
ADAPTIVE BEAMFORMING AND ADAPTIVE TRAINING OF DNN ACOUSTIC MODELS
FOR ENHANCED MULTICHANNEL NOISY SPEECH RECOGNITION

1,3Alexey Prudnikov, 2,3Maxim Korenevsky, 3Sergei Aleinik

1Speech Technology Center Inc., 2STC-Innovations Inc., 3ITMO University, Saint-Petersburg, Russia
{korenevsky,prudnikov,aleynik}@speechpro.com

ABSTRACT

This paper describes our contribution to the develop-
ment of an ASR system for the CHiME 2015 Challenge.
We applied a new adaptive beamforming method of multi-
channel alignment for enhancing speech recorded with six
microphones. Then we trained an effective CD-DNN-HMM
acoustic model using CMVN for noise robustness as well as
fMLLR and i-vectors for speaker and environment adapta-
tion. As a result, our system provides 7.33% WER on the
development set and 14.34% WER on the test set (58% WER
reduction compared to the baseline system).

Index Terms— speech enhancement, beamforming, mul-
tichannel alignment, adaptation, i-vectors

1. INTRODUCTION

Despite the significant progress made in speech recognition
in recent years, recognition under the conditions of complex
transient interference remains an important task. The purpose
of the CHiME Challenge is to develop new approaches to
speech recognition in noisy multisource environments which
are to facilitate greater use of speech recognition in everyday
life. The CHiME 2015 Challenge [1] focuses on the recog-
nition of speech recorded under real-world noisy conditions
by several spaced microphones. This naturally suggests us-
ing various approaches developed for denoising and enhanc-
ing speech recorded with microphone arrays [2]. These ap-
proaches make it possible to select and amplify the speech
signal from the look direction while suppressing interference
and noise from the other directions. The speech signal ob-
tained from a microphone array can be further processed to
increase SNR and improve intelligibility.

The CHiME 2015 organizers provided a speech cor-
pus recorded synchronously using 6 microphones mounted
around a tablet PC. Five of them were oriented towards the
user’s side and the last one (middle upper in horizontal place-
ment) in the opposite direction [1]. A baseline speech en-
hancement system was also provided. It is based on speaker
localization followed by MVDR beamforming [3]. A modern
baseline acoustic modeling system based on DNN-HMM was

provided as a Kaldi [4] recipe. A MATLAB script for gener-
ating simulated recordings with similar properties which can
be used for extending the training dataset was provided as
well.

This paper describes our contribution to the development
of an improved ASR system using the provided acoustic
data. We used the baseline speaker localization algorithm
but employed a new adaptive beamforming approach [5]
which brings a significant gain in recognition accuracy. An-
other contribution is a more thorough acoustic modeling
which uses adaptation and normalization methods exten-
sively. Firstly, to train the DNN we used MFCC features
adapted to a speaker and a channel, while the baseline recipe
uses fBanks (log mel-scaled filter-bank energies) with no nor-
malization or adaptation. Secondly, when training the DNN
we additionally used i-vectors [6], which comprise informa-
tion about both the speaker and the acoustic environment.
This approach proposed in [7] reduces model dependence on
the aforementioned acoustic variability factors and thereby
increases recognition accuracy. To extract i-vectors from the
recordings we employed the recently developed approach [8]
which uses DNN trained for speech recognition.

The paper is organized as follows. Section 2 briefly de-
scribes the speech recording conditions and Challenge data
preparation. Section 3 deals with the processing of micro-
phone array signals and describes the new adaptive beam-
forming algorithm we propose to use. In Section 4 we discuss
in detail our improvements in acoustic modeling and present
the results of the main experiments. Conclusions and possible
directions of future work are outlined in Section 5.

2. DATA FOR EXPERIMENTS

According to the scenario developed by CHiME 2015 orga-
nizers, several speakers were asked to read sentences taken
from the well-known speech corpus WSJ0 [9], displayed on
the tablet screen. Their speech was recorded in four real-life
conditions, namely in a cafe, bus, street junction and pedes-
trian area. Speech was recorded synchronously by both the
close-talking microphone and 6 distant microphones mounted
around the tablet screen (3 microphones per long side). One
of the microphones (the second, middle upper) was oriented

401978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015



to the opposite side from the speaker. The placement and
orientation of the tablet were arbitrary, so the location of the
speaker with respect to the microphones could vary from one
recording to another and even during a single recording.

