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ABSTRACT
In this paper we present our contribution to the third CHiME
challenge on speech separation and recognition for noisy
multi-channel recordings. The use-case of the challenge con-
sists in single speaker utterances recorded in highly non-
stationary noisy environments using a 6-microphone ar-
ray mounted on a tablet computer. The front-end of our
system is performing speech enhancement by cascading a
cross-correlation-based channel selection, Signal Dependent
MVDR beamforming and online source separation based on
sparse NMF. The back-end module is a state-of-the-art speech
recognition system with DNN acoustic models trained on
fMLLR features and a RNN Language Model. Our system
reaches an overall WER of 11.94% on real test recordings,
achieving a relative improvement of 65% compared to the
baseline system.

Index Terms— Speech Enhancement, Automatic Speech
Recognition, MVDR Beamforming, Non Negative Matrix
Factorization,CHiME challenge

1. INTRODUCTION

Automatic Speech Recognition (ASR) on far-field audio
recordings remains challenging. Capturing speech with dis-
tant microphones increases significantly the contribution of
environmental noise and reverberation and reduces perfor-
mance of ASR. For several years, research challenges like
CHiME [1, 2] and REVERB [3] have been providing chal-
lenging use-cases to an increasing number of participants.
These campaigns have already successfully supported the de-
velopment of novel methods with high capability in limiting
the impact of noise and reverberation on ASR.

The third CHiME1 challenge proposes to perform speech
recognition on multi-channel speech recordings captured in
various highly non-stationary noisy environments. Utterances
of the Wall Street Journal corpus [4] have been read by a
set of 12 speakers and recorded using a 6-microphone array
mounted on a tablet computer. As shown in Fig.1, five micro-
phones are turned towards the speaker and one microphone
(top middle channel 2, noted backside channel) is on the back
panel of the tablet. Users are free to hold the tablet as they

1http://spandh.dcs.shef.ac.uk/chime_challenge/

want and to move around with the device while recording in
one of the 4 noisy environments: bus, cafeteria, street, pedes-
trian area. Thus, one or several microphones may be partially
or totally obstructed during the recording by user’s fingers or
by the support on which the device has been disposed.

Fig. 1. Our framework for multi-channel robust ASR

Our contribution to CHiME is a flexible framework com-
bining multi-channel speech enhancement with automatic
speech recognition in order to handle recording artefacts and
microphone failures. The system depicted Fig.1 is com-
posed of a front-end Speech Enhancement (SE) module and
a state-of-the-art back-end ASR. Our SE stage pre-process
a 6-channel noisy recording into an enhanced single signal
through 3 steps: channel selection based on cross-correlation,
Minimum Variance Distortionless Response (MVDR) beam-
forming and SE source separation based on Non negative
Matrix Factorization. The channel selection module auto-
matically detects M obstructed microphones as well as the
backside channel. At this step the M obstructed channels
are discarded because the next module (MVDR beamformer)
is acknowledged to be very sensitive to channel failures [5].
The detected backside channel will be used in a subsequent
step by the NMF-based component. The N selected channels
are processed in a second time by a MVDR beamformer in
order to suppress additive noise and combineN channels into
an enhanced single-channel signal. During the last step of
the SE front-end, a sparse NMF-based source separation is
used to remove residual noise from the output of the MVDR
beamformer. The signal detected as the backside microphone
is used by the NMF-based source separation module to adapt
noise models to current test recordings. The enhanced speech
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signal produced by the SE front-end is then decoded by a
state-of-the-art ASR including Deep Neural Network (DNN)
Acoustic Models (AM) trained on speaker-adapted with fea-
ture space maximum likelihood linear regression (fMLLR)
acoustic features. The word lattices produced by the speech
decoder in an ultimate process are re-scored using a Recurrent
Neural Network Language Model (RNN-LM).

