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ABSTRACT

Speech recognition in a realistic noisy environment using
multiple microphones is the focal point of the third CHIME
challenge. Over the baseline ASR system provided for this
challenge, we apply state of the art algorithms for boosting
acoustic model learning and hypothesis rescoring to improve
the final output.

To this aim, we first use the automatic transcription of
each channel to re-train the acoustic model for that channel
and then we apply linear language model rescoring to find a
better solution in the n-best list. LM rescoring is performed
using an efficient set of N-gram and Recurrent Neural Net-
work LM (RNNLM) trained on a wisely-selected text set.

In the experiments, we show that the proposed approach
improves not only the individual channel transcription, but
also the enhanced channels produced by MVDR and delay-
and-sum beamforming.

Index Terms— Speech enhancement, machine learning
algorithms, adaptive estimation.

1. INTRODUCTION

Automatic speech recognition (ASR) in hands-free condi-
tions is gaining increasing interests recently, for instance in
home and office automation, smart cars, humanoid robots. In
such applications, ASR should operate in environments where
noises of various types, competing speakers and reverberation
effects heavily affect the performance, usually satisfactory in
controlled acoustic conditions. A popular approach is based
on microphone arrays that allow the implementation of sev-
eral enhancement techniques: beamforming, denoising and
dereverberation [1].

In this paper we describe the ASR system developed for
the CHiME-3 challenge, where noisy utterances are recorded
by a 6-channel tablet-based microphone array. As addressed
in the past by CHiME evaluation campaigns, the recognition
task is the automatic transcription of read sentences from the
Wall Street Journal (WSJ) corpus, acquired in several noisy
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conditions. The reader is referred to the paper [2] presented
by the challenge organizers for the description of training, de-
velopment and evaluation data sets released for the competi-
tion.

To develop the system we used the Kaldi open source
toolkit [3] based on hybrid acoustic model: a deep neural net-
work (DNN) [4, 5, 6, 7] estimates posterior probabilities that
replace the emission probabilities given by Gaussian Mixture
Models (GMMs) associated to the states of context dependent
Hidden Markov Models (HMMs). To train acoustic models
(AMs) we exploited the procedure released by the CHiME-
3 organizers, with the addition of a final decoding step that
employs a DNN trained in an unsupervised way.

For language model (LM) training we used the data set
required by the challenge rules, however we carried out a fi-
nal re-scoring step over n-best hypotheses using a linear com-
bination of several LMs, including recurrent neural network
language models (RNNLMs) [8, 9].

The main contributions of our submitted system, over the
baseline, are: 1) the enhancement technique based on delay-
and-sum (DS) contrasting it with the minimum variance dis-
tortionless response (MVDR) beamformer provided as base-
line; 2) the DNN re-training using observation labels derived
from automatic transcriptions of the evaluation sets. 3) More-
over, we carried out re-scoring of n-best lists with a linear
combination of different LMs trained both over the complete
set of official textual data and over a set of task specific doc-
uments, automatically extracted from the same set of training
data. 4) The final hypotheses are obtained applying selection,
at segment level, of rescored hypotheses given by a single
channel and by the two enhanced signals.

The “multi-pass” decoding approach proposed here is
methodologically similar to the HMM/GMM adaptation with
MLLR transformations [10], although in our case a complete
retraining of DNN is performed using the automatic tran-
scription of the evaluation set. However, it has to be noticed
that DNN adaptation can be carried out through other dif-
ferent semi-supervised learning approaches such as the ones
described e.g. in [11, 12, 13, 14].
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The paper is organized as follows: Section 2 introduces
the proposed architecture, presenting some baseline results.
The procedure for LM training is described in Section 3,
while Section 4 describes the techniques for hypotheses se-
lection and n-best list rescoring. In Section 5 the experimental
results are reported and discussed in Section 6. Finally, Sec-
tion 7 summarizes the major findings of the work, introducing
possible directions for future investigations.