To train the acoustic models, the baseline Kaldi recipe
uses both real-life recordings and data simulated by the spe-
cial MATLAB utility. Real-set consists of about 5.6 hrs au-
dio data per channel. Simu-set was generated on the basis of
WSJ0 data and real-life noise recordings and consists of about
18 hrs per channel. The trainset and the devset were created
from the joint sample of real and simu (hereafter multi) and
their sizes ratio is about three-to-one. The trainset is intended
to be used for acoustic model training while the devset for
testing and tuning recognition parameters. The testset was
provided additionally for the final testing of the best ASR sys-
tem configuration.

Let us note that the Challenge participants were allowed
to use a script for new simulated data generation to extend the
training set. However, our experiments showed that real and
simu data have rather different acoustic features, so we dis-
regarded this possibility to avoid bias of the system to better
recognition of simulated data. In fairness, however, we should
note that training with only real data provides worse results
compared to training with the whole multi-trainset while test-
ing on both real and simu data.

3. SPEECH ENHANCEMENT

3.1. Baseline system

As noted above, the position of the speaker in relation to
the microphone array could vary during recording. How-
ever, in order to apply methods of beamforming, the exact
position of the speech source during the recording must be
known, which requires the use of speaker localization meth-
ods. Baseline speech enhancement provided by the organizers
uses the SPR-PHAT method [10] supplemented by the Viterbi
algorithm to find the most probable trajectory of the speakers
mouth changing its location. After speaker localization, the
baseline speech enhancement system applies MVDR beam-
forming with diagonal loading [11] and calculates noise spa-
tial covariances.They are estimated over a short segment of
background signal preceding speech

Two GMM-HMM acoustic models were trained accord-
ing to the first part of the baseline Kaldi recipe. One of them
was trained on the noisy recordings from only one (5th) mi-
crophone and another on the data obtained from the baseline
speech enhancement. The word error rates (WERs) observed
for recognizing the corresponding parts of the devset are pre-
sented in the table 1. The upper and lower parts of the table
correspond to using the 5th microphone recordings (noisy)
and speech enhancement results, respectively, in both train-
ing and recognition. The abbreviations BUS, CAF, PED, STR
and AVG stand for bus, cafe, pedestrian area and street junc-

tion conditions and average over all of them respectively.

Table 1. Development set WER,% of the baseline system on
GMM-HMM models

Test data BUS CAF PED STR AVG
train multi noisy

real noisy 25.86 17.89 12.86 17.93 18.64
simu noisy 18.57 21.70 15.03 17.35 18.16
average 22.22 19.80 13.95 17.64 18.40

train multi enhanced
real enh. 23.43 18.86 17.41 20.34 20.01
simu enh. 8.51 11.99 8.67 10.81 10.00
average 15.96 15.43 13.04 15.58 15.01

The table shows that using the baseline speech enhance-
ment decreases the average WER over real and simu. How-
ever, while WER on simu data decreases almost by factor of
two, WER on real data increases. The CHiME 2015 orga-
nizers attribute this difference to some inadequacy of simu
data generation. However, our results indicate that the av-
erage WER can be reduced much more without a large gap
between the real and simu results.

3.2. Beamforming methods

In our speech enhancement experiments we used the provided
speaker localization algorithm and several most widespread
algorithms of microphone array signal processing. It should
be noted that prior to applying any beamforming algorithms
we have equalized a signal power in every microphone chan-
nel because large differences in signal level may cause these
algorithms to perform poorly.

