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ABSTRACT

We present a new beamformer front-end for Automatic
Speech Recognition and apply it to the 3rd-CHiME Speech
Separation and Recognition Challenge. Without any further
modification of the back-end, we achieve a 53% relative
reduction of the word error rate over the best baseline en-
hancement system for the relevant test data set. Our approach
leverages the power of a bi-directional Long Short-Term
Memory network to robustly estimate soft masks for a sub-
sequent beamforming step. The utilized Generalized Eigen-
value beamforming operation with an optional Blind Analytic
Normalization does not rely on a Direction-of-Arrival esti-
mate and can cope with multi-path sound propagation, while
at the same time only introducing very limited speech dis-
tortions. Our quite simple setup exploits the possibilities
provided by simulated training data while still being able
to generalize well to the fairly different real data. Finally,
combining our front-end with data augmentation and another
language model nearly yields a 64% reduction of the word
error rate on the real data test set.

Index Terms— Robust Speech Recognition, Beamform-
ing, Feature Enhancement, Neural Networks

1. INTRODUCTION

Automatic speech recognition has undergone major changes
in recent years. With the rise of mobile devices with speech
enabled personal assistants, application focus shifted from
controlled environments to much noisier environments, which
are prevalent if Automatic Speech Recognition (ASR) is used
on mobile devices. This transition was supported and made
possible by technical advances leading to better accuracy in
those noisy environments. Besides sophisticated adaptation
techniques, a large portion of the gain can be attributed to
the replacement of Gaussian Mixture Model (GMM) acous-
tic models by Deep Neural Networks (DNNs) [1] [2]. While
improving robustness a lot, DNNs are still sensitive to a mis-
match between training and test condition [3]. This calls for
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either more relevant training data, or methods to leverage the
power of DNNs even when trained on a relatively small data
set, e.g., by employing additional front-end processing steps.

The 3rd CHiME Challenge [4] provides a common task
for evaluating and comparing different approaches to noise-
robust ASR. It is designed to be close to a real-word appli-
cation: the task is to recognize speech recorded by six mi-
crophones placed around the frame of a tablet computer. The
tablet is held by a speaker in a natural position in one of four
noisy environments. The available amount of training data
can be considered small as of nowadays standards.

In our contribution to the CHiME challenge we focus on
front-end processing techniques. To be specific, we are going
to take advantage of the multiple recording channels to obtain
a beamformed signal of improved quality to be presented to
the back-end ASR engine. While the back-end usually em-
ploys phase-insensitive features, an acoustic beamformer ex-
plicitly exploits the phase of the input signals to form a beam
of increased sensitivity towards the location of the speaker. It
has thus been shown to improve ASR performance even in the
presence of a strong back-end [5]. Although early work exists
where the beamforming operation is learnt by the network it-
self [6], this requires a huge amount of data and the results
are still slightly worse.

While the baseline system provided by the CHiME or-
ganizers employed a Minimum Variance Distortionless Re-
sponse (MVDR) beamformer, whose beamforming coeffi-
cients are computed from a Direction-of-Arrival (DoA) esti-
mate obtained using SRP-PHAT for speaker tracking [4], our
multi-channel processing is quite different. We propose to
maximize the signal-to-noise ratio (SNR) of the beamformer
output in each frequency bin separately, leading to the Gener-
alized Eigenvalue (GEV) beamformer [7, 8]. This approach
has the advantage, that no explicit estimation of the DoA is
necessary. The beamformer coefficients are determined by
solving a generalized eigenvalue problem instead, employing
the Cross-Power Spectral Density (PSD) matrices of speech
and noise. We show that these matrices can be obtained with
the help of a neural network calculating a soft-mask for the
speech and the noise. This allows us to approximate the PSD
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matrices even in conditions of very low SNR like the ones
encountered in the CHiME challenge.

Another advantage of the proposed beamformer is that
the resulting beamformer coefficients are able to model an
arbitrary acoustic transfer function, and are not restricted to
modeling a pure delay, as is the case of the DoA-controlled
MVDR beamformer, making our approach more suitable for
reverberant environments.

A potential disadvantage is the speech distortion intro-
duced by the GEV beamformer. These distortions, however,
are curbed by a post-filter, which employs a normalizaion to-
wards a distortionless response [7].

The paper is organized as follows. We begin with a short
description of the CHiME database. Afterwards, the details
of our system are described. We proceed by presenting the
results and discussing them. Finally, we draw conclusion.