To our knowledge, this work is one of the few studies in-
vestigating NMF, traditionally used for single channel speech
enhancement [6, 7, 8, 9, 10], in a task of speech recognition
using a DNN-based ASR. We have integrated several SE tech-
nologies into a flexible framework able to handle efficiently
corrupted input signals. Our best system achieves an overall
WER of 11.94% on real noisy recordings for an overall rela-
tive WER improvement of 65% compared to the baseline of
the challenge. We also provide a large set of experiments and
discuss the benefit of the components of our system.

The remainder of this paper consists as follows. In Sec-
tion 2 we describe briefly the CHiME baseline system. Our
system is described and discussed in Section 3. In section 4
we present the corpus used for the experiments and the eval-
uations reported in Section 5, where we also discuss our pro-
posal through a large set of contrastive experiments.

2. CHIME-3 BASELINE SYSTEM

CHiME’s organizers have provided the baseline speech en-
hancement ASR system presented in Fig.2. This system is
composed of a front-end SE based-on channel selection and
MVDR beamformer. The ASR back-end is relying on DNN
acoustic models trained on Mel Filterbank features. The
speech enhancement baseline aims to transform the multi-
channel noisy input signal into a single-channel enhanced
output signal suitable for ASR processing.

MVDR beamforming is acknowledged to be very sensi-
tive to channel failure, thus a first step consists in detect-
ing the corrupted channels. The baseline channel selection
module discards channels based on the computation of the
energy captured by each microphone. M channels are re-
moved from the set of 6 microphones if their energies are
found lower than threshold. TheN selected channels are then
processed by a Time-Varying Minimum Variance Distortion-
less Response (TV-MVDR) beamformer with diagonal load-
ing [11]. This method requires the computation of the noise
covariance matrix and the estimation of the Time Difference
Of Arrival (TDOA) of multichannel signals. To this purpose,
in the baseline the spatial position of the target speaker in each
time frame of speech is encoded by a non-linear SRP-PHAT
pseudo-spectrum found to perform best among a variety of
source localization techniques [12].

CHiME is providing two back-end ASR systems. A
first system uses Gaussian Mixture Models acoustic models
trained on MFCC acoustic features with LDA dimension re-
duction, Maximum likelihood linear transformation (MLLT),

Fig. 2. Baseline framework for multi-channel robust ASR

and feature space maximum likelihood linear regression (fM-
LLR) with speaker adaptive training (SAT). A second ASR
system is a DNN baseline providing state-of-the-art ASR
performance. The DNN has 7 layers with 2048 neurons
per hidden layer. The input layer has 5 frames of left and
right context. The DNN training procedure consists in a
pre-training using restricted Boltzmann machines, cross en-
tropy training, and sequence discriminative training using the
state-level minimum Bayes risk (sMBR) criterion. We will
compare our work to the baseline DNN-based ASR. In the
next section we present our contribution to CHiME.

3. SYSTEM DESCRIPTION

3.1. Speech Enhancement Front-End

3.1.1. Cross-correlation-based channel Selection

As mentioned previously, during the recording of training and
evaluation data, one or several microphones may have been
obstructed by the user. Since MVDR beamforming perfor-
mance suffers from such failure we have proposed an im-
proved channel selection procedure. We assume all the mi-
crophones on the front of the recording device capture a larger
contribution of speaker’s speech and the microphone turned
backwards captures mostly the contribution of background
noise. Therefore we propose to use cross-correlation over
the set of signals captured during one recording session in
order to identify the obstructed microphones as well as the
the backside channel. As presented on Algorithm 1, we first
compute the average cross-correlation between the 6 avail-
able audio signals . The signals with a cross-correlation value
lower than a threshold λ1 are considered obstructed and are
removed from the set of channels. Among the remaining
signals, the channel with the lowest cross-correlation value
is compared to a second threshold. If its cross-correlation
is smaller than a threshold λ2, the corresponding channel is
identified as the backside microphone. Optimal normalized
thresholds λ1 = 0.2 and λ2 = 0.35 have been estimated ex-
perimentally on the development set of real noisy recordings.
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Algorithm 1 Channel Selection algorithm
1: procedure CHANNELSELECTION
2: // Compute cross-correlation for pairs of channels
3: for each i ∈ [ 1 ... 6 ] do
4: Score[chi]← 0
5: for each j ∈ [1 ... 6] do
6: Score[chi]:=Score[chi]+XCORR(chi, chj)
7: end for
8: end for
9: // Normalize score between 0 and 1

