) = gi(k)S(k, l)e
−j2πkfsτi/K . (7)

Since only the relative microphone gain matters in the MVDR beam-
former, without loss of generality we select microphone r as the
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reference microphone. The following formulation using the ratio
of the absolute cross-correlation of microphones i and r and the
auto-correlation of microphone r gives the relative gain g̃i(k) =
gi(k)/gr(k):

|E[Xi(k, l)X
∗
r (k, l)]|

|E[Xr(k, l)X∗
r (k, l)]| =

σ2
S(k, l)gi(k)gr(k)

σ2
S(k, l)g

2
r(k)

=
gi(k)

gr(k)
. (8)

where | · | denotes the absolute value, and σ2
S(k, l) represents the

signal power spectrum. The steering vector with the relative gain
can be represented as

e(k) = [g̃1(k)e
−j2πkfsτ1/K , · · · , g̃M (k)e−j2πkfsτM/K ] (9)

We name (6), (8) and (9) as the MVDR with cross-correlation
(MVDR-CC) method.

Without the noise term, the vector form of the array signal be-
comes x(k, l) = e(k, l)S(k, l). Let us compute the covariance ma-
trix of x(k, l) as

Rxx(k, l) = E[x(k, l)xH(k, l)] (10)

= σ2
S(k, l)e(k, l)e

H(k, l). (11)

It can be easily checked that the positive semi-definite matrix
Rxx(k, l) is of rank 1. Therefore, if we perform the eigenvalue
decomposition of Rxx(k, l) [29], we obtain

Rxx = QΛQH , (12)

where Λ = diag[σ2
S 0 · · · 0] is a diagonal matrix consisting of one

non-zero element, and Q = [q1 q2 · · · qM ] where q1 = ce is
the eigenvector associated with the eigenvalue σ2

S and c is a scalar.
Therefore, the relative microphone gains can be computed from

ĝi = |q1,i|, i = 1, 2, ...,M. (13)

The steering vector is therefore represented as

e(k) = [ĝ1(k)e
−j2πkfsτ1/K , · · · , ĝM (k)e−j2πkfsτM/K ] (14)

We name (6), (13) and (14) as the MVDR with eigen-decomposition
(MVDR-ED) method.

Note that although the steering vector e can be approximated by
q1 we prefer to use only the microphone gain information from q1

while the phase information uses the output of the SSL method in
the baseline system due to its robustness.

2.4. Time-Frequency Bin Selection

The above microphone gain estimation methods highly rely on the
clean TF bins. In this section, we will introduce our procedure to
select the TF bins that are speech-dominant. The procedure for se-
lecting TF bins were reported in our work [28] for robust DOA esti-
mation. The whole procedure is a combination of noise-floor track-
ing, onset detection and coherence test and implemented at each fre-
quency bin index.

Noise-floor tracking: Noise-floor tracking selects the TF bins
above a tracked noise level. It has been a popular technique in speech
enhancement [22, 30]. Unlike the existing approaches that track
noise in time domain, we implement the noise-floor tracking in each
frequency band. The noise floors are initialized from the noise con-
text immediately before the test utterance. Then, they are adaptively

updated during both noise and signal periods using the following
rule:

noise floor(k, l) = α× noise floor(k, l − 1) (15)

where α is the updating parameter.
Onset detection: Onset detection detects the direct-path signals

from the TF bins corrupted by reverberation. The onset is marked
by a sudden rise in energy in the frequency bands. Unlike the exist-
ing onset algorithms [31] that detect one onset across all frequency
bands, we design the onset algorithm for each frequency band. The
onset threshold is set to the peak value every time an onset is detected
and attenuates gradually following the rule:

η(k, l) =

{
Xr(k, l) if Xr(k, l) is onset

β × η(k, l − 1) if otherwise.
(16)

where β is the decaying parameter, 0 < β < 1, and Xr(k, l) is
the selected microphone channel. For both the noise-floor tracking
and the onset detection, we use the microphone channel that has the
minimum mean DOA over all frames in the test utterance.

