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ABSTRACT

CHiME-3 is a research community challenge organised in 2015 to
evaluate speech recognition systems for mobile multi-microphone
devices used in noisy daily environments. This paper describes
NTT’s CHiME-3 system, which integrates advanced speech en-
hancement and recognition techniques. Newly developed techniques
include the use of spectral masks for acoustic beam-steering vector
estimation and acoustic modelling with deep convolutional neural
networks based on the “network in network” concept. In addition to
these improvements, our system has several key differences from the
official baseline system. The differences include multi-microphone
training, dereverberation, and cross adaptation of neural networks
with different architectures. The impacts that these techniques have
on recognition performance are investigated. By combining these
advanced techniques, our system achieves a 3.45% development
error rate and a 5.83% evaluation error rate. Three simpler systems
are also developed to perform evaluations with constrained set-ups.

Index Terms— ‘CHiME’ challenge, automatic speech recogni-
tion, speech enhancement

1. INTRODUCTION

While automatic speech recognition (ASR) technology is increas-
ingly coming into practical use, ASR in noisy environments remains
a challenge. This is difficult because variability and changes in
acoustic environments must be handled using corrupted features. A
successful solution to this problem would be reached only by com-
bining both a high quality enhancement front-end and a robust back-
end recogniser. Top-performing systems in recent challenge pro-
grams associated with noise robustness integrate strong front-ends
and state-of-the-art back-ends [1, 2, 3].

The third edition of the CHiME challenge (CHiME-3), which
was proposed this year, provides a new framework for evaluating
techniques for noise robustness [4]. Unlike the previous editions
of the challenge, this new edition uses real recordings collected in
various noisy environments. In addition, a Kaldi-based [5] baseline
script was made available for this new task. This baseline repre-
sents today’s standard, utilising sequence-trained deep neural net-
work (DNN) acoustic models [6]. These features of CHiME-3 en-
able the assessment of the practical relevance of noise robustness
techniques.

This paper describes NTT’s submission to CHiME-3, which in-
tegrates advanced speech enhancement and recognition techniques.
The novel techniques introduced in this work include the following:

∗C. Yu is with The University of Texas at Dallas and contributed to this
work while he was interning at NTT.

• Spectral mask-based minimum variance distortionless re-
sponse (MVDR) beamformer for noise reduction. The pro-
posed scheme exploits spectral masks to obtain accurate
estimates of acoustic beam-steering vectors.

• Acoustic modelling using a deep convolutional neural net-
work (CNN) based on the “network in network” (NIN) con-
cept. The NIN-CNN was recently proposed to improve image
classification performance [7, 8]. In this model, 1× 1 convo-
lution layers are interleaved with ordinary convolution layers.
Speaker adaptation results for the NIN-CNN acoustic model
are also presented.

In addition to these improvements, our system makes use of ad-
vanced techniques, such as multi-microphone training [9], weighted
prediction error-based (WPE) dereverberation [10, 11], one-pass re-
current neural network language model (RNN-LM) decoding [12],
and system combination with cross-adaptation [13]. The perfor-
mance merits of these techniques are also evaluated. The combi-
nation of these technical advances allows our submitted system to
significantly outperform the official baseline system. Our system
achieved word error rates (WERs) of 3.45% and 5.83% on the real
parts of the development (dev) and evaluation (eval) sets, respec-
tively, while the baseline development and evaluation WERs were
16.13% and 33.43%, respectively.

In addition to the submitted system, we developed the following
three simpler systems:

• A one-pass speaker independent (SI) system in which every
processing step can be performed online.

• A multi-pass SI system that performs one-pass SI decoding
using features enhanced in a front-end. Enhancement is per-
formed by processing each utterance multiple times.

• A single-model speaker adapted (SA) system that performs
decoding with a model obtained by adapting the SI model
used in the multi-pass SI system. This system differs from
our submitted system because the former does not involve any
form of system combination while the latter does.

These three systems were built to perform evaluations in practically
constrained set-ups while our submitted system was built to explore
the degree to which we could push down error rates without any con-
straints except for the challenge regulations described in Section 2.

The rest of this paper is organised as follows. Section 2 briefly
describes the CHiME-3 task. Sections 3 and 4 present the back-
end and front-end techniques that we used. Section 5 describes our
systems and shows the results we obtained when we evaluated them.