10: for each i ∈ [1 ... 6] do
11: Score[chi] = Score[chi] / max(Score)
12: end for
13: // Remove error channel
14: for each i ∈ [1 ... 6] do
15: if Score[chi] < λ1 then
16: Score[chi]← null
17: end if
18: end for
19: // Select backside noisy channel
20: if min(Score) < λ2 then
21: back channel = chi with mini∈[1...6](Score[chi])
22: else
23: back channel← 0
24: end if
25: end procedure

3.1.2. Signal-Dependent MVDR Beamforming

Some preliminary experiments using the baseline MVDR
beamformer have shown that this method is particularly good
when applied on simulated noisy multichannel data, but its
efficiency remains very small on real noisy recordings and
can even degrade ASR results. In order to better handle
multiple channel mismatch occurring in real recordings we
have preferred the signal-dependent MVDR beamformer ini-
tially presented in [13]. This MVDR beamformer does not
make any assumption about TDOA and therefore releases
the MVDR from TDOA estimation errors. This alternative
beamformer also introduces a trade-off factor τ ≥ 0 to bal-
ance the level of noise removal versus speech distortion in the
output. A trade-off equals to zero means a more noisy but less
distorted output. We studied the impact of this parameter on
speech recognition. We observed a very small impact of this
parameter on the ASR performance and evaluated its optimal
value to τ = 5 (less noisy but more distorted output).

3.1.3. Sparse NMF-based speech enhancement

We have used the sparse NMF SE method presented in [7]
to remove residual noise from the enhanced signal produced
by the MVDR beamformer. Sparse NMF assumes the Short
Term Fourier Transform of a noisy signal V ∈ RF×T (F the
number of frequency bins and T the number of time frames)

is a linear combination of basis vectors W ∈ RF×B (with B
the number of bases) and activation coefficients H ∈ RB×T .
NMF can estimate W and H by minimizing the sparseness
of H in the L1 norm. The distance between V and WH is
computed in the Euclidean space by:

W,H = min
W,H

D(V ||WH) + µ||H||1 (1)

W and H are estimated using iterative multiplicative up-
date rules as in Eq.2 and Eq.3, with W the column-wise L2-
normalized version of W , and .∗ and / the Hadamard product
and division.

H ← H. ∗
W

T V
WH

W
T
1 + µ

(2)

W ←W. ∗
V

WH
HT + 1(1HT . ∗W ). ∗W

1HT + 1( V
WH

. ∗W ). ∗W
(3)

We note WS and WN the speech and noise bases esti-
mated using training recordings of clean speech and back-
ground noise. NMF-speech enhancement [10] is achieved
by estimating the noise and speech coefficients HS and HN

of a noisy speech signal using fixed speech and noise bases
[WS WN ] and iterating on the multiplicative update rules.

Fig. 3. Semi supervised NMF using the backside channel

We assume the backside channel, if not obstructed, may
contain a significant contribution of background noise. There-
fore, as presented Fig.3, this channel may help to refine the
noise bases WN for the current signal to enhance. Obviously
the backside channel also contains some contribution of the
speaker and it’s likely that the updated NMF speech coeffi-
cients become sparser. We limit the sparseness by introduc-
ing factors θ and µ respectively used in the estimation of noise
and speech coefficients (θ > µ). We set θ = 1.5 and µ = 1
based on perceptual evaluation using PESQ [14]. A semi-
supervised MNF is achieved with the iterative multiplicative
updates rules in Eq.4, Eq.5 and Eq.6. The noise base is finally
updated in W = [WS W

′
N ] and used in the supervised NMF

enhancement step.