Coherence Test: Coherence test selects the TF bins with only
one source et al. [27]. It is used to remove the TF bins that may
contain both speech and interference from the selected TF bins in
the above two stages. It is seen that the M ×M covariance matrix
R(k, l) is a linear combination of rank-1 outer products of steering
vectors weighted by speech power σ2

S(k, l) and interference powers
σ2
ni
(k, l):

Rxx(k, l) = σ2
S(k, l)e(k)e

H(k)

+
N∑
i=1

σ2
ni
(k, l)eni(k)e

H
ni
(k), (17)

From (17), if the speech source is dominant the covariance matrix
Rxx(k) has a dominant eigenvalue which is much larger than the
other eigenvalues and the corresponding eigenvector pointing to the
target DOA. We test the ratio between the largest eigenvalue and
the second large eigenvalue using a threshold and the eigenvector.
The current TF bin is selected if the ratio is greater than a threshold.
Otherwise, the TF bin is discarded.

2.5. Implementation Issues and Microphone Gain Smoothing

Note that although the estimated microphone gains from the selected
TF bins are relatively clean, they are still somewhat noisy. We ad-
dress this issue by using a low-pass filter in the implementation. The
low-pass filter is applied to the time domain microphone gains which
are obtained from the inverse STFT of gi(k), k = 1, 2, ...,K. The
resulting time-domain microphone gains are then transformed into
the STFT domain. The overall effect of the smoothing process is
to remove the abrupt variations of the microphone gains across the
frequency bins. In addition, when the selected TF bins are corrupted
with low level noise, a reference channel with better speech quality is
preferred for reducing noise distortion in (8). We use the same refer-
ence channel as in the noise-floor tracking and onset detection. Note
that there are cases where the number of TF bins selected for some
frequency bands is zeros or very small. In these cases, we set equal
gains to all of the six channels which is used in the CHiME-3 base-
line system. We observe that there is usually only a small number
of frequency bands that are set to equal gains. In Fig 2, we illustrate
a microphone gain estimation result using the eigen-decomposition
method for a test utterance. It is shown that the estimated micro-
phone gains become smoothing across frequencies after low-pass
filtering and the microphone gains are different across frequencies.
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Fig. 2. Illustration of microphone gain estimation before and after
loss-pass filter smoothing

3. POST-FILTERING WITH MULTICHANNEL NOISE
REDUCTION

In this section, we present a new multichannel noise reduction
(MCNR) approach for post-filtering. Unlike the existing approaches,
the MCNR approach does not require any assumption for the noise
field. It is mainly based on a new computation for the time-frequency
noise to signal plus noise ratio (NSNR) and the spectral gain.

We first recursively estimate the short-time-frequency covari-
ance matrix as follows:

Rxx(k, l) = Rxx(k, l − 1) + x(k, l + lD)xH(k, l + lD)

− x(k, l − lD)xH(k, l − lD), (18)

where lD is a small time lag constant.
We compute the NSNR using the following formulation:

γ(k, l) =
‖Rxx(k, l)− σ2

S(k, l)e(k, l)e
H(k, l)‖2F

‖Rxx(k, l)‖2F
, (19)

where ‖ · ‖F denotes the Frobenius norm, and γ(k, l) denotes the
NSNR for the frequency index k and the frame index l. The steering
vector e(k, l) is computed from the formulation given in (14).

Note that the signal power σ2
S(k, l) in (19) is unknown. We es-

timate σ2
S(k, l) by minimizing the following optimization problem:

σ̃2
S(k, l) = min

σ2
S
(k,l)

‖Rxx(k, l)− σ2
S(k, l)e(k, l)e

H(k, l)‖2F . (20)

And the solution of the estimate is given by

σ̃2
S(k, l) =

R{eH(k, l)Rxx(k, l)e(k, l)}
|eH(k, l)e(k, l)|2 , (21)

whereR{·} denotes the real part of the complex number.
Using γ(k, l) in (19), the MCNR spectral gain GMCNR(k, l) is

obtained by the following rule:

GMCNR =

{
1 if γ ≤ γlow

max
{
1− (γ−γlow)(1−Gmin)

γhigh−γlow
, Gmin

}
otherwise,

(22)

where the time and frequency indices k and l are omitted for the ease
of presentation. The parameter Gmin is the minimum gain, to be set
by the user. The parameter γhigh(k) is given by the maximum value
of γ(k, l), l = 1, 2, ..., L where L is the total frame number in the
test utterance; and γlow(k) is given by γ(k, p) where p is defined to

Table 1. The pseudo code for time-frequency gain smoothing.
for l = 1 to L

for k = 1 + kD to K − kD
Gmax = max{GMCNR(k − kD, l), · · · , GMCNR(k + kD, l)}
Gmin = min{GMCNR(k − kD, l), · · · , GMCNR(k + kD, l)}
G = mean{GMCNR(k − kD, l), · · · , GMCNR(k + kD, l)}
if |G−Gmin| < |Gmax −G|
GMCNR(k, l) = Gmin

else
GMCNR(k, l) = Gmax

end
end

end
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Fig. 3. Illustration of the MCNR gain estimation before and after
smoothing.

select the pth lowest value from the sorted γ(k, l) over l = 1, 2, ..., L
to avoid any attenuation to low NSNR signals.