2. DATABASE

Here we only give a quick overview of the database, for de-
tails please refer to [4]. Most importantly, the database is split
in two kinds of data, simu and real. As their names suggest,
the simu data are simulated using speech signals recorded in a
quiet environment and noise signals extracted from noisy sig-
nals recorded in four different environments of the real data.
The real data on the other hand are recorded in four real-world
noisy environments: in a bus (BUS), a cafe (CAF), on the
street (STR) and in a pedestrian area (PED). The noise and
the real data were recorded using a tablet computer equipped
with six omnidirectional microphones. All provided record-
ings are sampled at 16 kHz.

Both simu and real data are divided in three data sets:
training, development and evaluation. The simu data of the
training set contain in total 7138 utterances, approximately
evenly distributed throughout the environments. The real data
of the training set consist of 1600 utterances. The develop-
ment and evaluation test data contain 1640 and 1320 utter-
ances, respectively, for each kind of data.

All prompts are taken from the 5k WSJ0-Corpus [9].

3. SYSTEM OVERVIEW

Figure 1 gives an overview of our speech enhancement
front-end. It consists of six bi-directional Long Short-Term
Memory (BLSTM) supported neural networks with shared
weights, one for each microphone channel. For each channel,
the neural network estimates two masks: the first indicates
which time-frequency-bins are presumably dominated by
speech, while the second one indicates which are dominated
by noise. The masks are then condensed to a single speech
and a single noise mask using a median filter. They are
used to estimate the PSD matrices of speech and noise, from
which the beamformer coefficients are obtained by a gener-
alized eigenvalue decomposition. After normalization, the

Table 1: Network configuration for mask estimation

Units Type Non-Linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0

beamforming operation is carried out on the multi-channel
input to provide the single-channel enhanced speech signal to
be forwarded to the ASR back-end.

3.1. Neural mask estimator

The neural network estimating the masks for the GEV beam-
former consists of four layers. Table 1 gives an overview of
their configuration.

3.1.1. Network configuration

For the first layer, 256 BLSTM [10, 11] units are used for
each direction over the signal. They enable the network to
capture necessary context information. In our implementation
we omit the peepholes and use an additional weight matrix
to join the forward (

−→
h t) and the backward (

←−
h t) direction to

obtain the final layer output lt:

i(t) = σ (Wiyy(t) + Wihh(t− 1) + bi) , (1)
f(t) = σ (Wfyy(t) + Wfhh(t− 1) + bf ) , (2)
o(t) = σ (Woyy(t) + Wohh(t− 1) + bo) , (3)
c(t) = f(t)� c(t− 1) (4)

+ i(t)� tanh (Wcyyt + Wchh(t− 1) + bc) ,

h(t) = o(t)� tanh (c(t)) , (5)

l(t) = W−→
h

−→
h (t) + W←−

h

←−
h (t). (6)

Here, � denotes element-wise multiplication of vectors.
The input (yt) for the layer is a single frame of the mag-

nitude spectra of one channel. For the STFT we use a frame
size of 1024, a frame shift of 256 and a FFT size of 1024.

The next two layers are feed-forward (FF) layers with a
Rectified Linear Unit (ReLU) activation function. We clip the
activation at a value of 20. Both layers have 513 units.

The last layer has 1026 units and is split in two parts: The
first 513 units estimate the speech mask IBMX, while the last
513 units estimate the noise mask IBMN. We do not force
the values of the estimated masks to be one or zero. Rather,
we restrict them to be in the range between one and zero us-
ing a Sigmoid non-linearity for the activation function of both
estimates. We also do not enforce non-overlapping masks or
masks which sum to one for each time-frequency-bin.
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Fig. 1: Enhancement system based on an LSTM net for mask estimation and GEV beamformer for target signal estimation.

3.1.2. Weight initialization & optimization

For the BLSTM layer, they are drawn from a uniform distri-
bution ranging from −0.02 to 0.02, while the ReLU layers
are initialized using a normal distribution with µ = 0 and√
σ = 0.01. For the last layer we use the initialization as

proposed in [12]. The biases are all intialized with zeros.
We employ RMSProp [13] for training. A fixed learning-

rate of 0.1, a momentum of 0.9 and full backpropagation
through time [14] is used. If the norm of a gradient is greater
than one, we divide the gradient by the norm to scale it [15].

