
DETECTING ACTIONABLE ITEMS IN MEETINGS BY
CONVOLUTIONAL DEEP STRUCTURED SEMANTIC MODELS

Yun-Nung Chen?† Dilek Hakkani-Tür† Xiaodong He†

?Carnegie Mellon University, Pittsburgh, PA
†Microsoft Research, Redmond, WA

yvchen@cs.cmu.edu, dilek@ieee.org, xiaohe@microsoft.com

ABSTRACT

The recent success of voice interaction with smart devices (human-
machine genre) and improvements in speech recognition for conver-
sational speech show the possibility of conversation-related appli-
cations. This paper investigates the task of actionable item detec-
tion in meetings (human-human genre), where the intelligent assis-
tant dynamically provides the participants access to information (e.g.
scheduling a meeting, taking notes) without interrupting the meet-
ings. A convolutional deep structured semantic model (CDSSM) is
applied to learn the latent semantics for human actions and utter-
ances from human-machine (source genre) and human-human (tar-
get) interactions. Furthermore, considering the mismatch between
source and target genre and scarcity of annotated data sets for the tar-
get genre, we develop adaptation techniques that adjust the learned
embeddings to better fit the target genre. Experiments show that
CDSSM performs better for actionable item detection compared to
baselines using lexical features (27.5% relative) and other seman-
tic features (15.9% relative) when the source genre and target genre
match with each other. When the target genre mismatches with the
source genre, our proposed adaptation techniques further improve
the performance. The discussion and analysis of the experiments
provide a reasonable direction for such an actionable item detection
task1.

Index Terms— Actionable item, Convolotional Deep Struc-
tured Semantic Model (CDSSM), embeddings, adaptation.

1. INTRODUCTION

Meetings pose unique knowledge sharing opportunities, and have
been a commonly accepted practice to coordinate work of multiple
parties in organizations. With the surge of smart phones, computing
devices have been easily accessible and real-time information search
has been a common part of regular conversations [1]. Furthermore,
recent improvements in conversational speech recognition suggest
the possibility of automatic speech recognition and understanding on
continual, in the background, audio recording of conversations [2].
In meetings, discussions could be a rich resource for identifying par-
ticipants’ next actions and helping them to accomplish those.

In this paper, we investigate a novel task of actionable item de-
tection in meetings, with the goal of providing the participants easy
access to information and performing actions that a personal assis-
tant would handle without interrupting the meeting discussions. Ac-
tionable items in meetings would include discussions on scheduling,

1The data is available at http://research.microsoft.com/
projects/meetingunderstanding/.

Have <from_contact_name>they</from_contact_name> 

ever responded to <contact_name>you</contact_name>?
Nope.

find_email
action: check emails of me011, search for any emails from them

send_email
action: email all participants, “link to An Anatomy of Spatial Description”

create_calendar_entry
action: open calendars of participants, marking times free for the three 
participants and schedule an event

me018:

me011:

Yeah it's - or - or just - Yeah. It's also all on my - my 
home page at E_M_L. It's called "An Anatomy of afind
Spatial Description". But I'll send <email_content>that 
link</email_content>.

me015:

I suggest w- to - for - to proceed with this in - in the 
sense that maybe,  <date>throughout this week</date>,  
the <contact_name>three of us</contact_name> will -
will talk some more about maybe segmenting off 
different regions, and we make up some - some toy a-
observable "nodes" - is that what th-

mn015:

Fig. 1. The ICSI meeting segments annotated with actionable items.
The triggered intents are at the right part along with descriptions.
The intent-associated arguments are labeled within texts.

emails, action items, and search. Fig. 1 shows some meeting seg-
ments from the ICSI meeting corpus [3], where actionable items and
their associated arguments are annotated. A meeting assistant would
then take an appropriate action, such as opening the calendars of
the involved participants for the dates being discussed, finding the
emails and documents being discussed, or initiating a new one.

Most of the previous work on language understanding of
human-human conversations focus on analyzing task-oriented di-
alogues such as in customer care centers, and aim to infer se-
mantic representations and bootstrap language understanding mod-
els [4, 5, 6, 7, 8, 9]. These would then be used in human-machine
dialogue systems that automate the targeted task, such as travel
arrangements. In this work, we assume presence of task-oriented di-
alogue systems (human-machine genre), such as personal assistants
that can schedule meetings and send emails, and focus on adapting
such systems to aid users in multi-party meetings (human-human
genre).