First of all we used the widely-known Delay&Sum algo-
rithm [2], which can be described in frequency domain by the
expression

YD&S(f, t) =
1

M

M∑
k=1

Xk(f, t)e−j∆ϕk(f,t) =

=
1

M

M∑
k=1

Yk(f, t), (1)

where Xk(f, t) is the complex spectrum of the k-th micro-
phone signal in the frequency band f = 1, . . . , N on the t-th
frame, Yk(f, t) is the corresponding “pre-steered” spectrum,
YD&S(f, t) is the complex spectrum of the resulting signal
and

∆ϕk(f, t) = 2πFs
f − 1

N
τk(t)

is the phase shift of the k-th microphone in the frequency band
f , Fs is the sampling rate, τk(t) is the delay time for the k-th
microphone on the t-th frame for aligning the phases.

The Delay&Sum method forms a fixed directivity pattern
of the microphone array, which does not depend on received

402



signals. Adaptive beamforming methods continuously update
their parameters based on the received signals. One of the
most widespread adaptive methods is the MVDR (Minimum
Variance Distortionless Response) beamforming [12] imple-
mented in the baseline speech enhancement system. In this
implementation the spatial covariance matrix of noise is esti-
mated over a short segment of the background signal preced-
ing speech (and is not changed further), and diagonal loading
[11] is used.

Another well-known adaptive method is the GSC (Gen-
eral Sidelobe Canceller) beamformer [13]. In algorithms
based on the GSC idea microphone signals are fed into a
“Blocking matrix” which is intended to form target speech
free signals. Then these signals are used to adaptively form
the error signal subtracted from the “quiescent” signal (usu-
ally YD&S(f, t)) for better noise suppression. The adaptive
weights of error signals may be determined based on differ-
ent optimization criteria. According to the published results,
very good performance is observed when maximizing non-
Guassianity of the resulting signal [14]. Since the Gaussian
distribution is specific to the noise spectrum these approaches
make resulting signal different from noise as much as possi-
ble.

Various postfiltering algorithms are often applied on top
of beamforming to to suppress the residual noise. The most
widespread approach is the Zelinski postfilter [15], [16] and
its modification proposed by Simmer et al. [17]. A weakness
of the Zelinski postfilter is that better noise suppression often
comes with speech distortions which can be detrimental for
subsequent recognition.

We applied most of these beamforming algorithms to the
raw CHiME 2015 data (both trainset and devset) and trained
acoustic models using the baseline recipe up to the stage of
triphone fMLLR-SAT GMM-HMM models. The results are
presented in the upper part of the table 2. It turns out that the
simplest Delay&Sum beamformer provides the best recogni-
tion quality on real data (as well as on the average over real
and simu). Moreover, when using Delay&Sum the gap in
WER between real and simu results becomes insignificant.
Different implementations of GSC showed results compara-
ble to MVDR or worse, which is possibly explained by imple-
mentation drawbacks. The Zelinski postfilter applied on top
of different beamformers also deteriorated recognition. The
Simmer et al. postfilter applied on top of the Delay&Sum
showed comparable results to those obtained without a post-
filter, but WER on real data increased.

3.3. The influence of the second microphone

As pointed above, the second microphone was oriented to the
side opposite to that of five others, so the target speech on
it is attenuated and the signal is dominated by noise. It was
probably done to facilitate using this microphone’s signal as
a reference for adaptive noise subtraction. However, noise

signal of second microphone turns out to be weakly coherent
to those of other microphones, so adaptive noise subtraction
fails. On the other hand, the permanent rejection of the sec-
ond microphone provides significantly better results on real
data with all the beamforming algorithms we used. This is
demonstrated by the results from the lower part of the table 2.

Table 2. Development set WER,% of GMM-HMM models
for various beamforming algorithms. “D&S” stands for De-
lay&Sum, “+Z” and “+S” stand for application of the Zelin-
ski [16] and Simmer et al. [17] postfilters respectively

Data MVDR D&S D&S+Z D&S+S MCA
Six microphones

real 20.01 13.90 18.51 14.59 13.06
simu 10.00 13.58 14.83 13.01 10.42
aver 15.01 13.74 16.67 13.80 11.74

Without the second microphone
real 18.20 12.43 14.29 12.75 10.72
simu 10.78 14.52 15.25 14.14 12.50
aver 14.49 13.48 14.77 13.45 11.61

3.4. Multi-Channel Alignment (MCA) method

A new method of adaptive beamforming was recently pro-
posed in [5]. It is very simple to implement and demon-
strates good results in practice. The Multi-Channel Align-
ment (MCA) method works as follows:

1. Complex spectra of microphone signals are phase-
compensated and averaged (just as in Delay&Sum
method) to form the signal YD&S(f, t) (1) of fixed
beamforming .

