Natural Language Understanding for Partial Queries

Xiaohu Liu, Asli Celikyilmaz, Ruhi Sarikaya

Microsoft Corporation, Redmond, WA 98052

{derekliu, aslicel, ruhi. sarikaya}@microsoft .com

Abstract

Typical natural language understanding systems are built based
on the assumption that they have access to the fully formed
complete queries. Today’s natural user interfaces, however,
enable users to interact with various services and agents (e.g.
search engines, personal digital assistants) running on desktop
computers and laptops. The system is expected to understand
the user’s intent while the user is typing the query with the goal
of increasing system response rate and ultimately improving the
user’s productivity. Language understanding models built on
fully formed queries perform poorly when tested on partial or
incomplete queries. In this study, we consider the problem of
domain detection for typed partial natural language queries. We
design two sets of features in addition to lexical features to train
a multi-valued domain classification model. The first feature
set consists of character n-gram features, and the second is the
class-based features extracted from clustering of word embed-
dings. Our experiments show that the two feature sets improve
the model’s performance by up to 52.8% in comparison to the
lexical n-gram baselines.

Index Terms: natural language understanding, incomplete ut-
terances, character n-gram

1. Introduction

Personal digital assistants has been receiving tremendous atten-
tion in the last couple of years as a means to enable information
access and task completion and ultimately to improve user’s
productivity. When they are deployed on the mobile devices
such as smart phones, a significant portion of the queries are
through a voice interface, since voice could be the most effec-
tive input modality in terms of the information throughput. In
addition, compared to speech, typing the information might be
inconvenient for the user. However, in real applications, we
have observed that when the personal assistant applications are
being ported to the desktop, laptop and tablet computers, where
the dominant input modality is type-in modules. However, there
are differences between voice-in and type-in modules in the way
the users interact with the natural user interfaces (NUI) on such
devices. Concurrently, the change in the input modality effects
how the statistical spoken dialog models are built, in particular,
the natural language understanding (NLU) models.

Traditional NUI systems that are built on type-in modalities
wait for the user to complete their query (detected by the enter
key) and the NLU models are then trigged to understand the
user’s intent. Consider the following scenario: The user types
in a natural language query and the system doesn’t wait for the
user to complete their query. Instead, it immediately starts exe-
cuting the language understanding stack as soon the user starts
typing. Such a system is more efficient since the NLU system
can return an instant response regarding the user’s intent with
each key-stroke. This would be a great productivity boost as the

978-1-4799-7291-3/15/$31.00 ©2015 IEEE

397

user does not have to type the entire query and wait for the sys-
tem to respond. This very notion is used in commercial search
engines [1, 2] in the form of auto-suggestions [3, 4] where the
system makes suggestions about what should be typed and at
the same time showing the instant results as the user is typing
the query.

State-of-the-art NLU systems [5, 6, 7, 8] consist of three
key models: 1) domain detection, 2) intent detection, 3) slot
tagging. The domain detection model determines which do-
main the query belongs to at a high level (e.g. find doc-
uments, weather, places, calendar, communications,...). The
intent model determines the specific intent of the user given
the domain (e.g. check_weather, find_place, get_directions,
call_contact, ...). The slot tagger extracts the slots and enti-
ties contained in the query (e.g. date, location, contact,...). For
multi-domain NLU systems, a top level domain detection is crit-
ical to scope the user’s intent.

In this study we focus on the domain detection problem.
Specifically, we address the language understanding problem
for partial natural language queries to infer the user’s goal. We
propose a new model called a “prefix model” that can handle
partial (incomplete) queries as well as fully formed complete
queries. The incomplete queries have prefix characteristics, i.e.
the beginning of the query is complete, but the remaining words
or characters are missing. In this paper we refer to incomplete
queries as prefix queries and hence the new domain detection
model that can efficiently handle the prefix queries along with
the fully formed complete queries.

Earlier work on dialog systems handled incomplete queries
in human to machine dialog systems via incremental process-
ing, in which interpretation components are activated, and in
some cases decisions are made, before the user utterance is
complete. Some of this work has demonstrated overall improve-
ments in system responsiveness and user satisfaction [9], and
others allowing diverse contextual information to be brought
to bear during incremental processing [10]. The work in [11],
builds an NLU system using partial speech recognition hypoth-
esis to predict the semantic content, looking at length of the
speech hypothesis as a general indicator of semantic accuracy
in understanding. Our work is different from earlier work in that
our prefix models are not trained on partial speech recognition
results, but trained on the complete natural language utterances
via novel feature sets.