Previous work on meeting understanding investigated detection
of decisions [10, 11], action items [12], agreement and disagree-
ments [13, 14], and summarization [15, 16, 17]. Our task is closest
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schedule a meeting with 
<contact_name>John</contact_name> 

<start_time>this afternoon</start_time>

how about the <contact_name>three of 
us</contact_name> discuss this later 
<start_time>this afternoon</start_time>?

Human-Machine Genre

Human-Human Genre

create_calendar_entry

create_calendar_entry

Fig. 2. The genre mismatched examples with the same action.

to detection of action items, where action items are considered as a
subgroup of actionable items.

Utterances in the human-human genre are more casual and in-
clude conversational terms, but the terms related to the actionable
item, such as dates, times, and participants are similar. Fig. 2 shows
genre-mismatched examples (human-machine v.s. human-human),
where both utterances have the same action create calendar entry.
The similarity between two genres suggests that the data available
from human-machine interactions (source genre) can be useful in
recognizing actionable items in human-human interactions (target
genre). Furthermore, due to the mentioned differences, the use of
adaptation methods could be promising.

In this paper, we treat actionable item detection in meetings as
a meeting utterance classification task, where each user utterance
can trigger an actionable item. Recent studies used CDSSM to map
questions into relation-entity triples for question answering [18, 19],
which motivates us to use CDSSM for learning relations between
actions and their triggering utterances. Also, several studies investi-
gated embedding vectors as features for training task-specific mod-
els [20, 21, 22, 23, 24], which can incorporate more informative cues
from large data. Hence, for utterance classification, this paper fo-
cuses on taking CDSSM features to help detect triggered actions.
In addition, embedding adaptation has been studied using different
languages and external knowledge [25, 26]. Considering the genre
mismatch, embedding adaptation is proposed to fit the target genre
and provide additional improvement.

In the following sections, we describe how to train CDSSM for
action item detection task in Section 2. Then we propose adaptation
techniques to overcome the mismatch between the source and target
genre in Section 3. Section 4 describes how to use the trained embed-
dings for the task. Section 5 and Section 6 discuss the experiments,
and Section 7 concludes.

2. CONVOLUTIONAL DEEP STRUCTURED SEMANTIC
MODELS (CDSSM)

Here we describe how to train CDSSM for actionable item detection.

2.1. Architecture

The model is a deep neural network with convolutional structure,
where the architecture is illustrated in Fig. 3 [21, 27, 28, 29]. The
model contains: 1) a word hashing layer obtained by converting one-
hot word representations into tri-letter vectors, 2) a convolutional
layer that extracts contextual features for each word with its neigh-
boring words defined by a window, 3) a max-pooling layer that dis-
covers and combines salient features to form a fixed-length sentence-
level feature vector, and 4) a semantic layer that further transform
the max-pooling layer to a low-dimensional semantic vector for the
input sentence.

Word Hashing Layer lh. Each word from a word sequence (i.e. an
utterance) is converted into a tri-letter vector [28]. For example, the
tri-letter vector of the word “#email#” (# is a word boundary symbol)
has non-zero elements for “#em”, “ema”, “mai”, “ail”, and “il#” via
a word hashing matrixWh. Then we build a high-dimensional vector
lh by concatenating all word tri-letter vectors. The advantages of tri-
letter vectors include: 1) OOV words can be represented by tri-letter
vectors, where the semantics can be captured based on the subwords
such as prefix and suffix; 2) the tri-letter space is smaller, where
the total number of tri-letters in our experiments is about 20.6K.
Therefore, incorporating tri-letter vectors improves the representa-
tion power of word vectors and also reduces the OOV problem while
keeping the size small.

Convolutional Layer lc. A convolutional layer extracts contextual
features ci for each target word wi, where ci is the vector concate-
nating the word vector of wi and its surrounding words within a
window (the window size is set to 3). For each word, a local feature
vector lc is generated using a tanh activation function and a global
linear projection matrix Wc:

lci = tanh(WT
c ci), where i = 1, ..., d, (1)

where d is the total number of windows.

Max-Pooling Layer lm. The max-pooling layer forces the network
to only retain the most useful local features by applying the max
operation over each dimension of lci across i in (1),

lmj = max
i=1,...,d

lci(j). (2)

The convolutional and max-pooling layers are able to capture promi-
nent words of the word sequences [21, 27]. As illustrated in Fig. 3,
if we view the local feature vector lc,i as a topic distribution of the
local context window, e.g., each element in the vector corresponds
to a hidden topic and the value corresponds to the activation of that
topic, then taking the max operation at each element keeps the max
activation of that hidden topic across the whole sentence.