H ′S ← H ′S . ∗
WS

T V
WH

WS
T
1 + µ

(4)

H ′N ← H ′N . ∗
WN

T V
WH

WN
T
1 + θ

(5)
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W ′N ←W ′N . ∗
V

WH
H ′TN + 1(1H ′TN . ∗W ′N ). ∗W ′N
1H ′TN + 1( V

WH
. ∗W ′N ). ∗W ′N

(6)

3.2. Automatic Speech Recognition Back-end

3.2.1. fMLLR-based DNN acoustic models

Our ASR back-end is based on Kaldi speech recognition tool
kit. The speech decoder is using context-dependent DNN-
HMM AM. Acoustic models have been trained on MFCC
acoustic features with LDA dimension reduction, Maximum
likelihood linear transformation (MLLT), and feature space
maximum likelihood linear regression (fMLLR). The DNN
has 5 frames of left and right context for the input layer and
7 layers with 2048 neurons per hidden layer. The DNN is pre-
trained using restricted Boltzmann machines, cross entropy
training, and sequence discriminative training using the state-
level minimum Bayes risk (sMBR) criterion [15]. To over-
come some important limitations of the baseline due mostly
to acoustic mismatch between the enhanced training data and
the real noisy recordings, we have produced several acoustic
models based on different combinations of training data.

3.2.2. RNN Language Model lattice rescoring

RNN-LM [16] has been proven able to improve the language
model perplexity on various datasets by accurately capturing
long-term word dependency. We have prepared a RNN-LM
on the WSJ-0 5k training dataset for ASR task as required by
the challenge. The final perplexity is equal to 44.41.

4. CHIME CHALLENGE CORPUS

The corpus provided by CHiME challenge is composed of
real and simulated noisy audio recordings. The target noisy
environments are bus (BUS), cafeteria (CAF), pedestrian
zone (PED) and street (STR). The simulated noisy data
have been constructed with clean utterances taken from the
WSJ-0 corpus [4] mixed with real background noises and
microphone-specific Signal-over-Noise ratio, then convolved
with a time-varying filter modelling the direct sound between
the speaker and the microphones estimated using SRP-PHAT.
The real noisy training data are 6-channel recordings of
4 speakers reading 100 utterances (selected from WSJ-0) in
a sound proof booth (BTH) and in each of the four environ-
ments (4× 4× 100 = 1, 600 utterances). This set of training
data is supplemented by 7, 138 simulated utterances produced
by mixing every WSJ-0 training audio files with each of the
four background noises. A development (DEV) set and a test
(TEST) set have also been provided. The set of real noisy
recordings is composed of 410 (DEV) and 330 (TEST) utter-
ances (the same that can be found in the DEV and TEST sets
in the WSJ-0 5k ASR task) distributed among 4 speakers and
recorded in the 4 target environments. The DEV and TEST

real test datasets finally contain respectively 1, 640 (410× 4)
and 1, 320 (330 × 4) utterances. The recordings of the same
set of sentences recorded in the recording booth have been
artificially mixed with the real noise to prepare equivalent
simulated DEV and TEST datasets.

5. EXPERIMENTS

We present the experiments we have done and the correspond-
ing performances reached by our system on the CHiME eval-
uation data. We have prepared several set-ups in order to dis-
cuss the main features of our system as well as their impact on
ASR performances. These set-ups consist in several variants
of the front-end SE stage on the channel selection, beamform-
ing and sparse NMF modules, as well as variants of the back-
end ASR especially by comparing different acoustic features
and training datasets. The performances are reported in Ta-
ble 1 in terms of Word Error Rate (WER) and discussed with
regards to the baseline system provided by the challenge.