2. SPEECH RECOGNITION SYSTEM

Figure 1 shows the complete recognition system organized in
the multiple blocks described below.

e Block 1. The multi-channel front-end provides a num-
ber of signals either selecting a favorable channel (e.g.,
CHY) or applying some enhancement techniques; in our
system, beside the provided baseline algorithm based
on MVDR [2, 15], we use a simple delay-and-sum
beam-former applied to the five frontal microphones
(see Section 2.1).

e Block 2. The first decoding pass is carried out with
the recognizer [16] included in the framework of
CHiIME-3 challenge, based on hybrid acoustic model
(GMM/DNN) and trained on the provided matched
data (note that we don’t make use of additional training
data for acoustic modelling).

e Block 3. The three sets of hypotheses produced in
the first decoding step (one for each of CH5, MVDR
and DS enhanced signals) are fused into a single tran-
scription by selecting, utterance by utterance, the one
that exhibits the maximal posterior probability. The
final transcription (which is assumed to have a word
error rate lower than that of each single transcription)
is used as supervision for both re-aligning the acous-
tic observations of the input streams to transcribe and
re-assigning the output labels of DNNGs.

e Block 4. The DNNs are re-trained with the latter “un-
supervised” labels. The input acoustic observations are
recognized in a second decoding step with the new re-
trained DNNs and for each input stream a correspond-
ing set of n-best lists is generated.

e Block 5-6. N-best lists of each set are both re-scored
and re-ordered with a linear combination of language
models (see Section 4) in order to provide 1-best tran-
scriptions to the final module (Block 6 in Figure 1)
that, similarly to Block 3, selects the utterances with
the highest posterior probabilities.

2.1. Multi-channel processing

We tested different beamforming methods, including
coherence-based weighting and post-filter schemes, and com-
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pared the ASR results with those obtained by means of the
MVDR processing (with diagonal loading) provided by the
speech enhancement baseline. ~ Working with the develop-
ment data set, we found, quite surprisingly, that the best per-
formance on real data was obtained with a simple beamform-
ing consisting in uniform weighting of the rephased signals
of the 5 frontal microphones. According to this approach,
the beamformed signal Y (w, ) is obtained from the vector
X (w, t) of microphone signals as

Y(w,t) = VI (w, )X (w, t) (1)
i.e. the array is steered by means of the vector

gle*jwﬁ (t)
ng*jw‘Q(t)

V(w,t) = : @)

gy~ 7D

where M = 6 is the number of microphones, 7; are the esti-
mated times of flight from the source to the ¢-th microphone
(as provided in the baseline front-end processing) and g; are
boolean coefficients determining whether the i-th channel has
to be included or not in the beamforming. Specifically, g2 is
always 0 in our case, as we exclude microphone 2, while for
i # 2 itis g; = 1 unless a microphone failure is detected. We
replaced the baseline failure test based on energy with one
based on the inter-channel coherence.

As reported in Section 5, this simple standard beamform-
ing outperformed the proposed baseline algorithm in the case
of real data. In principle more sophisticated beamforming
schemes [17] are expected to produce benefits in terms of
directivity and array-gain, but robustness in adaptive beam-
forming is achieved only if the appropriate statistics of the
desired signal and of the interferers are known, or can be
measured reliably from the data. This in turns requires that
the signal and noise processes can be assumed to be station-
ary in the short term, and that the observation interval is long
enough.

On the other side, delay-and-sum beamforming, although
less effective in rejecting directional noise and in suppressing
stationary interferers, is quite robust to small steering mis-
match and to varying conditions, leading to lower distortion
in the signal passed to the recognizer.

2.2. System baselines

The speech recognizers used for producing the multiple hy-
potheses are directly derived from the provided baseline, rep-
resented by GMM-based and DNN-based systems, as detailed
in [2]. The acoustic features are 13 mel-frequency cepstral
coefficients (MFCCs), sliced by 3 frames next to the central
frame and projected down to 40 dimensions using linear dis-
criminant analysis (LDA) and Maximum Likelihood Linear
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Fig. 1. Architecture of the proposed multi-pass recognition system, characterized by six main processing blocks.