2. CHIME-3

The CHiME-3 corpus consists of real six-channel audio data col-
lected in four different environments and additional simulated six-
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channel data. A tablet device with six microphones was used for
audio recording to simulate a situation where a user is talking to the
device in daily environments. The considered environments are: café
(CAF), street junction (STR), public transport (BUS), and pedestrian
area (PED). The corpus includes only read speech, where the sen-
tences to be read were taken from the WSJ0 corpus.

The training set comprises 1600 real and 7138 simulated utter-
ances, which amount to 18 hours of speech. The development and
evaluation sets consist of 3280 and 2640 utterances, respectively,
each containing 50% real and 50% simulated data. Both the real and
simulated parts were spoken by four different speakers.

A set of regulations were suggested to allow scientific conclu-
sions to be drawn from a comparison of systems developed at differ-
ent sites. The regulations include the following:

• Acoustic models must be trained based on the provided train-
ing data set.

• Language models must be trained solely on the official lan-
guage model training data.

• Environment labels may not be used for decoding.

• Utterance segmentations may not be changed in ways other
than extending each segment to the past by up to 5 seconds.

• Systems must be tuned by using the development set.

Our investigations were conducted within the scope bounded by
these regulations. Details of the data sets and regulations can be
found in [4].

3. BACK-END DEVELOPMENT

This section describes the acoustic and language models that we built
for CHiME-3 with emphasis on a novel technique and key differ-
ences from the challenge baseline system. In all the experiments re-
ported in this paper, decoding was performed using fully composed
tri-gram weighted finite state transducers (WFSTs). For RNN-LM
decoding, tri-gram hypotheses were rescored using an RNN-LM on
the fly during decoding, which allows this type of language model to
be used in a one-pass decoding scenario (see [12] for the algorithmic
details). The language model scale was fixed at 14. In this section,
although the figure of merit of the CHiME-3 challenge is a WER for
the real part of the test data, we focus on the average performance
over the simulated and real data as the training set is largely com-
posed of simulated utterances.

3.1. Acoustic model training

We used a DNN-hidden Markov model (HMM) hybrid approach [14,
15] for acoustic modelling. Our acoustic models were built follow-
ing a standard recipe [15]. Our Gaussian mixture model (GMM)-
HMM acoustic models were trained with a maximum likelihood
(ML) approach and used to generate state alignments. Input fea-
tures for the GMM-HMMs consisted of 13 mean-normalised PLP
coefficients and their delta and delta-delta parameters. These fea-
tures were extracted with a 25-msec sliding window with a 10-msec
shift. All the DNN-HMM systems built in this work were based
on sigmoid units and used 11 consecutive speech frames as inputs,
where each frame was represented by 40-dimensional log mel-filter
bank features plus their delta and delta-delta parameters. The DNNs
were trained (or fine-tuned) with mini-batch stochastic gradient de-
scent (SGD) to minimise a cross entropy criterion. Each DNN layer
was pre-trained for one epoch prior to fine-tuning unless otherwise
noted.

In the CHiME-3 task, a difficulty associated with acoustic mod-
elling arises from the fact that the training set is too small to learn
the feature variations caused by environmental noise. One way of
coping with this issue is to remove noise-associated feature varia-
tions from both training and test data by performing speech enhance-
ment in the front-end. Although this approach, which is often called
(feature-based) noise adaptive training, should improve recognition
performance, it is cumbersome when multiple front-ends are used
because acoustic models need to be trained for each front-end.

An alternative approach adopted in this work is to train an acous-
tic model using audio from multiple channels, i.e., multi-microphone
training. With this approach, the acoustic model is exposed to larger
feature variations during training to make it more tolerant to envi-
ronmental variability. Table 1 compares models trained on three dif-
ferent data sets in terms of word error rates (WERs). Here, we used
DNNs consisting of four hidden layers each with 2048 units. The
results show that the multi-microphone training approach led to sig-
nificant performance improvement. The benefit of using simulated
data for training is also clearly seen. All the acoustic models used in
the following experiments were trained on 108 hours of audio taken
from all six microphones.

Table 1. %WERs with different acoustic model training sets. SI
decoding with tri-gram language model.