5.1. ASR acoustic models and training data

In a first experiment we have trained DNN Acoustic Mod-
els (AM) with static and dynamic MFCC features normal-
ized per-speaker by Cepstral Mean and Variance Normaliza-
tion (CMVN) and speaker-adapted with feature space Maxi-
mum Likelihood Linear Regression (fMLLR). The effective-
ness of fMLLR features for distant talk speech recognition
was shown in [17]. The WER obtained using this AM sig-
nificantly outperforms the baseline DNN-based ASR trained
on Mel Filter bank features. As reported lines (3) and (4)
of Table 1, our system reaches 27.21% WER on real test data
compared 33.76% WER with the baseline (6.55% better). We
keep this fMLLR-based AM in the next experiments.

In a second experiment we have investigated the perfor-
mance of the baseline beamformer by comparing a 6-channel
set-up with a mono-channel set-up (i.e. no speech enhance-
ment) using only the audio captured by the central bottom
microphone (channel 5). As expected on simulated DEV and
TEST, the baseline beamformer is very efficient on the 6-
channel set-up and outperforms the single-channel WER. For
instance WER is equal to 14.47% on simulated DEV data for
the single-channel case as shown line (1) of Table 1, and is
much better with 8.46% WER on the beamformed 6-channel
recordings on line (3) using similar ASR AM. We have noted
that here as well our fMLLR-based AM achieves better WER
on both DEV and TEST simulated data compared to base-
line Mel filter bank AM (referring to lines (2) and (4)). But
surprisingly we have found that the baseline beamformer on
real DEV and TEST noisy recordings does not help compared
to a single-channel set-up. For example, WER is equal to
16.64% (line (1)) for single-channel on real DEV data and is
increased to 18.24% (line (3)) for the beamformed 6-channel
on the same dataset. We assume the methods used to col-
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Table 1. ASR Result in WER (%) of our system submitted to CHiME-3 Challenge.

Exp Description SE Front-end ASR Back-end DEV (WER) TEST (WER)
#ch Enhancement Feature Training Simu Real Simu Real

(1) DNN baseline 1 - Mel FB ch5(real+simu) 14.47 16.64 20.80 33.14
(2) DNN fMLLR 1 - fMLLR ch5(real+simu) 11.23 12.24 14.02 23.21

(3) DNN baseline 6 SRP-PHAT MVDR Mel FB enh(real+simu) 8.46 18.24 11.19 33.76
(4) DNN fMLLR 6 SRP-PHAT MVDR fMLLR enh(real+simu) 7.55 17.71 6.00 27.21
(5) (4) + real training 6 SRP-PHAT MVDR fMLLR real (ch5) 4.95 13.46 6.36 23.16

(6) (5)+Xcorr Ch.Sel.
6

Xcorr Ch. select., fMLLR real (ch5) 4.89 11.72 6.41 18.93
λ1 = λ2 = 0.35 SRP-PHAT MVDR

(7) (6) + SD-MVDRS
6

Xcorr Ch. select., fMLLR real (ch5) 7.64 9.8 10.36 14.28
λ1 = 0.2, λ2 = 0.35 SD-MVDR (τ = 5)

(8) (7) + Sparse NMF 6
Xcorr Ch. select., fMLLR real (ch5) 8.64 11.09 11.50 16.34SD-MVDR, SNMF

(9) (8) + NMF SE 6
Xcorr Ch. select., fMLLR ch5 (noisy

7.47 9.32 9.96 13.48SD-MVDR, SNMF + NMF SE)