To achieve a better generalization, we use dropout for the
input-hidden connection of the BLSTM units [16] and for the
input of the two ReLU FF layers [17]. The dropout rate is
fixed at pdropout = 0.5 for every layer during the whole train-
ing. Additionally we use the development data for cross-
validation, stopping the training when the loss does not de-
crease anymore after 5 epochs of patience.

3.1.3. Normalization

Instead of normalizing the input, we apply the recently pro-
posed batch normalization [18] for each layer. Here, the acti-
vation a = Wu + b is replaced with a normalized activation
BN(a), where

BN(a) = γû + β (7)

and

û(k) =
Wku(k)− E [Wku(k)]√

Var [Wku(k)]
. (8)

The normalization is carried out separately for each di-
mension k.

While the method was originally proposed for feed-
forward networks, we also apply it to the BLSTM layer.
Here, we normalize the input activation (W·yyt) but not the
recurrent activation (W·hht−1). With the network structure
described as above, this is almost equal to normalizing the

X

N

thX thN

IBMN

IBMX

Y ΘLSTM
LSTM
Train

IBM

Fig. 2: Training input of the BLSTM mask estimator.

input on a per-utterance basis for each dimension. The dif-
ference is, that the input can still be scaled with the trainable
parameters γ and β. Preliminary testing showed faster con-
vergence in some cases.
Also, in contrast to the proposed method [18], we do not
use the population estimates for the mean and variance at
decoding time. This is done in the original paper to ensure
that the output depends on the input in a deterministic way.
Changing the mini-batch size or using differently composed
mini-batches would lead to different outputs. In our case
however, one mini-batch (as seen by the layer inputs) is equal
to the features of one utterance. Hence, we can use the same
transformation that we used during training and still get a
deterministic output.

3.1.4. Ideal binary masks as targets

The training setup of the neural network for mask estimation
is displayed in Figure 2.
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The ideal binary mask for noise (IBMN) is defined by

IBMN(t, f) =

{
1, ||X||

||N|| < 10thN(f),

0, else,
(9)

where || · || is the Euclidean norm.
Correspondingly, the ideal binary mask for the target sig-

nal (IBMX) is defined by

IBMX(t, f) =

{
1, ||X||

||N|| > 10thX(f),

0, else.
(10)

The two thresholds thX and thN are not identical. They
are chosen such that a decision in favor of speech or noise is
only taken if the instantaneous SNR is high or low enough, re-
spectively, to ensure a low false acceptance rate. This will re-
sult in more reliable cross-power spectral density matrix esti-
mates at the expense of discarding some time-frequency-bins
which are categorize to be neither speech nor noise.

Note that the ideal binary masks can only be calculated
for the simulated training and development data.

3.1.5. Loss function

The network is trained on all utterances and all channels using
the binary cross-entropy cost. With IBMν(t, f), ν ∈ {X,N},
being the target mask value for the f -th frequency bin at the
t-th frame, Mν(t, f) the networks estimation for that value,
F the total number of frequency bins and T the total number
of frames, the loss is given by

L = − 1

F

1

2T

∑
ν∈(N,X)

T∑
t=1

F∑
f=1

IBMν(t, f) log2Mν(t, f)

(11)

+ (1− IBMν(t, f)) log2(1−Mν(t, f))

To accelerate the training procedure, we process each channel
in parallel, exploiting the fact that they have the same amount
of time steps.

3.1.6. Decoding at test time

At test time, we estimate a masks for noise and speech for
each channel. Afterwards, we take the element-wise median
of the channels. This increases the robustness of the method
in case of a channel failure. If not more than two channels are
corrupted, the estimate for the masks will not be affected.

3.2. GEV beamformer with BAN

As stated in the introduction, we propose to maximize the
SNR of the beamformer output in each frequency bin sepa-
rately leading to the GEV beamformer with coefficients [7]:

FGEV(f) = argmax
F

FHΦXX(f)F

FHΦNN(f)F
. (12)

Please note that this does not require any assumptions re-
garding the nature of the acoustic transfer function from the
speech source to the sensors or regarding the spatial correla-
tion of the noise [7]. The only assumption which needs to be
made is that the target signal is prevalent in the target PSD
matrix ΦXX whereas noise is prevalent in the noise PSD ma-
trix ΦNN.