Training data Hours %WER for dev
simu real simu real avg
5ch 5ch 18 15.08 15.67 15.38
5ch 1–6ch 32.5 15.06 14.43 14.75

1–6ch 1–6ch 108 13.51 13.64 13.57

Note that the effect of multi-microphone training was examined
previously in [16] for meeting transcription. In this paper, we further
perform speech enhancement at the recognition stage and decode the
enhanced speech using models trained with unprocessed noisy data.

3.2. “Network-in-network” convolutional neural networks

A hallmark of our acoustic model is the use of a deep CNN based on
NIN. The NIN concept was recently proposed in the image classifi-
cation area [7, 8]. The main difference between an NIN-CNN and a
conventional CNN can be briefly explained as follows.

The central idea behind the CNN, either with the conventional
structure or with the NIN, is to transform input data, organised as
a set of time-frequency feature maps, with a set of non-linear local
filters. This operation is repeated multiple times, which allows local
information to be gradually integrated.

In a conventional CNN, a convolution layer computes each unit
activation on an output feature map by applying a linear filter on
each local patch of the preceding layer and obtaining the filter output
through a non-linear (sigmoid in this work) activation function, σ()̇,
on a per-unit basis. Therefore, when yf,t,k denotes a unit activation
at frequency f and time t on the kth output feature map, it can be
computed as follows:

yf,t,k = σ (wkxf,t + bk) , (1)

where xf,t denotes an input local patch centred around (f, t), and
wk and bk, respectively, denote the filter and bias associated with
the kth output feature map.

While the conventional CNN applies a unit-wise non-linear ac-
tivation, the NIN-CNN uses a cross-feature map multi-layer percep-
tron (MLP) to capture more complex non-linear structures. Figure 1
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Fig. 1. Structures of conventional CNN (left) and NIN-CNN (right).

Table 2. NIN-CNN configuration used in this work. Conv{1,2}b
correspond to cross-feature map MLP layers.

Layer Filter size Input size #Feature maps
40×11 3

conv1a 5×11 36×1 180
conv1b 1×1 36×1 180
pool1 2×1 18×1 180

conv2a 5×1 14×1 180
conv2b 1×1 14×1 180
pool2 2×1 7×1 180
conv3 5×1 3×1 180

fc1 2048
fc2 2048
fc3 2048

softmax 5976

contrasts the NIN-CNN structure with that of the conventional CNN.
When the cross-feature map MLP has one hidden layer (as shown in
Fig. 1), Equation (1) is replaced with the following set of equations:

ỹf,t,k =σ
(
w̃kxf,t + b̃k

)

yf,t,k =σ (wkỹf,t + bk) , (2)

where ỹf,t is the vector of ỹf,t,1, · · · , ỹf,t,K with K representing
the number of output feature maps. Since each cross-feature map
MLP layer is equivalent to a convolution layer with a 1×1 filter [7],
the NIN-CNN can be readily implemented by interleaving 1 × 1
convolution layers with ordinary convolution layers that use wider
filters.

Table 2 shows the NIN-CNN configuration that we used for our
systems. It has five convolution layers, two pooling layers, and three
fully connected layers between the input and output (or softmax)
layers. To the best of our knowledge, our work is the first application
of such a deep CNN to speech recognition.

We carried out experiments to compare different neural network
architectures. For fully connected DNNs, we considered two config-
urations: one with four hidden layers and the other with ten hidden
layers, each with 2048 units. The latter was initialised by stacking re-
stricted Boltzmann machines (RBMs) [17], each of which was thor-
oughly pre-trained with the contrastive divergence algorithm [18]
for many epochs (50 for the first layer and 15 for the the remaining
layers). For conventional CNNs [19, 20], we experimented with
two configurations: one with two convolution layers and one with
three convolution layers. If we use the notation shown in Table 2,
these CNNs can be written as ‘conv1a-pool1-conv2a-pool2-fc1-
fc2-fc3-softmax’ and ‘conv1a-pool1-conv2a-pool2-conv3-fc1-fc2-
fc3-softmax’, respectively. The latter CNN produced the lowest
development WER (11.52%) of the CNN configurations we tested
in our preliminary experiments.

The experimental results are shown in Table 3. We can see
that the NIN-CNN yielded significant performance gains compared
with all the other models we considered. The relative gains were
9.82% and 4.04% compared with the best-performing DNN and
CNN, respectively, for the development set. The respective gains
were 12.04% and 3.87% for the evaluation set. These results show
the promise of the NIN approach. Future investigation is expected
to fully explore the merit of this approach.