(10) (9) + RNN-LM 6
Xcorr Ch. select., fMLLR ch5 (noisy

6.43 8.14 8.52 11.94SD-MVDR, SNMF + NMF SE)

lect and to prepare the simulated and the real recordings con-
tained in the training and test dataset differ a lot, and may
generate a significant distortion and mismatch among the au-
dio documents of the training and evaluation datasets. The
training data used to prepare the DNN-based AM used in the
multichannel set-ups (lines (3) and (4)) consist in 1, 600 real
and 7, 138 simulated multichannel recordings processed by
the baseline speech enhancement method. We assume that
basically the baseline DNN-based AM may be overfitting the
simulated enhanced recordings corresponding to the largest
proportion of data in the training set. We have chosen to
remove any simulated enhanced recordings from the multi-
channel training data and have prepared new DNN-based AM
using only the real recordings of channel 5 available in the
training dataset. Channel 5 is assumed to be less noisy and
should reduce the mismatch between DNN-based AM and the
enhanced real test recordings. In this process the size of the
training dataset has been drastically reduced but as we can see
the line (5) ASR performance is significantly improved for
both real DEV and TEST data compared to previous results
on line (4). On real DEV data, WER is reduces from 17.71%
to 13.46% (4.25% better). On real TEST data, WER is im-
proved by 4% with a WER score now equal to 23.16%.

Globally the adaptation of the ASR training set has al-
lowed an absolute improvement of 4.78% (26% relative) on
the real DEV set and 10.6% (31.3% relative) on the real TEST
compared to the baseline system. The next set of experiments
focuses on the speech enhancement components.

5.2. Channel selection, SD-MVDR and Sparse NMF

We have proposed a cross-correlation-based channel selec-
tion module in order to discard the corrupted signals and to

detect the backside microphone in the 6-channel set of test
recordings before applying any beamforming method. The
cross-correlation values, once computed for every channels,
are compared to a threshold conditioning the decision to keep
or to discard the channels. In this experiment we set the
threshold to these optimal values λ1 = λ2 = 0.35 in order
to remove both corrupted and backside channels, assumed to
be the noisiest channels of the set. The efficiency of the chan-
nel selection is absolutely crucial since MVDR beamforming
is sensitive to channel failure. The ASR performances ob-
tained using the cross-correlation channel selection are pre-
sented line (6) of Table 1. Our proposal helps to improve
significantly WER on DEV and TEST real recordings com-
pared to the results reached using the baseline channel selec-
tion approach. On DEV real data WER is improved by 1.7%,
passing from 13.46% (line (5)) to 11.72% (line (6)). On real
TEST data, the gain is even higher and the WER is decreased
by 4.2%, from 23.16% to 18.93%.

In the next experiment we first substitute the baseline
SRP-PHAT MVDR beamforming with an implementation of
a TDOA-independent (or Signal Dependent) MVDR (noted
SD-MVDR) initially presented in [13]. We also adapt the
threshold of the cross-correlation-based channel selection to
λ1 = 0.2 to remove the corrupted channels and λ2 = 0.35 to
detect and to keep the signal detected as the backside micro-
phone. As discussed previously the trade-off factor τ of the
SD-MVDR is set to τ = 5 since the value reached the best
WER on the real DEV set. Globally we observed that the
impact on ARS performance of the SD-MVDR trade-off τ
is very small. Again, the substitution of the baseline MVDR
with our proposal improves significantly ASR performance
in terms of WER for both real DEV and TEST evaluation
data. The results of this set-up are reported line (7) of Ta-
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ble 1. On the real DEV data, WER is reduced by 1.2%,
with a new score of 9.8% WER, and is reduced by 3.7%
on the real TEST data with an updated WER value equal to
14.28%. As expected, changing the MVDR beamforming
method impacts negatively the ASR performances on sim-
ulated DEV and TEST data since it increases the mismatch
between the output of simulation process and the product of
our enhancement method during the test runtime.