Therefore, the non-overlapping masks MX and MN are
used to calculate the weighted sum of products matrices:

Φνν(f) =

T∑
t=1

Mν(t, f)Y(t, f)Y(t, f)H. (13)

We decided to estimate a time-invariant beamformer, i.e., the
beamforming coefficients do not change in the course of an
utterance. This is in contrast to the beamformer of the base-
line system, which employs time-variant coefficients in order
to track a moving speaker.

The cost function in Eq. (12) is known as the Rayleigh co-
efficient. The optimization problem leads to the well known
solution

FGEV(f) = P
{
Φ−1NNΦXX

}
(14)

(if the inverse of the noise PSD matrix exists), where P{·}
yields the principal component.

Unlike the MVDR beamformer, the GEV beamformer can
introduce arbitrary speech distortions. These, however, can be
reduced using a single channel post-filter [7]:

gBAN(f) =

√
FH

GEVΦNN(f)ΦNN(f)FGEV/D

FH
GEVΦNN(f)FGEV

. (15)

The filter performs a Blind Analytic Normalization (BAN) to
obtain a distortionless response in the direction of the speaker.
If speech distortions were removed perfectly, one would even-
tually arrive at the MVDR beamformer [19, 20].

We now obtain an estimate for the source signal as:

Z(t, f) = gBAN(f)F
H
GEV(f)Y(t, f). (16)

The estimateZ(t, f) is then provided to the baseline back-
end for training and recognition.

3.3. Exploiting context

The CHiME Challenge allows to use up to 5 s of preced-
ing context [4], although no guarantee is given that there is
only background noise within these 5 s. There might as well
be an overlap with another utterance or with the same utter-
ance where the speaker made a mistake. Our setup, however,
makes it easy to exploit the context for the case of real data.
We just prepend the context and use the masking in the same
way as we would without context. The additional frames help
estimating the PSD matrices of the speech and noise espe-
cially if the original utterance is short. Note that this only
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works for the real data case. For the simulated data, possible
speech artifacts within the context are from a different speaker
due to the way the data are generated.

We do not explicitly report results without using the con-
text, but preliminary experiment showed that it improves the
word error rate (WER) by 1-3 percent points.

3.4. Data augmentation

Neural networks are known to perform better the more data
is used for training (e.g. [21]). We try to exploit this fact by
augmenting the available simulated data. Namely, we change
the SNR by multiplying the noise images with 10G/10, where
G is uniformly sampled in [−8 dB,−1 dB].

The augmented data are used to train the back-end acous-
tic model, as well as the neural network estimating the masks.
Overall, we generate two new utterances for every utterance
of the simulated training data. We also tried to increase this
number to ten but results got worse, presumingly due to over-
fitting to the specific utterances.

3.5. Back-end

For all experiments, the original baseline back-end is used.
It features two different acoustic models. One is based on
a GMM and the other on a DNN. For GMM training, several
techniques are used to improve robustness and recognition
accuracy. The final model uses 40 dimensional LDA com-
pressed feature vectors, and is speaker adaptively trained
using feature space maximum likelihood linear regression
(fMLLR). The DNN has 7 layers with 2048 Sigmoid units,
is pre-trained using a restricted Boltzman machine and fine-
tuned with cross-entropy cost. Further improvements are
achieved by a sequence discriminative training using the
state-level Minimum Bayes Risk (sMBR) criterion. For a
detailed description refer to [4].

Note that we always perform a matched training for each
variation, i.e. the models are trained from scratch using the
training data decoded with the front-end variation in question.

3.6. Language model

The CHiME Challenge includes a pre-trained tri-gram lan-
guage model (LM) which is used in the baseline system. In
addition to this, there is also training data available to train
a custom language model1. We use this training data and the
KenLM [22] tool to train a modified Kneser-Ney [23] tri-gram
language model. We apply pruning to remove singletons of
order three and use the default settings otherwise.

Please note that we use the trained language model only
during decoding and not for the sequence training.

1Note that we only use the official data from the directory
CHiME3/data/WSJ0/wsj0/doc/lng modl/lm train/np data

Table 3: Detailed WERs for the best system

Development Evaluation

simu real simu real

BUS 5.74 9.44 7.55 17.54

CAF 7.63 6.67 9.58 10.48

PED 5.66 5.78 9.38 11.04

STR 6.45 7.74 9.47 9.99

4. RESULTS

Table 2 shows the results for our proposed system for differ-
ent acoustic models and with different front-end configura-
tions. We also list the results of the baseline enhancement
system for an easier comparison2. The results reveal that our
proposed system outperforms the baseline by a large margin
for the real data, despite sharing the same back-end. For the
simu data we achieve comparable or slightly better results, de-
pending on the configuration. This indicates that our system
is able to generalizes better across the different types of data
and can leverage the simulated data to learn about the real
data. Indeed we also trained a (GMM) model3 without using
any real data. The influence on the WER was rather small. It
only showed a relative drop of 3% for the real development
data and of 4% for the real evaluation data.