Table 3. %WER comparison of different acoustic model architec-
tures. SI decoding with tri-gram language model. DNN4: fully con-
nected network with four hidden layers; RBM-DNN10; ten hidden-
layer fully connected network initialised with thoroughly optimised
RBMs; CNN2/CNN3: CNNs comprising two/three convolution lay-
ers topped with three fully connected layers; NIN-CNN: structured
as shown in Table 2.

Acoustic dev eval
model simu real avg simu real avg
DNN4 13.51 13.64 13.57 16.68 23.05 19.86

RBM-DNN10 11.97 12.27 12.12 14.51 21.05 17.78
CNN2 11.70 11.94 11.82 14.17 20.02 17.10
CNN3 11.25 11.52 11.39 13.34 19.21 16.27

NIN-CNN 10.64 11.21 10.93 12.81 18.47 15.64

3.3. Language model development
In addition to the official 5K-word vocabulary tri-gram language
model, we used an RNN-LM, which has been proven to improve
recognition performance in many tasks [21, 22].

Our RNN-LM was built from the official language model train-
ing data, consisting of 1.6M sentences including 37M words with
a 165K-word vocabulary. We used a subset of the complete train-
ing data set for RNN-LM training because the complete set contains
a lot of words that fall outside the 5K-word vocabulary. Sentences
used for training were selected as follows. First, we replaced words
that were not included in the 5K-word vocabulary with an out-of-
vocabulary (OOV) word symbol. Then, we selected sentences with
OOV word rates below 10%. This left us with a subset of the train-
ing data comprising 0.8M sentences including 19M words with an
OOV word rate of 4.36%. By using this subset, we trained a word
class-based RNN-LM with 10 classes and a 500-unit recurrent hid-
den layer with the RNNLM toolkit [23]. The use of the RNN-LM
improved the development error rate from 10.93% to 8.62% and the
evaluation error rate from 15.64% to 12.89%, where the RNN-LM
and tri-gram scores were interpolated at a fifty-fifty rate.

3.4. Back-end development summary
In Section 3, we have introduced a deep CNN based on NIN, which
improved the recognition performance compared with conventional
CNNs and fully connected DNNs. We also showed that multi-
microphone training and RNN language modelling work well for
the CHiME-3 task. The experiments described in the following
sections used the NIN-CNN acoustic model and the RNN language
model developed as described above.

4. FRONT-END DEVELOPMENT

Our front-end was designed to remove irrelevant feature variations
caused by environmental noise without producing processing arte-
facts. To meet this requirement, our front-end performs speech en-
hancement with linear time-invariant filters as this approach does not
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Fig. 2. Schematic diagram of the enhancement part of our front-end.
The enhanced signal is converted into feature vectors.

suffer from artefacts and thus improves the recognition performance
of DNN-based acoustic models [24].

As shown in Fig. 2, our front-end enhances speech in two steps:
WPE-based dereverberation and MVDR beamforming. The acous-
tic beam of the MVDR is controlled using steering vectors estimated
based on spectral masks. Since these techniques process individual
utterances with a batch operation approach, enhancement was per-
formed only for multi-pass systems.

4.1. Weighted prediction error-based dereverberation

The dereverberation technique used in this work, i.e., the WPE
method, converts six-channel input audio into six-channel, less re-
verberant signals. An important feature of this method is that, unlike
approaches based on spectral subtraction [25, 26], dereverberation
is carried out with a linear time-invariant filter and thus introduces
little artefact. WPE was previously applied to meeting transcription
and distant speech recognition tasks [27, 2], where speech signals
were contaminated by reverberation and a modest level of additive
noise. A detailed description of the method can be found in [10, 28].

The experimental results shown in Table 4 clearly reveal the ben-
efit of dereverberation. WPE yielded a performance gain of 7.54%
relative for the real part of the development set. As expected, it was
particularly effective for utterances collected on buses, i.e., small en-
closed spaces, and improved the recognition performance by 8.57%
relative. This provides evidence that this method works for envi-
ronments with strong additive noise. Note that little improvement
was obtained for the simulated data because reverberation was not
considered in the simulation.

Table 4. %WERs obtained with and without dereverberation. SI
decoding with NIN-CNN acoustic model and RNN language model.