Transform (MLLT). A single feature-space Maximum Likeli-
hood Linear Regression (fMLLR) transform for each training
speaker is then estimated along with speaker-adaptive train-
ing (SAT) for building triphone HMMs, represented by 2,500
tied-states and 15,000 Gaussians. The DNN system is trained
using the Karel’s setup [18] included in the KALDI toolkit.
An 11 frames context window (5 frames at each side) is used
as input to form a 440 dimensional feature vector. The DNN
have 7 hidden layers each with 2048 neurons. The DNN is
trained in several stages including Restricted Boltzmann Ma-
chines (RBM) pre-training, mini-batch Stochastic Gradient
Descent training, and sequence-discriminative training using
state-level Minimum Bayes Risk (sSMBR).

Models | Input di03 . et03 .
real | simu | real | simu
GMM CHS5 18.63 | 18.60 | 33.22 | 21.89
GMM DS 12.26 | 14.42 | 22.60 | 23.33
GMM | MVDR | 20.00 | 9.78 | 37.26 | 11.07
DNN | CH5 | 1680 | 1454 | 3261 | 20.22
DNN | DS | 1028 | 12.04 | 2023 | 24.79
DNN | MVDR | 17.58 | 8.23 | 33.14 | 10.97

Table 1. WERs achieved with different input streams (CHS,
DS and MVDR) and with different acoustic (GMM, DNN)
models on all tasks.

Table 1 gives the percentages of word error rates (WERs)

achieved on the different development and test sets (here-
inafter we will refer them as “tasks”) with the baseline sys-
tems (both GMM and hybrid based) fed with acoustic ob-
servation stemming from CHS single channel and from both
MVDR and DS based beamformers.

As one can note in Table 1 there are relevant differences
in performance along all the tasks, showing a sort of comple-
mentary behaviour among the three input streams. Especially
DS exhibits better performance than MVDR based one on real
tasks, while the opposite holds for simulated tasks. This fact
will be discussed in Section 6.

3. LANGUAGE MODELS

For language modelling we decided to make use of both n-
gram LM and RNNLM. The latter type of LM has been
proven to be effective both for decoding acoustic observations
[12] and, in combination with traditional n-gram LMs, for
rescoring the ASR hypotheses [9, 8]. The main advantage of
RNNLM is its capability to capture a long history (thanks to
its recursive links) to compute the conditional probability of
a word, unlike the traditional n-gram LM, in which the length
of the history cannot exceed n-1 words.

The LMs used in the re-scoring steps are trained either
over all of textual documents provided for the CHiME-3 com-
petition or on a subset of them. The whole training set (named
np_data) comprises around 37 millions (37M) of words (be-
longing to the WSJO corpus) from which also the baseline
3-gram LM, employed in the frame based decoding passes, is
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trained. Then, given the latter corpus the following LMs are
built.

e A “task independent” 4-gram LM (named d4gr-TI)
trained over the whole np_data material using the
Kneser-Ney discounting method [19].

o A task related RNNLM (RNN-TR), as detailed below,
using a subset of whole np_data training corpus, con-
taining around 11M words. The latter subset was auto-
matically selected after having ordered the sentences in
the np_data corpus according to their perplexity values,
given by a 3-gram LM trained over the automatic tran-
scriptions of the dt05-real development set. This latter
training subset is the one given by the first decoding
pass of the DS input stream of Figure 1.

e 12 “task related” 4-gram LMs (4gr-TR), one for each
task and input stream. To accomplish this task, we
trained a 3-gram LM over the automatic transcriptions
produced in the first decoding pass of each input stream
and computed, first, the perplexity of each sentence
contained in np_data. Then, we reordered all training
sentences according to the resulting perplexity values,
and extracted the top ones in order to build, for each
task and for each stream, a “task related” corpus, con-
taining around 10M words, over which the correspond-
ing, above mentioned, 4gr-TR LM was trained.

All of the n-gram LMs described above were trained using
the IRST-LM toolkit described in [20]. In addition we tried,
as an alternative to the sentence perplexity measure, a scoring
function based on the n-gram ratio [21] which gave worse
performance on the “real” development set (i.e. dtO5-real).

To build RNNLMs we used the toolkit provided in [22],
while optimization of some parameters (basically number of
hidden neurons and the number of output classes) was carried
out on the development set.