In a third experiment we have applied the sparse NMF-
based source separation method to the beamformed mono-
channel signals. We have estimated speaker-independent
clean speech NMF basis from 5% of the WSJ-0 training
set preliminary processed by the Short Term Fourier Trans-
form magnitude weighted by a 32ms Hamming window
and a 16ms-shift. The noise basis WN are estimated on
4 × 15 minutes of background noise (bus, caf, street and
pedestrian). The dimension of each basis matrix has been
set to 100 and the dimension of the noise base WN =
[WBUS WCAF WPEDWSTR] is therefore equal to 400. We
set the sparseness constrain factor to 5 as recommended in
[9] where this value yielded good objective scores. The
number of iterations of the sparse NMF algorithm is set to
200. As reported line (8) of Table 1, sparse NMF decreases
ASR performance by 1% to 2% absolute WER both on real
and simulated evaluation data. This negative result can be
explained because performing sparse NMF on evaluation
data drastically distorts the output signal and increases their
mismatch with the DNN-based AM used by the ASR. One
possible solution reported on line (9) consists in augmenting
the ASR training data with real training recordings of the
channel 5 processed by the same supervised sparse NMF SE.
This method will enable the capture of the NMF distortion in
the acoustic models of the ASR, reducing the mismatch be-
tween training and test data. This process globally improved
ASR for every evaluation data set. The WER values are now
equal to 9.32% on real DEV data and to 13.48% on the real
TEST data. We have also evaluated the benefit of using semi-
supervised noise basis estimation by injecting the backside
channel in the NMF SE step. We found that globally the
backside channel only contribute for 0.5% WER to the im-
provement brought by the NMF process. In other words, not
considering the backside channel in the NMF SE increases
only by 0.5% the WER reported on line (9) of Table 1.

5.3. RNN-LM lattice re-scoring

In this last section we report the performance reached by the
previous system (line (10)) after re-scoring of the hypothe-
sis word lattice using a Recurrent Neural Network Language
Model prepared on the training dataset. This WER score ob-
tained on the real DEV dataset has been improved by 1.2%
and is now equal to 8.14%. On real TEST data the WER is
equal to 11.94% with a similar improvement of 1.54%.

5.4. Submitted system

Detailed WER scores obtained by our best system for every
evaluation subsets and every types of noise are reported Ta-
ble 2. Our system combines cross-correlation-based Channel
Selection, Signal Dependent MVDR, Sparse NMF, fMLLR
DNN-based AM and RNNLM re-scoring and yields an over-
all WER of 11.94% on real TEST evaluation data. It achieves
its best results on the pedestrian environment.

Table 2. Detailed ASR results (% WER) obtained by our best
system combining cross-correlation-based Channel Selection,
Signal Dependent MVDR, Sparse NMF, fMLLR DNN-based
AM and RNNLM re-scoring

Environment DEV set TEST set
Sim Real Simu Real

BUS 6.14 10.03 6.18 17.57
CAF 7.98 7.74 9.28 12.10
PED 5.27 6.46 8.72 8.48
STR 6.36 8.33 9.90 9.62

Overall 6.43 8.14 8.52 11.94

6. CONCLUSION

We have presented our contribution to the third CHiME chal-
lenge on speech separation and recognition for noisy multi-
channel recordings. The front-end of our system is perform-
ing speech enhancement by cascading a cross-correlation-
based channel selection, Signal Dependent MVDR beam-
forming and source separation based on sparse NMF. The
back-end module is a state-of-the-art ASR system with DNN
acoustic models learnt on fMLLR features, and a RNN Lan-
guage Model. To our knowledge this work is one of the few
studies investigating NMF-based, traditionally used for single
channel speech enhancement, in a task of speech recognition
using DNN-based ASR. We have integrated several speech
enhancement technologies into a flexible framework able to
handle efficiently corrupted input signals. We also provide a
large set of experiments and discuss the benefit of the com-
ponent of our contribution. We show that correlation-based
Channel Selection, Signal Dependent MVDR, Sparse NMF,
fMLLR DNN-based AM and RNNLM re-scoring are all use-
ful and can improve the performances of the overall system.
Our best system achieves an overall WER of 11.94% on
real noisy recordings and 65% relative WER improvement
compared to the challenge baseline.
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