In the next section, we give details of our prefix model and
later in Section 3 we describe the word cluster features and how
they are used in the prefix models. In Section 4, we present
the character n-gram features to improve the robustness of the
models. In Section 5 we provide an analysis of the prefix model
while evaluating against different test sets with complete and
incomplete queries. A discussion is presented in Section 6 fol-
lowed by a conclusion and future work in Section 7.

ASRU 2015

2. Prefix model for domain classification

The main interfaces for interacting with a personal assistant
is either to speak or use the search box to type in commands.
These commands cover everything you expect the personal as-
sistant to handle such as setting up reminders, meetings, send-
ing email, finding documents, checking weather or searching
the web. The user is expected to type and see the system re-
sponse instantly with each keystroke. For example, when the
user wants to set an alarm and intends to type “set an alarm for
7:30 am”, the proposed domain detection model can trigger the
“alarm” domain for the partial query “set an al”” The system
then gives instant feedback to the user by showing the alarm
application before the user types the whole query.

There are two types of prefix queries we want to handle
where traditional domain models trained with complete queries
have trouble determining the domain of a query. The first type
of queries contain complete words yet still lacks some words
(e.g. “set an alarm”). Second type of queries usually have in-
complete last word (e.g. “set an ala”). The incomplete words
(e.g., “ala”, “alar”) are usually treated as unknown words. In
fact they are similar to “alarm” to some degree, but standard
domain detection models fail to use this similarity information
efficiently. As a result, typical domain detection models are
not designed to handle such prefix queries, as the training data
usually do not contain prefix queries. This yields the domain
detection model to perform poorly when the queries are incom-
plete.

The proposed prefix model is trained on a training data set
that only contains complete queries (without the prefix queries),
and yet it can handle both complete and incomplete queries for
the domain detection task. We achieve this by using two sets of
features and building an NLU system that operate at the charac-
ter level, where a request is sent to NLU engine at each character
stroke. It is proven that adding explanatory features extracted
from different methods and sources selectively can improve
model performance without additional training data [7, 12, 13].
Following this, we first build word clusters to capture the sim-
ilarity between incomplete words and complete words, and use
word cluster ids as explanatory features for the prefix model.
We also find it being very useful to add character n-grams [14]
as explanatory features for the prefix model. To our knowledge,
this is the first attempt to build a prefix model to handle partial
natural language queries.

3. Word class features

In [15, 16, 17], word class features are used for shrinking
the size of the language models and NLU models, specifically
multi-label logistic regression for intent detection and linear
chain conditional random fields for slot filling tasks. The mod-
els are trained with shrinkage based features, which improve
the robustness and generalization to unseen events and inputs.
This is achieved by shrinking the model size while maintaining
or improving performance on the training data. It was noted
that the word class features are different than the typical use of
class based features for modeling. In many earlier works just
the word class membership (i.e. ID) for the current word is
used, whereas the features used in [17] are compound word and
class n-gram features. We use the following compound features
to build the prefix models in the experiments:

* wjc;: the current word w; in the query along with the
corresponding class id c; of that word.

* wj;_1c;: the previous word w;_1 and the class id c¢; of

398

the current word w;.

* cj_1wj: the previous word’s class id ¢;_1, and the cur-
rent word w;.

* c;j_1c;: the previous word’s class id ¢; 1 and the current
word’s class id c;.

* cjwj_1wj: the current word w;, current word’s class id
c; and previous word w; 1

* cjr1w;4+1: the next word w;41 and the next word’s class
id Cj+1.

To obtain the class id for each word in the vocabulary, we
use unsupervised clustering method. In this paper, we use the
Brown Clustering method [18], which is the most commonly
used n-gram clustering algorithm for many speech and language
processing tasks. We only used full queries to cluster the words
with Brown clustering.