Dereverberation
Data set Disabled Enabled
dev-simu 8.24 8.14
dev-real 9.01 8.33

4.2. Spectral mask-based steering vector estimation

MVDR is a technique for forming an acoustic beam to pick up sig-
nals arriving from a direction specified by a steering vector, thereby
removing background noise. Accurate estimation of the steering
vector is paramount for successful noise reduction. To this end,

we introduce spectral mask-based steering vector estimation as de-
scribed below.

The key difference between the conventional and spectral mask-
based beamformer designs is that while the former often obtains
steering vectors from the estimated speaker direction and the mi-
crophone array geometry, which are not always accurate, the latter
does not rely on such unreliable prior information. The basic idea
is to obtain a steering vector by computing the principal eigenvector
of an estimate of the spatial correlation matrix, RX

f , of clean speech
signals, where f denotes a frequency bin index. Assuming the sta-
tistical independence of speech and noise, the required spatial corre-
lation matrix can be estimated as

RX
f = RX+N

f −RN
f , (3)

where RX+N
f and RN

f are the spatial correlation matrices of noisy
speech and noise, respectively. They can be estimated by using spec-
tral mask Mf,t as follows [29]:

RX+N
f =

1

T

T∑
t=1

yf,ty
H
f,t

RN
f =

1∑T
t=1(1−Mf,t)

T∑
t=1

(1−Mf,t)yf,ty
H
f,t, (4)

where yf,t is a vector comprising input STFT coefficients at fre-
quency f and time t and T is the number of frames constituting
an utterance. Spectral mask Mf,t satisfies 0 ≤ Mf,t ≤ 1, where
Mf,t = 1 indicates that the corresponding time-frequency bin con-
tains speech.

The key to the success of the proposed approach is the unsu-
pervised and accurate estimation of spectral masks. Many spectral
mask estimation schemes have been proposed by the speech sepa-
ration community, including those based on GMMs [30, 31], Wat-
son mixture models (WMMs) [32, 33] and complex GMMs (CG-
MMs)1 [34]. On the basis of preliminary experiments conducted in
the initial stage of our development, we decided to use the CGMM
scheme, which can be explained as follows. Each time-frequency bin
is assumed either to be dominated by noise or to contain both speech
and noise. This assumption allows individual time-frequency bins to
be clustered into two classes: a speech-plus-noise class and a noise
class. Clustering is performed by modelling multi-channel STFT
coefficient vectors with a CGMM with two components: one cor-
responds to speech-plus-noise, and one to noise. Then, the spectral
mask for each time-frequency bin can be obtained as the posterior
probability of that bin being judged to be speech-plus-noise.

The benefit of this “blind” steering vector estimation approach
can be clearly seen in Table 5, where we compare the challenge base-
line beamformer and our beamformer. The baseline beamformer im-
proved the recognition performance only for the simulated subset,
in which the data characteristics match an assumed room acoustics
model. By contrast, the proposed beamformer yielded large gains
for both the simulated and real data.

Finally, we further performed experiments to confirm the ef-
fectiveness of using MVDR rather than directly applying estimated
spectral masks. The motivation behind this experiment is that spec-
tral masks have usually been applied directly to input STFT coeffi-
cients in previous studies concerning speech separation except for a
few papers [29, 33]. Table 6 contrasts the performance of MVDR
beamforming with that of spectral masking. The result shows a
significant performance difference between these two approaches.

1Note that the term ’CGMM’ is not used in [34].
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Table 5. %WER comparison of the proposed and provided beam-
formers. SI decoding with NIN-CNN acoustic model and RNN lan-
guage model. Dereverberation was not performed prior to beam-
forming.

Beamformer
Data set Not applied Baseline Proposed
dev-simu 8.24 4.79 5.25
dev-real 9.01 9.41 4.83

Table 6. Beamforming vs. spectral masking in terms of WERs in
%. SI decoding with NIN-CNN acoustic model and RNN language
model. Dereverberation was performed prior to beamforming.

Data set Masking Beamforming
dev-simu 12.73 5.15
dev-real 10.79 4.67

The serious performance degradation caused by spectral masking
means that acoustic models are prone to artefacts produced by spec-
tral masking. Since MVDR uses a linear time-invariant filter to ob-
tain enhanced speech, it tends to generate few artefacts.