Table 2 (first four rows) gives some statistics of each of
the LM training text corpora, including LM perplexity values,
computed on dt05-real, corresponding to task-independent
and ”DS” task-related LMs.

Note that according to the above description all LMs in-
cluded in Table 2, except 4gr-TR, are common to all tasks and
input streams, while 4gr-TR LMs are specific to both input
streams and tasks.

As one can expect, 4gr-TI (task independent) LM gives
a lower perplexity value than the baseline LM (3gr-TI) and
a higher perplexity than task related LMs, both 4gr-TR and
RNN-TR (this demonstrates the effectiveness of the pro-
posed automatic selection procedure). Also important to no-
tice, looking at last two rows of Table 2, is the perplexity
gain achieved using the LM linear combination approach de-
scribed in the next section, that will reflect into corresponding
reduction in word error rate, as will be shown in Section 5.
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Info || # Training | # Training | PPL on

LM Words Vocab dt05-real
3gr-TI(baseline) 37M 165K 119.2
4gr-TI 37™M 165K 107.8
RNN-TR 10M 48K 109.5
4gr-TR 10M 48K 95.0
42r-TI®GRNN-TR - - 524
4gr-TIGRNN-TR

©4gr-TR } } 202

Table 2. Statistics of language models used in the rescoring
phase and related perplexity (PPL) values.

4. N-BEST LISTS RESCORING

As shown in Figure 1, in the first decoding pass, employing
DNN based AM, we generate n-best lists from word lattices
(for the experiments reported in this paper we use a value of
n = 100). Then, n-best hypotheses are re-scored, at utterance
level, via a linear combination of LMs. In generating n-best
lists, using the KALDI commands, we remove from every
entry in the list the contribution of the baseline 3-gram LM,
keeping only the information related to the AM. The AM log-
likelihood (AMy) is scaled with the LM weight (Ap ) and
summed to a score given by a linear combination of LM log-
probabilities of each utterance in the list.

In the experiments reported below we used sev-
eral combinations of LMs for computing re-scored log-
probabilities log P™¢*[w; ... wg | O] for each hypothesis
W=w...wg:
2Ms 4 S~ Nilog Pua,[W | O] (3)

ALm

log Pzisfl@...@LMI [W | 0]

log P"*[W | O] =

where LM; indicates one of the LMs described in Section 3
and the interpolation coefficients \; can be estimated in order
to optimize some objective function (e.g the word error rate
or the perplexity) on a development set. Note in equation 3
the notation LM & ... & LM; which refers to the LMs en-
tering the linear combination and that will be used in the ex-
perimental section. Then, the resulting re-scored n-best lists
are reordered and the best hypothesis is sent to the evaluation
procedure.

As a final step, given some experience gained in the past
[23, 24] on segment based system combination, we decided
to apply a procedure that automatically selects among the
best transcriptions produced by separate ASR systems (e.g.
the ones related to the three different input streams in Fig-
ure 1) the one that gives the “best score” at segment level. In
the above mentioned paper we experimented several scoring
functions for selecting the best segment transcriptions, as well
as different approaches for ranking them in order to feed a
combination system based on ROVER [25, 24]. For this work,



CHS | MVDR | DS CHS5 | MVDR | DS Avg of | Gain on

l-step | 1-step | l-step || 2-step | 2-step | 2-step || Gains Best
Baseline 16.8 17.6 10.3 10.3 11.5 8.3 0.0 0.0
4gr-TI 15.8 16.7 9.8 10.1 11.1 7.8 -0.6 -0.5
4gr-TI®RNN-TR 14.3 15.6 8.7 9.3 10.2 7.1 -1.6 -1.2
4er-TIp4gr-TRERNN-TR 14.3 15.6 8.6 9.2 10.2 7.1 -1.6 -1.2

Table 3. Performance (%WER) achieved on the real development set dtO5-real for separated input streams CH5, MVDR and