Brown hierarchical word clustering algorithm partitions the
vocabulary into a predefined number of classes to maximize the
bi-gram mutual information between words and classes [18].
The algorithm first assigns each of the most frequent words to
their own class and the remaining words to the final class. Then,
the exchange algorithm is performed where individual words
are moved to another class if this improves the class bi-gram
mutual information, until no more such moves are possible. In
this paper, we use the C++ implementation of Brown clustering
[19].

4. Character n-gram features

Most NLU systems use word n-grams as the main features. A
word n-gram is a sequence of n contiguous words. For example,
from the query “please set an alarm”, we can extract four uni-
grams, three bi-grams and two tri-grams if the sentence bound-
ary is not considered as a word token for simplicity. Using
only word n-grams is not sufficient for prefix queries as they
may contain incomplete words. We need to use sub-word fea-
tures [20] extracted from the partial queries, as well as depen-
dency between sub-word units and the fully formed words to
predict the domain. Character n-grams can serve the purpose as
they are n-grams at character level.

Similar to word n-grams, a character n-gram is a sequence
of n contiguous characters in a query. A word boundary repre-
sented by the space letter is important when extracting character
n-grams. For better readability, we denote the space charac-
ter with underscore ‘_’. For example, some interesting charac-
ter five-grams extracted from the query “please set an alarm”:

2 < LIS

“set_a”, “et_an”, “an_al’, “_alar”.
Table 1: Sample character n-grams.
length | character n-gram samples from “please set an alarm”

2 pl, s, se, _a, al

ple, e_s, _se, t_a, _an, _al, ala

plea, se_s, e_se, _set, an_a, n_al, _ala, alar

pleas, ase_s, se_se, e_set, _an_a, an_al, n_ala, _alar

[OV]

An incomplete word misses characters from the end (trail-
ing characters). Hence, we do not extract character n-grams
starting in the middle of word and ending in the same word. For
example, we don’t extract bi-grams “la” or “ar” from “alarm”.
The character trigram “lar” is not extracted either. We want to

Table 2: Data for training and testing with frequency informa-
tion.

domains train _ queries | test _ queries
alarm 35040 652
calendar 33533 1723
communication 151038 749
note 14952 1188
reminder 37814 500
timer 470 273
weather 44628 752
web 408155 90749

make sure each character n-gram extracted contains a word pre-
fix. This is important since the nature of incomplete queries is
that the missing characters are on the right side only.

5. Experiments

As the first step towards partial query understanding, our main
goal is to build a domain model to classify queries into one
of eight supported domains: alarm, calendar, communication,
note, reminder, timer, weather, and web. There are reason-
able number of queries for training and test in every domain
as shown in Table 2.

The data is collected and annotated by crowdsourcing. Data
sets were previously targeted to handle complete natural lan-
guage queries. Each query is labeled with one of eight possible
domains from the semantic frame. The domain classification
model is a multi-class classification so we use multi-class lo-
gistic regression. We built four different models using different
feature sets to benchmark them against a word n-gram baseline
model as follows:

¢ Baseline model: this model is built using word n-gram
features up to tri-gram features (e.g., uni-grams, bi-
grams, and tri-grams).

* Model 1: the model is trained using word n-gram fea-
tures and word class features.

* Model 2: the model is trained using both word n-gram
and character n-gram features.

* Model 3: the model is trained using word n-gram, char-
acter n-gram and word class features.

Next, we present the experiment results where we evaluate
the performance on prefix test queries, complete test queries,
impact of the length of the test queries on accuracy as well as
domain specific data.

5.1. Analysis on complete and prefix test queries

We first evaluate the models against a fixed test set which in-
cludes prefix queries only. The performance is measured using
overall classification error rate and results are presented in Table
3.

Table 3: Classification error rates on prefix query set(%)

Model 1 Model 2 Model 3
4.31 2.36 2.26

Baseline
4.79

We observe that, when used individually along with word
n-gram features, both word class and character n-gram features

399

Table 4: classification error rates on complete query test set (%)

Baseline
3.69

Model 1
3.01

Model 2
3.11

Model 3
2.74

are effective in reducing errors. The classification error rate
drops by 10% relatively comparing Model 1 with the baseline
model. The model 2 reduces the error rate by 50.7% relative to
the baseline model. When both feature sets are used in Model
3, the error rate is further reduced by 4.2% compared to us-
ing character n-gram features alone. Compared to the baseline
model, Model 3 reduces the error rate by 52.8% relatively.