2. Then the transfer function is calculated for every chan-
nel:

Hk(f, t) =
〈ΦYkYD&S

(f, t)〉
〈ΦYkYk

(f, t)〉
, (2)

where Yk are defined in (1) and 〈·〉 means temporal ex-
ponential smoothing of the cross-spectrum (in nomina-
tor) or power spectrum (in denominator):

〈ΦXY (f, t)〉 = α 〈ΦXY (f, t− 1)〉+
+ (1− α)X(f, t)Y ∗(f, t), (3)

and (·)∗ stands for complex conjugate.

3. Transfer functions are multiplied on the corresponding
complex spectra and the results are averaged over all
channels:

YMCA(f, t) =
1

M

M∑
k=1

Y ′k(f, t) =

=
1

M

M∑
k=1

Hk(f, t)Yk(f, t). (4)
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The important feature of this approach is a double (in
decibels) suppression of sidelobes level (i.e. the suppression
coefficient is squared!) compared to Delay&Sum method.
Besides, when the expression (2) is used the width of the
mainlobe gets more than twice less compared to Delay&Sum
method. However, this can sometimes lead to undesirable ef-
fects like appearance of grating lobes on high frequencies. In
such cases the magnitude of the transfer functions (2) can be
used instead of complex expressions.

We applied MCA to the CHiME 2015 recordings and ob-
tained the best result among all the tested beamforming algo-
rithms. These results are presented in the rightmost column of
the table 2. Note that an average WER for MCA is compara-
ble for both using all microphones and all but the second one,
however result on the real data is much better when the second
microphone is rejected. That is why the variant without the
second microphone was chosen as a basic in the subsequent
experiments. The results presented in table 2 for MCA algo-
rithm correspond to the spectral smoothing (3) with α = 0.7
which provides best result on real devset.

All the subsequent results relate to this variant of speech
enhancement algorithm (MCA with α = 0.7 for spectral
smoothing and without second microphone) unless otherwise
stated.

4. ACOUSTIC MODELING ENHANCEMENT

A baseline acoustic modeling system provided by the Chal-
lenge organizers as a Kaldi recipe, consists of the following
main stages:

1. Training of speaker-independent (SI) triphone GMM-
HMM model on MFCC with CMN;

2. Splicing feature vectors from 7 consecutive frames with
a current frame in the middle, computation of LDA-
MLLT transform and re-training triphone GMM-HMM
model on the transformed features;

3. Training fMLLR-SAT triphone GMM-HMM model on
top of previous features;

4. Splicing 40-dimensional vectors of fBank features
from 11 consecutive frames with a current frame in the
middle. Training of DNN using cross-entropy crite-
rion, hereafter CE. Preparation of the CD-DNN-HMM
model;

5. Additional sequence discriminative training of DNN
using sMBR criterion according to [18].

In the experiments described in Section 3 we used only
three first stages of this recipe. To improve recognition accu-
racy we changed and substantially extended two last stages.
We paid considerable attention to more thorough and effec-
tive adaptation of the acoustic model to the speaker and en-
vironment, as well as obtaining acoustic features with much

better discriminative abilities. The devset recognition results
obtained on different stages of the baseline Kaldi recipe (3,
4 and 5) are presented in the table 3 for both baseline and
proposed speech enhancement algorithms.

Table 3. Development set WER,% on different stages of the
baseline recipe

Data GMM-HMM DNN (x-ent) DNN (sMBR)
Baseline enhancement

real 20.55 20.00 17.72
simu 9.79 9.34 8.17
aver 15.17 14.67 12.95

MCA beamforming
real 10.72 11.14 10.41
simu 12.50 12.63 11.57
aver 11.61 11.88 10.99

Table 3 shows that step from GMM-HMM to DNN-HMM
in the baseline recipe results in only slight WER improve-
ment. That is why we focused on the improving the procedure
of training DNN-based acoustic model.