This result and our previous experience [29, 2, 24] combined
to allow us to conclude that speech enhancement with linear time-
invariant filters can effectively reduce recognition errors made by
state-of-the-art acoustic models based on DNNs. Further results on
the proposed CGMM-based scheme will be reported in a separate
paper [35].

5. DEVELOPED SYSTEMS

This section describes four different systems that we developed for
the CHiME-3 challenge by exploiting the techniques described in
the previous sections. The systems include a one-pass SI system, a
multi-pass SI system, a single-model SA system, and a multi-model
SA system. The first three constrained systems are described in Sec-
tion 5.1. The impact of speaker adaptation on NIN-CNN acous-
tic models is also described. The last system represents the NTT
CHiME-3 system and is described in Section 5.2. We focus on the
performance on the real parts of the development and evaluation sets.

5.1. Constrained systems

Our one-pass SI system is based on an NIN-CNN acoustic model
built with multi-microphone training, a word class-based RNN-LM,
and a one-pass decoder with on-the-fly rescoring [12] as described in
Section 3. This system does not perform speech enhancement. The
development and evaluation WERs of this system are shown on the
“1-pass SI” rows in Tables 7 and 8, respectively. These results cor-
respond to those of Section 3.3. The average WERs were 9.01% and
15.60% for the real parts of the development and evaluation sets, re-
spectively. These numbers are better than the official baseline WERs
(16.13% for dev and 33.43% for eval) by 44.1% and 53.3% relative,
respectively.

Our multi-pass SI system performs SI decoding using enhanced
features obtained by performing dereverberation and beamforming.
Note that decoding is performed with a one-pass approach while en-
hancement processing scans each utterance multiple times. In Ta-
bles 7 and 8, the “multi-pass SI” rows show the WERs of this sys-
tem. The system achieved WERs of 4.67% and 8.32% for the de-
velopment and evaluation sets, respectively. The relative gains from

Speech enhancement
(WPE+MVDR)

Feature extraction

SI decoding

Adaptation

SA decoding

Audio

Words

1-best

SA model

Model

Transcripts

NIN-CNN
SI model

Fig. 3. Decoding pipeline of single-model SA system.

speech enhancement were 48.2% and 46.7% for the development
and evaluation sets, respectively.

In our single-model SA system, unsupervised speaker adapta-
tion is performed just once as shown in Fig. 3. The system adapts the
SI NIN-CNN acoustic model to individual speakers by using adap-
tation supervision generated by the multi-pass SI system. In this
SA system, the model adaptation step aims at compensating for both
speaker differences and acoustic changes resulting from front-end
enhancement processing. Adaptation is performed by re-training the
neural network with SGD on a modest number (i.e., 1800) of mini-
batches with a fixed learning rate of 0.02 [36].

In Tables 7 and 8, the “1-model SA” rows show the WERs of the
single-model SA system. The system achieved a 3.90% development
error rate and a 6.58% evaluation error rate. The gains from speaker
adaptation were 16.5% and 21.0% relative for the development and
evaluation sets, respectivley. This result means that NIN-CNN mod-
els can benefit significantly from speaker adaptation.

5.2. Submitted system
The architecture of our system submitted to the CHiME-3 challenge
centres around system combination with cross-adaptation. Combin-
ing multiple complementary models has been proven to result in
lower WERs by many evaluation systems [13, 37, 38]. With the
cross adaptation approach, outputs from one model are used to mod-
ify another model.

Figure 4 shows the way in which our submitted system performs
decoding and adaptation. Three acoustic models from Table 3 are
used: RBM-DNN10, CNN3, and NIN-CNN. The system processes
test utterances as follows:
SI1 SI decoding with the RBM-DNN10 model.
SA1 Adaptation and decoding with the NIN-CNN model by using

supervisions created at Step SI1.
SA2 Adaptation and decoding with the CNN3 model by using su-

pervisions created at Step SA1.
The WERs of the respective decoding steps are shown on the SI1,
SA1, and SA2 columns in Table 9. We can see that the performance
gradually improved step by step while the WER for eval-real satu-
rated in Step SA1.