DS.
CH5 | MVDR DS CH5 | MVDR DS Avg of | Gain on
l-step | 1-step | l-step || 2-step | 2-step | 2-step || Gains Best
Baseline 14.4 8.2 12.1 9.0 6.7 7.5 0.0 0.0
4gr-TI 14.1 8.3 11.7 8.9 6.5 7.4 -0.2 -0.1
4gr-TI®RNN-TR 124 7.0 10.3 8.0 5.9 6.7 -1.3 -0.8
4gr-TId4gr-TRERNN-TR 12.7 7.1 10.3 7.9 6.0 6.8 -1.2 -0.7

Table 4. Performance (% WER) achieved on the simulated development set dt05-simu for separated input streams CHS, MVDR

and DS.

however, we decided to only perform some simple experi-
ments based on the usage of both sentence posterior and word
posterior probability values for scoring the different utterance
hypotheses. The result that we found is that maximization of
the sentence posterior (i.e., the weighed product of LM and
AM probabilities) gives the best performance. Note that the
latter approach is the same employed in the MAP selection
module depicted in Figure 1 (Block 3).

5. EXPERIMENTS AND RESULTS

Tables 3 and 4 report the results, in terms of word error rates
(WER), obtained on development data sets for the two condi-
tions, real and simulated, respectively. The results, according
to Figure 1, are given for: the best performing single chan-
nel (CHS), the MVDR and DS enhanced input streams. In
addition, performance are given for both the first and second
decoding pass, carried out as described in Section 2.

Rows of Tables 3 and 4 refer to the usage of various linear
combination of LMs, according to equation 3, for rescoring n-
best lists. Finally, the last two columns of the Tables give the
average (among all transcriptions) WER reduction w.r.t. the
baseline system, as well as the improvement w.r.t. the best
baseline transcription.

In a similar way Tables 5 and 6 give performance obtained
on real and simulated evaluation set, respectively.

Note that WERSs values given in the Tables were computed
using the Speech Recognition Scoring Toolkit (SCTK, ver-
sion 2.4.0) distributed by NIST!, which gives, according to
our observations, slightly worse performance than the scor-
ing scripts employed in the KALDI toolkit. Furthermore, al-
though not explicitly shown in the Tables for clarity reasons,
the “task related” LM (4gr-TR) is specific of both tasks and

Isee http://www.itl.nist.gov/iad/mig/tools/ for detailed information
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input streams. This means that each WER value reported in
the last rows of the Tables was obtained with a system setup
that depends also (but not only) on real and simulated con-
ditions and, therefore, the corresponding transcriptions are
not compliant with the rules of CHiME-3 challenge (i.e. no
different tuning can be used for real and simulated data).
Therefore, the setup used to generate our final submissions,
common to both real and simulated data, corresponds to the
results shown in the third rows (the ones referred with 4gr-
TI®&RNN-TR) of Tables 3, 4, 5 and 6 (we remind that RNN-
TR, although trained on task-dependent data, is shared among
tasks and input streams). Finally, each group of three tran-
scriptions, resulting from the second decoding steps of each
input stream (i.e. CHS5, MVDR and DS), is sent to the MAP
selection module (Block 6 of Figure 1) to produce the final
submissions, whose performance are given in Table 7.

6. DISCUSSION

First row of Tables 3, 4, 5 and 6 gives the performance ob-
tained with the baseline systems described in Section 2.
Comparing first row of the Tables with the second one, re-
lated to a re-scoring phase using only the task independent 4-
gram LM trained over all available text data, we notice a gen-
eral performance improvement. This is in accordance with the
perplexity values shown in Table 2. Re-scoring using the lin-
ear combination of 4gr-TI and RNN-TR LMs (4gr-TIGRNN-
TR) gives further significant improvements for all tasks and
input streams (this is still in accordance with perplexity val-
ues given in Table 2). However, we point out that, although
the weights for the linear combination should be optimized on
some validation set (see section 4), for this work we assign the
same value to each of them, only imposing the constraint that
their sum is one. Last rows of Tables refer to the usage of



CH5 | MVDR CHS5 | MVDR | DS Avg of | Gain on

l-step | 1-step | l-step || 2-step | 2-step | 2-step || Gains Best
Baseline 32.6 33.1 20.2 19.2 20.0 15.5 0.0 0.0
4gr-TI 30.7 31.5 18.8 17.9 18.7 14.3 -1.5 -1.2
4gr-TI®RNN-TR 29.5 30.1 17.7 17.3 17.9 13.5 2.4 -2.0
4er-TIp4gr-TREGRNN-TR || 29.6 29.9 17.5 17.2 17.9 13.4 -2.5 2.1

Table 5. Performance (%WER) achieved on the real evaluation set et05-real for separated input streams CHS5, MVDR and DS.