We combined the main steps of our experiments into the
general scheme shown in Figure 1. In this scheme:

• the blocks where acoustic model is built are depicted in
green;

• the abbreviation “concat” means the concatenation of
input vectors;

• the term “Splicem/±k’ stands for splicing feature vec-
tors of (2m+ 1) frames separated by k frames, i.e. the
concatenation of vectors ot−km, . . . , ot−k, ot, ot+k,
. . . , ot+km;

• “CE DNN” and “sMBR DNN” stand for DNN training
with CE and sMBR minimization criteria respectively.

Other blocks are described in more detail below. Original
Kaldi tools were used for GMM-HMM training and DNN se-
quence training with sMBR criterion. Nesterov accelerated
gradient (NAG) algorithm [19] with momentum 0.7 was used
for cross-entropy DNN training.

It should be noted that we used the same MFCC input fea-
tures (transformed with LDA-MLLT and fMLLR) for train-
ing both GMM-HMM and DNN-HMM models. This dif-
fers from the baseline recipe where fBank features are used
to train DNNs. The blocks sequence 1–8 corresponds to the
training steps of the baseline recipe used in the experiments
of Section 3 (the only difference is using CMVN instead of
CMN in block 2).

4.1. Adaptation using fMLLR and i-vectors

The importance of adapting acoustic models to the speaker
and environment characteristics for improving recognition ac-
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Fig. 1. The scheme of acoustic model training stages

curacy is widely known [20]. The adaptation methods for
GMM have been evolving for the last 30 years. Feature space
MLLR (fMLLR) [21] is one of the most popular ways of
speaker adaptation because it operates in the feature space
and thus is well-suited for speaker adaptive training. The de-
velopment of DNN adaptation methods has started relatively
recently and many of them require some modification of orig-
inal unadapted model, which can be complex and laborious.
In [7] the i-vectors which are widely used for the speaker
recognition tasks were proposed to use for SAT-training of
DNNs, and it was noted that fMLLR and i-vectors are com-
plementary. The i-vector extracted from a recording (or sev-
eral recordings, pertaining to the same speaker) is appended
to the spliced feature vector and the extended vector is used
as a DNN input. We have already used this approach in our
experiments on Russian spontaneous speech recognition [22]
and it provided considerable WER reduction, thus we decided
to use it for CHiME 2015 as well.

The extension of DNN input layer with i-vectors was pro-
posed in [23]. Applying a special kind of regularization which
penalizes the deviation of the learnt DNN weights from those
of the basic DNN (without i-vectors) was also proposed. It
should be noted that on the CHiME 2015 data fMLLR and
i-vectors based adapation seem to be complementary which
as in [7]. To extract i-vectors in this work we used an idea
proposed in [8], [24]. This is a very convenient approach be-
cause it uses just previously trained speech recognition DNN
to extract i-vectors, but not some special models.

Using the combination of i-vectors and fMLLR made it
possible to decrease WER of CE DNN-models by 0.4% on
average compared to fMLLR only system. Additional sMBR-
training further reduces WER by more than 1% on average
(see the results in the table 4).

4.2. Analysis of the detailed recognition results

In this section we present the detailed recognition results on
the devset and testset obtained using both baseline and pro-
posed algorithms of speech enhancement and acoustic mod-

Table 4. Development set WER,% of DNN-HMM models with
and without using i-vectors

Features, criterion real simu aver
fMLLR, CE 8.75 10.59 9.67
fMLLR+i-vectors, CE 8.32 10.21 9.27
fMLLR+i-vectors, sMBR 7.33 9.12 8.22

eling. The comparison of these results shows what are the
contributions of the proposed algorithms separately and in
combination.