To further reduce the estimation distortion in the spectral gain
GMCNR(k, l), we apply a smoothing rule across frequency bins at
each frame l, which is summarized in Table 1. The resulting MCNR
gain estimation before and after the smoothing for a typical test ut-
terance is illustrated in Fig. 3.

By combining the robust MVDR beamforming and the MCNR
spectral gain, the estimate of the clean speech signal is given by

S̃(k, l) = GMCNR(k, l)w
H(k, l)x(k, l), (23)

where the time domain enhanced signal is obtained by taking the
inverse STFT of S̃(k, l).

4. EXPERIMENTS

4.1. Experimental Settings

We evaluate the ASR performance of the proposed beamforming
and postprocessing methods on the multi-condition training schemes
for the CHiME-3 challenge and compare them to the baseline ASR
systems provided by the challenge. For more details of the speech
recognition task, the baseline ASR system, and the baseline MVDR
beamforming, readers are referred to the challenge paper [2]. Both
the GMM and DNN acoustic models are used in the ASR systems.
In the implementation of the proposed algorithms, the STFT window
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Table 2. WER (%) on development set using different input features
for the DNN acoustic model and using Channel 5 for both train and
test.

length is 512 samples with half-window overlap. The parameter set-
tings are : α = 0.998 during noise periods and α = 1.02 during
speech periods for noise tracking; β = 0.95 for onset detection;
the threshold is set to 8 for eigenvalue ratio in coherence test; and
lD = 3, kD = 2, and Gmin = 0.15 for the MCNR.

4.2. Improving the Baseline ASR System

In this section, we report our investigation on different feature set-
tings for the GMM and DNN acoustic models provided in the base-
line ASR systems. The averaged WER results on the four tested
environments of BUS, CAFE, PED, and STR are shown in Table 2.
For all the results, Channel 5 was selected for both training and test-
ing due to its reliable speech quality.

We first examined the effect of adding dynamic features to the
DNN acoustic model. The first block of Table 2 gives the perfor-
mance of the original settings of the baseline ASR systems. In the
DNN based baseline ASR system, 11 frames of 40-dimension log fil-
terbank energies were used as the input, resulting in an input of 440
dimensions. The effect of adding dynamic features to the filterbank
input of DNN is shown in the second block of Table 2. By adding
the delta and acceleration versions of the filterbanks, the input of
the DNN becomes 440x3=1,320 dimensions. It is observed that that
the ASR performance is improved consistently by adding dynamic
features (“fbank+dynamic”). This observation agrees with previous
studies in the literature and it shows that the dynamic features are
still useful to the DNN acoustic model.

Next, we examined the effect of applying the cepstral mean
and/or the variance normalization to filterbank features. The WER
for applying the speaker-based cepstral mean normalization (CMN)
to the 40-dimensional filterbanks (“Fbank/CMNspk”) is shown
in Table 2 1. It is clearly seen that the speaker based CMN re-
duces the WER consistently across all test cases. It is because that
the CMN is able to remove channel mismatch and reduce noise
effects on features. By applying the speaker-based CMN on 120-
dimension filterbanks (“Fbank+dynamic/CMNspk”), the WER is
further reduced significantly. We also tried applying both mean and

1Although we are applying mean normalization on filterbanks rather than
cepstral features, we still use the name CMN for convenience.

Table 3. WER (%) on development set using the MVDR beamform-
ing approach provided in the baseline ASR system. (“MVDR (no
ch2)” means Channel 2 is not included in the beamforming).

variance normalization to filterbanks (“Fbank+dynamic/MVNspk”);
however, the WER is slightly worse than the WER with mean nor-
malization only. Hence, the variance normalization was not used in
our ASR system. Considering that the distortions in the utterances
of a speaker can be quite different, we also applied utterance-based
CMN to the filterbanks (“Fbank+dynamic/CMNutt”). Results show
that the utterance-based CMN outperforms the speaker-based CMN
in most test cases. By adding dynamic features and applying ut-
terance based CMN, we reduced the WER on real test data of the
development set from 16.8% to 13.3%.