It should be noted that, when we increase the n-gram win-
dow size, more context is covered but a larger training data set is
also required. We experimented by increasing the n-gram win-
dow size until there is no performance gain. Our experiments
show that n-grams from bi-grams to six-grams are all useful.

We see that the enhanced models have lower error rates than
the baseline model when handling incomplete queries, we also
want to compare the performance on regular queries. We would
like to have little or no degradation on complete queries, oth-
erwise there may be a need to build two separate models. This
is critical because there are numerous engineering constraints
regarding latency, memory usage and cost for supporting and
maintaining two sets of models as opposed to one.

We run experiments on a test set including only complete
natural language queries. The models with proposed feature
sets still outperform baseline models as illustrated in Table 4.
All three models have lower error rates than the baseline model,
and the model with both feature sets has the lowest error rate.

The take away here is that, since the proposed models have
better performance in both complete and incomplete (partial)
queries, we do not need to build different models for complete
and incomplete queries. We can build one model with both
word class features and character n-gram features to replace two
separate models.

5.2. Per domain analysis of the prefix model

In addition to overall classification error rates, we are also inter-
ested in analyzing how the models perform in each domain. We
measure the domain classification performance in all domains
using F1 scores (Fl:2*% is a measure of a test’s
accuracy considering both the precision and the recall).

The results are shown in Table 5. We observe that in each
domain, the model with proposed feature sets performs better
than the baseline model. Both model 2 and 3 have the character
n-gram feature set and give the best results in all domains.

Table 5: Performance comparison across domains (F1 scores)

domains Baseline | Model 1 | Model 2 | Model 3
alarm 34.63 63.84 77.09 70.51
calendar 40.10 54.00 70.11 70.76
communication 59.44 63.14 70.22 78.17
note 74.18 74.18 85.87 81.96
reminder 66.53 68.55 82.43 83.43
timer 89.04 89.94 92.82 90.26
weather 59.44 61.32 81.03 78.04
web 96.93 97.88 98.72 98.77

5.3. Impact of prefix query length on prefix models

It is interesting to see how models perform with regarding to the
length of partial queries. We test four models against queries
with length ranging from 2 to 26 characters (there are very few
queries longer than 26 characters). The results are shown in
Figure 1. In the figure, the x-coordinate corresponds to query
length, e.g. * = 10 represents a set of test queries with 10 or
more characters. As queries get longer from 2 to 10, the model
improvement over baseline (e.g. the gap between baseline and
Model 1) is getting smaller. This reflects the fact that it is gener-
ally easier to classify longer queries than short ones even though
they are incomplete. More features can be extracted from longer
queries. The model improvement over the baseline is more than
1.7% absolute difference across all test sets. Model 3 achieves
the lowest error rates consistently.

T T T T T T
Baseline model
Model 1
Model 2

Model 3

(%)

Domain classification error rates

2 4 6 E 12 14 16

Partial gquery length (character counts)

Figure 1: Performance against query length

6. Discussion

It is possible to build models to tackle partial queries by tra-
ditional supervised approaches, where we collect and annotate
incomplete queries and train NLU models. The issue is that it is
more expensive to collect a training set with incomplete queries
than regular queries. Since we already have complete queries in
each domain, ideally we should be able to reuse the data without
extra cost.

A straightforward approach we tried first is to automatically
generate prefix queries from complete queries and add them to
the training sets. The generated prefix queries are assigned with
the same labels as the original queries. However the outcome
was very poor as the domain labels that are assigned to auto-
generated queries can be wrong therefore too much noise is in-
troduced by these generated queries.

7. Conclusions and future work

In this paper, we describe the new problem of partial query un-
derstanding. We build models from existing training data us-
ing additional feature sets, such as word clusters and character
n-grams. In desktop search scenarios, we significantly reduce
the domain classification errors and achieve reasonable perfor-
mance without adding extra data. We still need to work on im-
proving the performance of some domains. One possible future
work is improving the prefix model’s accuracy is by using a

400

language modle to predict the next word along with the user’s
feedback to the system responses.