Table 5 contains recognition results of different acoustic
models on both dev and test datasets for several speech en-
hancement algorithms used. We can make several conclu-
sions from these results:

• The difference between test and dev real data is signifi-
cant. And despite applied normalization and adaptation
techniques we still could not make the WER difference
sufficiently small. To mitigate the influence of acoustic
difference we tried to use other robust acoustic features
such as PNCC [25], ETSI AFE [26] and MVA [27] but
MFCC+CMVN provided the best results.

• Almost all the applied steps of acoustic modeling have
similar effect (in terms of relative WER reduction)
when training on data from both proposed and baseline
speech enhancement.

• The baseline speech enhancement provides the best re-
sults on the simulated data and the worst results on the
real data. In contrast, the proposed speech enhance-
ment provides much better results on the real data (the
WER reduction is 36–46% depending on dataset) and
worse results on the simulated data.

• The proposed speech enhancement provides much
smaller difference of recognition results on real and
simulated data than the baseline algorithm does.
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Table 5. WER,% of different system configurations
Baseline enhancement Proposed enhancement

Model Features dev test dev test
real simu real simu real simu real simu

GMM-HMM fMLLR 18.22 10.65 29.74 11.49 10.90 12.90 18.15 18.51
DNN-HMM, CE fMLLR 14.27 8.07 24.49 9.47 8.75 10.59 15.47 15.25
DNN-HMM, CE fMLLR+i-vectors 13.94 7.69 24.25 8.86 8.32 10.21 15.18 14.89
DNN-HMM, sMBR fMLLR+i-vectors 12.34 6.47 21.28 7.16 7.33 9.12 14.34 13.84

The results for all combinations of the baseline and pro-
posed acoustic modeling and speech enhancement are given
in the table 6.

Table 6. Recognition results (WER,%) on different combina-
tions of the baseline/proposed systems
Acoustic Speech dev test
modeling enhancement real simu real simu
baseline baseline 17.72 8.17 33.76 11.19
baseline proposed 10.71 11.35 22.63 23.59
proposed baseline 12.34 6.47 21.28 7.16
proposed proposed 7.33 9.12 14.34 13.84

From the table 6 we can conclude that

• the proposed acoustic modeling provides the relative
WER reduction of 21-33% compared to baseline train-
ing recipe;

• the proposed speech enhancement provides the relative
WER reduction of 36–46% on real data compared to
the baseline speech enhancement; however, the WER
on simulated data increases to 40–98% relative depend-
ing on dataset;

• a combination of the both proposed approaches pro-
vides both the relative WER reduction up to 58% on
real data and slight WER reduction on simulated data.

The detailed recognition results of the ASR system which
provides the best results on the real datasets is given in the
table 7.

5. CONCLUSIONS AND FUTURE WORK

We described our contribution to the development of ASR
system for recognizing speech recorded with microphone ar-
ray in real-life conditions. The new adaptive multichannel
alignment beamforming method we used provides an effec-
tive way to enhance speech and suppress noises recorded on
different microphones. Another improvement relates to the
acoustic modeling. We applied two adaptation approaches,
namely fMLLR and using i-vectors to effectively adapt ASR
system to both the speaker identity and the environment. As a

Table 7. Detailed recognition results of the best configuration
Environment dev WER,% test WER,%

real simu real simu
BUS 9.31 7.67 17.37 9.43
CAF 7.20 11.15 11.47 14.16
PED 5.25 7.68 18.01 14.16
STR 7.57 9.96 10.52 17.61
AVG 7.33 9.12 14.34 13.84

result, our CD-DNN-HMM model trained with sMBR crite-
rion provides large WER reduction on real data compared to
provided baseline system.

We believe that our results can be improved further by
means of using more sophisticated speech enhancement and
acoustic modeling techniques. So, our preliminary experi-
ments on GMM-HMM models show that we can reduce de-
vset WER by 0.5-1% absolute when using decision-directed
SNR estimation [28] followed by MMSE Log-Spectral Am-
plitude (LSA) [29] estimation on top of the proposed beam-
forming. Comparable improvements can be obtained by
application beamforming on different microphone subsets,
training several acousic models on beamforming results and
applying model combination techniques like ROVER [30].
Another promicing direction of the entire system improve-
ment is further reduction of WER difference between devset
and testset results.
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