We also examined other popular features and one enhancement
approach. We first tried to use bottleneck features (BNF) to replace
or concatenate with MFCC or filterbanks (see the first two rows the
3rd block in Table 2). The results for the GMM-based acoustic
model show that the BNF is even worse than MFCC features. We
also added the optimally modified log-spectral amplitude estimator
(OMLSA) [32] for speech enhancement and the results on the DNN
based acoustic model show that the OMLSA degrades the ASR per-
formance. Next, we tried the DNN-based feature compensation (FC)
method to map distorted input filterbanks to clean filterbanks. The
DNN FC takes the 1,320-dimensional filterbanks as input and pre-
dicts 120-dimensional static and dynamic clean features. A global
mean and variance normalization (MVN) was applied to the 120-
dimensional target filterbanks to make the contribution of each filter-
banks to the cost function comparable. We also added a least-square
(LS) based postprocessing [33] to predict the 40-dimensional static
features from the 120-dimensional DNN-predicted features. The re-
sults in last two rows of Table 2 show that the DNN FC degrades the
ASR performance from 13.3% (no DNN FC) to 13.4% and the LS
postprocessing reduces the WER from 13.4% to 12.9% on real data
of the development set. From the above investigations, we selected
the 120-dimensional filterbanks processed by utterance-based CMN
as the features for the DNN acoustic model in our final ASR system.
Next, we report the WER results for the multichannel beamforming
and postprocessing.

4.3. Beamforming and Postprocessing

In this section, we evaluate the proposed approaches for the ASR
system and compare them to the baseline approach. The ASR re-
sults on the development data from the baseline MVDR are shown
in Table 3. When training and testing data are both processed by the
provided MVDR beamformer “MVDR” and “MVDR (no ch2)”, the
WER of simulated data is significantly reduced when compared with
the single channel scenario “Ch5”, while the WER of real test data
becomes even worse. This result is because Channel 2 of real test
data mainly captures noise, while for simulated data Channel 2 is
similar to other channels. The result also shows that the microphone
gain mismatch has a large effect on the beamforming performance.
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Table 4. WER (%) comparison on development and evaluation sets between the baseline MVDR beamforming and the proposed approaches.
The detailed results for Channel 5 (CH5) are also included.

The last two rows only apply beamforming to the test data. It is ob-
served that for real test data, not applying beamforming during train-
ing data is better, but for simulated data it is reverse. This may be
because that the beamformer performs much better on the simulated
data than on the real data. If beamforming is applied to simulated
training data which is the majority of the training data, the acous-
tic model will become less robust for real test data. In Table 3, the
best WER for real test data is obtained from the beamforming with
Channel 2 excluded and the acoustic model is trained on Channel 5
data.

Next, we evaluate the proposed speech enhancement approaches
for WER performance on both development and evaluation data.
The WER is shown in Table 4. Two acoustic models are compared,
one is trained from Channel 5 and another is trained from all six
channels. By using all six channels to train the acoustic model, we
effectively increased the amount of training data and the acoustic
model is expected to be more robust. From the results, it is observed
that the proposed MVDR-CC, MVDR-ED, and MVDR-ED with
MCNR provide lower WER than the baseline MVDR beamforming
for both simulated and real data, except that the MVDR-CC provides
slightly higher WER than MVDR for the simulation data in evalua-
tion set. Comparing the three proposed approaches, the MVDR-ED
with MCNR outperforms the MVDR-ED and the MVDR-CC, ex-
cept for the simulation data in evaluation set where the MVDR-ED
with MCNR performs slightly worse than the MVDR-ED. This may
be due to the distortions in the MCNR gain estimation. The MVDR-
ED performs better than the MVDR-CC, except for the simulation
data in the development set. From the results with the real data, the
proposed approaches have significantly improved from the baseline

approaches. The MCNR also performs effectively for the real data.

The results also show that using all six channels to train the
acoustic model produces significant improvement over only using
Channel 5 to train the model in most of the test cases. The best
WERs of real test data are 7.26% for the development set and
11.67% for the evaluation set, respectively, which are obtained from
the MVDR-ED with MCNR approach and the 6-channel acoustic
model.

5. CONCLUSION

In this paper, we studied a MVDR beamformer with compen-
sated microphone gains and a novel MCNR postporcessing for the
CHiME-3 challenge. Both the proposed beamforming and postpro-
cessing approaches are shown to be effective for the ASR evaluation.
We also investigated the feature settings and the channel selection
for the training of the DNN acoustic model. The WER evalua-
tion results showed that the proposed ASR system has significantly
improved the baseline ASR system.
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