Data augmentation helps to improve the performance.
This is especially true for a DNN acoustic model. Adding
the augmented training data results in a 6% (11%) relative
improvement for the real development (evaluation) data and
a 16% (10%) relative improvement with sequence training.
For the GMM on the other hand, improvements are negligible
with 0.2% (3%). This is within our expectation that a DNN
can make better use of additional and more diverse data.

The post-filter on the other hand improves results primar-
ily for the GMM acoustic model, leading to a WER almost
similar to the the ones from a DNN. For the latter one, the
post-filter has a mixed impact. While it is able to improve
the results for the development data, the performance for the
evaluation data becomes slightly deteriorated. Especially for
the simulated we see an increase of the WER by at least 10%.
However, for the more important real data, the impact is not
so significant. For a sequentially trained model, the WER
increases by 3%, while it decreases by 3% if no sequence
training is applied. We suspect that the reason for this result
is that the post-filter removes some variability from the data
which the DNN could exploit for better classification.

Finally, using the trained language model brings another

2When available, we use the results reported in [4]
3The model corresponds to the third GMM model in Table 2 but is not

listed there in favour of a cleaner table
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Table 2: Overview of the WERs for different system combination

B
ac

ke
nd

A
ug

m
en

ta
tio

n

B
A

N

sM
B

R

K
en

L
M Development Evaluation

simu real simu real

GMM Baseline 7 7 9.79 20.55 10.59 37.36

DNN Baseline 7 7 9.27 20.14 12.75 40.17

DNN Baseline 3 7 8.17 17.72 11.19 33.76

GMM 7 7 7 7 10.20 10.42 11.16 16.47

GMM 3 7 7 7 9.61 10.40 10.53 15.92

GMM 3 3 7 7 8.88 9.92 9.75 14.65

GMM 3 3 7 3 8.51 9.56 9.25 13.77

DNN 7 7 7 7 8.89 9.91 11.26 16.73

DNN 3 7 7 7 7.82 9.30 10.38 14.88

DNN 3 3 7 7 7.77 8.84 11.43 14.34

DNN 3 3 7 3 7.44 8.49 10.59 13.27

DNN 7 7 3 7 8.06 10.42 10.05 15.75

DNN 3 7 3 7 7.11 8.70 9.56 14.15

DNN 3 3 3 7 6.98 8.11 10.72 14.55

DNN 3 3 3 3 6.37 7.41 8.99 12.26

significant gain. We see the biggest impact on the sequentially
trained model with a relative improvement of over 8% for the
development data and over 15% for the evaluation data, lead-
ing to a final WER of 12.26% for the real data. Compared
with the best baseline enhancement result as reported in [4],
we achieve a relative improvement of nearly 64%.

Table 3 gives a more detailed view on how the WER for
the best model is composed. One can immediately see that the
big difference between the WER for the real evaluation sce-
nario and the other scenarios is caused by a big difference for
the bus environment. Listening to some of those utterances,
the reason for this is probably a very low SNR combined with
some channel failures. Since the bus engine – which is mostly
the prevalent noise source – is a rather diffuse noise source,
the beamformer is unable to suppress it properly, leaving the
back-end to deal with a very noisy utterance. Otherwise, the
gap between real and simu data is present but relatively small.

5. CONCLUSION

In this work we present a new approach to beamforming
for ASR. Instead of using the widely employed MVDR
beamformer, we opt for a variant which does not rely on

a Direction-of-Arrival estimate. The beamformer coefficients
are derived from an eigenvalue decomposition of the speech
and noise PSD matrices instead. These matrices can be es-
timated leveraging the power of a discriminatively trained
recurrent neural network to obtain the time-frequency-bins
where the target source is dominant. This also allows us
to exploit context in a natural way. Our system works on
a per-utterance basis, requires only one decoding pass and
does not use costly ensembles. Nevertheless, we are able to
achieve a WER reduction of 53% compared to the baseline
enhancement system. Further improvements, namely using
data augmentation, a post-filter and another language model
trained on official data, yield a reduction of nearly 64%.
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