8. References

[1] B. Mitra, M. Shokouhi, F. Radlinski, K. Hofmann, “On user inter-
actions with query auto-completion”, Proceedings of the 37th In-
ternational ACM SIGIR Conference on Research and Development
in Information Retrieval, 2014.

[2] M. Shokouhi, “Learning to personalize query auto-completion”,

Proceedings of the 36th International ACM SIGIR conference on

Research and Development in Information Retrieval, 2013.

S. Whiting , J. M. Jose, “Recent and robust query auto-
completion”, Proceedings of the 23rd International Conference on
World Wide Web, 2014.

H. Ma, M. R. Lyu, I. King, “Diversifying Query Suggestion Re-
sults”, Proceedings of the 24th AAAI Conference on Artificial In-
telligence, AAAI 2010, Atlanta, Georgia, USA, 2010.

J-P. Robichaud, P. A. Crook, P. Xu, O. Z. Khan, R. Sarikaya, “Hy-
potheses Ranking for Robust Domain Classification And Track-
ing in Dialogue Systems”, Proceedings of Interspeech, Singapore,
2014.

P. Xu and R. Sarikaya, “Contextual domain classification in spoken
language understanding systems using recurrent neural network”,
Proceedings of ICASSP, Florence, Italy, 2014.

X. Liu, R. Sarikaya, C. Brockett, C. Quirk, and W. Dolan, “Para-
phrase Features to Improve Natural Language Understanding”,
Proceedings of Interspeech, Lyon, France, 2013.

[3]

[4]

[51

[6

[71

[8] Tur, G. and Mori, R. D., “Spoken Language Understanding: Sys-
tems for Extracting Semantic Information from Speech”, John Wi-

ley and Sons, 2011.

G. Skantze and D. Schlangen. “Incremental dialogue processing in
a micro-domain”. Proceedings of EACL 2009, pages 745753, 2009.

[10] G. Aist, J. Allen, E. Campana, C. G. Gallo, S. Stoness, M. Swift,
and M. K. Tanenhaus. “Incremental dialogue system faster than
and preferred to its nonincremental counterpart.” Proceedings of
the 29th Annual Conference of the Cognitive Science Society,2007.

[11] K. Sagae, G. Christian, D. DeVault, and D. R. Traum. “Towards
natural language understanding of partial speech recognition results
in dialogue systems.” Proceedings of NAACL HLT, 2009.

[12] A.K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient greedy feature
selection for unsupervised learning”, Knowledge and Information
Systems, May 2013.

[13] Y. Lu, I. Cohen, X. Zhou, Q. Tian, “Feature Selection Using Prin-
cipal Feature Analysis”, Proceedings of the 15th international con-
ference on Multimedia, NY, USA, 2007.

[14] J. Houvardas, E. Stamatatos, “N-Gram Feature Selection for Au-
thorship Identification”, Artificial Intelligence: Methodology, Sys-
tems, and Applications, 2006.

[15] R. Sarikaya, S. F. Chen, A. Sethy, B. Ramabhadran, “Impact of
Word Classing on Shrinkage-based Language Models”, Proceed-
ings of Interspeech, Tokyo, Japan, 2010.

[16] R. Sarikaya, S. F. Chen, B. Ramabhadran, “Shrinkage-Based Fea-
tures for Natural Language Call Routing”, Proceedings of Inter-
speech, Florence, Italy, 2011.

[17] R. Sarikaya, A. Celikyilmaz, A. Deoras, M. Jeong, “Shrinkage
Based Features for Slot Tagging with Conditional Random Fields”,
Proceedings of Interspeech, Singapore, 2014.

[18] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J.
Della Pietra, and Jenifer C. Lai, “Class-based n-gram Models of
Natural Language.”, Computational Linguistics, 18(4), 1992.

[9]

[19] P. Liang, “Semi-Supervised Learning for Natural Language”,
Masters thesis, MIT, 2005.

[20] R. Sarikaya, M. Afify, Y. Deng, H. Erdogan, Y. Gao, “Joint
morphological-lexical language modeling for processing morpho-
logically rich languages with application to dialectal Arabic”, IEEE
Trans. Speech Audio and Langugage Proc., vol. 16(7), pp. 1330-
1339, 2008.