To confirm that cross adaptation is effective for DNN-HMM
acoustic models, we compared the WERs of the cross-adapted NIN-
CNN with a self-adapted version that used supervisions generated
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Table 7. %WERs of constrained systems for the developement set.
simu real avg

System Avg BUS CAF PED STR Avg BUS CAF PED STR
1-pass SI 8.24 8.48 10.56 6.42 7.51 9.01 14.00 7.94 6.03 8.05 8.62

multi-pass SI 5.15 5.12 6.18 4.35 4.96 4.67 6.12 4.07 3.95 4.56 4.91
1-model SA 3.95 3.75 4.63 3.29 4.12 3.90 5.02 3.50 3.44 3.63 3.92

Table 8. %WERs of constrained systems for the evaluation set.
simu real avg

System Avg BUS CAF PED STR Avg BUS CAF PED STR
1-pass SI 10.17 8.37 11.69 9.86 10.78 15.60 22.55 16.21 12.89 10.74 12.89

multi-pass SI 8.02 5.70 7.47 8.76 10.16 8.32 10.32 7.15 8.54 7.28 8.17
1-model SA 5.36 3.83 4.63 5.44 7.53 6.58 8.15 5.44 6.93 5.79 5.97

Table 11. %WERs breakdown of our submitted system.
simu real avg

Data set Avg BUS CAF PED STR Avg BUS CAF PED STR
dev 3.63 3.35 4.23 3.20 3.75 3.45 4.25 3.16 2.95 3.45 3.54
eval 4.46 3.60 3.72 4.73 5.77 5.83 7.37 4.46 6.24 5.23 5.14

SA model

Speech enhancement
(WPE+MVDR)

Feature extraction

Audio

SI1: SI decoding Adaptation

SA1: SA decoding

Adaptation

1-best

NIN-CNN
SI model

1-best

RBM-DNN10 
SI model

Words

Model

Transcripts

Features

CNN3
SI model

SA2: SA decoding

SA model

Fig. 4. Decoding pipeline of multi-model SA system submitted to
the CHiME-3 challenge.

by an SI NIN-CNN model. Table 10 shows the results. Although the
transcripts generated by the SI RBM-DNN10 model contained more
errors than those generated by the SI NIN-CNN model, adapting
the NIN-CNN model using the former transcripts resulted in lower
WERs.

The SA2+ system in Table 9 represents the NTT CHiME-3 sys-
tem, which was built at the final stage of our system development by
tuning some hyper-parameters for Step SA2 (using the development
set). The hyper-parameters adjusted at this stage include the number
of mini-batches used for adaptation, an adaptation learning rate, and
a language model scale. The optimal values for the repsective pa-
rameters were 2700, 0.01, and 12. In addition, SA2+ uses a shorter
analysis window for beamforming than SA2 to improve complemen-

Table 9. %WER of individual decoding steps.

Data set Processing step
SI1 SA1 SA2 SA2+

dev-simu 5.87 3.95 3.69 3.63
dev-real 5.11 3.77 3.59 3.45

eval-simu 8.79 5.12 4.76 4.46
eval-real 9.07 6.19 6.22 5.83

Table 10. Cross- vs. self-adaptation for NIN-CNN model in terms
of WERs in %.

Model for supervision
Data set RBM-DNN10 SI NIN-CNN SI
dev-real 3.77 3.90
eval-real 6.19 6.58

tarity with the SA1 model (64 msec for SI/SA1/SA2 and 25 msec for
SA2+). This system achieved a development error rate of 3.45% and
an evaluation error rate of 5.83%. This means that recognition errors
were reduced by 11.5% and 11.4% for the development and evalua-
tion sets, respectively, compared with the single-model SA system.
The WERs of our submitted system, i.e., SA2+, are shown in Ta-
ble 11 for individual conditions.

6. CONCLUSION

This paper described the speech recognition system for multi-
microphone mobile devices developed at NTT for the CHiME-3
challenge and key techniques used in the system. Our novel tech-
niques include MVDR beamforming with accurate steering vector
estimation based on spectral masks and acoustic modelling based
on the NIN-CNN concept. In addition, our system differs from the
official baseline system in many respects, namely multi-microphone
training, the use of an RNN language model, dereverberation with
the WPE method, and system combination with cross adaptation, all
of which were shown to yield significant performance gains.

Acknowledgement K. Niwa and T. Kawase from NTT Media Intel-
ligence Labs. provided invaluable help with front-end processing.
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