CH5 | MVDR CH5 | MVDR DS Avgof | Gain on

l-step | 1-step | l-step || 2-step | 2-step | 2-step || Gains Best
Baseline 20.2 11.0 24.8 10.9 8.1 114 0.0 0.0
4gr-TI 18.9 10.0 22.9 10.0 7.5 10.6 -1.1 -0.8
4gr-TIGRNN-TR 17.6 9.2 21.8 9.4 7.0 10.0 -1.9 -1.4
4gr-TId4gr-TRARNN-TR 17.8 9.0 21.6 9.3 6.9 9.8 -2.0 -1.6

Table 6. Performance (%WER) achieved on the simulated evaluation set et05-simu for separated input streams CH5, MVDR

and DS.

the linear combination of all the LMs described in Section 3.
As can be observed, the insertion in the combination of the
task related 4-gram LM (4gr-TR) does not lead to significant
decrease of the WER although, as previously mentioned, no
LM weight optimization procedure was applied.

Looking at columns of Tables 3, 4, 5 and 6 we note, for the
real condition (Tables 3 and 5), the superior performance of
the enhancement technique based on delay and sum, w.r.t. the
one (MVDR) provided in the framework of CHiME-3 chal-
lenge. On the contrary, MVDR approach exhibits better per-
formance on the simulated conditions (Tables 4 and 6). This
major effectiveness of the algorithm in simulated conditions
is probably due to higher degree of stationarity with respect to
real conditions. It is worth observing the “relevant” improve-
ments achieved retraining the DNNs on alignments and labels
derived from automatic supervisions. This leaves room to fur-
ther investigations on both batch and incremental adaptation
methods for DNNs. Finally, Table 7 reports WER values, for
each task, resulting after sentence based MAP selection, as
described in Section 4. These results correspond to our final
submissions to CHiME-3 challenge. As can be noticed from

. dt05 et05
Environment . .
real \ simu | real \ simu
BUS 8.7 5.5 17.7 | 6.3
CAF 6.4 7.0 | 14.1 7.7
PED 5.2 49 | 13.0| 6.8
STR 8.8 6.2 9.2 7.7
[ Avg  [72] 59 [135] 7.1 |

Table 7. Performance (%WER) achieved with MAP utter-
ance selection on the different tasks using 4gr-TIGRNN-TR
LM linear combination for rescoring n-best lists (computed
with the official scoring tool).
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Table 7 the selection of the best (according to MAP) sentence
doesn’t allow any improvement on all the tasks. Despite this
fact, we believe that the usage of more effective system com-
bination techniques, as those described and experimented in
[23, 24], could give further improvements.

7. CONCLUSIONS

In this paper we proposed two methods for improving the out-
put of a multiple microphone speech recognition system pro-
vided in the third CHiME challenge.

The first method is based on retraining the acoustic model,
specifically the DNNs, employed to recognize each input
stream (both single or beam-formed channel) using the cor-
responding automatic transcription generated with existing
DNN based acoustic models. We observed large improve-
ments with this approach on the various evaluation sets, ac-
quired both in real or simulated conditions. The second
approach aims to re-score n-best lists with LMs trained on
“task related” text documents, automatically extracted from
the general training corpus. We again noticed significant im-
provements w.r.t.the baseline system. Finally, we applied a
MAP selection procedure, at sentence level, for producing the
improved final transcriptions to submit.

Future works will address sentence level quality esti-
mation for generating enriched supervisions for DNN re-
training/adaptation (in particular, we are currently investigat-
ing incremental DNN adaptation) as well as for the investiga-
tion of multi-channel signal enhancement approaches, to be
used either as alternative to, or in combination with, DS and
MVDR.
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