Semantic Layer y. The global feature vector lm in (2) is fed to feed-
forward neural network layers to output the final non-linear semantic
features y as the output layer.

y = tanh(WT
s lm), (3)

where Ws is a learned linear projection matrix. The output semantic
vector can be either utterance embeddings yU or action embeddings
yA.

2.2. Training Procedure

The meeting data contains utterances and associated actions. The
idea of this model is to learn the embeddings for utterances and ac-
tions such that the utterances with the same actions can be close to
each other in the continuous space. Below we define the semantic
score between an utterance U and an action A using the cosine sim-
ilarity between their embeddings:

CosSim(U,A) =
yU · yA
‖yU‖‖yA‖

. (4)

2.2.1. Predictive Model

The posterior probability of a possible action given an utterance is
computed based on the semantic score through a softmax function,

P (A | U) =
exp(CosSim(U,A))∑
A′ exp(CosSim(U,A′))

, (5)
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Semantic Layer: y

Utterance
Action

Fig. 3. Illustration of the CDSSM architecture for the predictive model.

where A′ is an action candidate.
For training the model, we maximize the likelihood of the cor-

rectly associated actions given the utterances across the training set.
The parameters of the model θ1 = {Wc,Ws} is optimized by an
objective:

Λ(θ1) = log
∏

(U,A+)

P (A+ | U). (6)

The model is optimized using mini-batch stochastic gradient descent
(SGD) [28]. Then we can transform the test utterances into the vec-
tor representations.

2.2.2. Generative Model

Similarly, we can estimate the posterior probability of an utterance
given an action using the reversed setting,

P (U | A) =
exp(CosSim(U,A))∑
U′ exp(CosSim(U ′, A))

, (7)

which is the generative model that emits the utterances for each ac-
tion. Also, the parameters of the model θ2 is optimized by an objec-
tive:

Λ(θ2) = log
∏

(U+,A)

P (U+ | A). (8)

The model can be obtained similarly and performs a reversed esti-
mation for the relation between utterances and actions.

3. ADAPTATION

Practically the data for the target genre may be unavailable or in-
sufficient to train CDSSM, so there may be a mismatch between
the source and target genres. Based on the model trained on the
source genre (θ1 or θ2), each utterance and action from the target
genre can be transformed into a vector. Then it is possible that the
embeddings of the target data cannot accurately estimate the score
CosSim(U,A) due to the mismatch. Below we focus on adapta-
tion approaches that adjust the embeddings generated by the source
genre to fit the target genre, where two adaptation approaches are
proposed.

3.1. Adapting CDSSM

Considering that the CDSSM is trained on the mismatched genre
(human-machine genre), the CDSSM can be adapted by continu-
ally training the model using the data from the target genre (human-
human genre) for several epochs (usually stop early before fully con-
verged). Then the final CDSSM contains information about both
genres, so it can be robust because of data from different genres and
specific to the target genre.

3.2. Adapting Action Embeddings

Instead of adapting the whole CDSSM, this section applies an adap-
tation technique to directly learn adapted action embeddings that
may be proper for the target genre. After converting actions and
utterances from the target genre into vectors using CDSSM trained
on the source genre, the idea here is to move the action embeddings
based on the distribution of corresponding utterance embeddings,
and then the adjusted action embeddings can fit to the target genre
better. A similar idea was used to adapt embeddings based on the
predefined ontology [30, 26].

Here we define Q as a set of action embeddings and R as a set
of utterance embeddings obtained from the trained model (θ1 or θ2).
Then we define two objectives, Φact and Φutt, to consider action and
utterance embeddings respectively.

Φact(Q̂, R̂) =
n∑

i=1

αi‖q̂i − qi‖2 +
∑

l(rj)=i

βij‖q̂i − r̂j‖2
 ,

Φutt(R̂) =
n∑

i:l(ri)=1

αi‖r̂i − ri‖2 +
∑

l(rj)=l(ri)

βij‖r̂i − r̂j‖2
 ,

where qi ∈ Q is the original action embeddings for the i-th action,
ri ∈ R is the original utterance embeddings for the i-th utterance,
and l(·) indicates the action label for an utterance. The idea here
is to learn new action embeddings q̂i that are close to qi and the
utterances labeled with the action i, r̂j . Also, Φutt suggests to learn
new utterance embeddings r̂i close to ri and other utterances with
the same action label. Here α and β control the relative strengths of
associations. An objective Φ(Q̂, R̂) combines them together:

Φ(Q̂, R̂) = Φact(Q̂, R̂) + Φutt(R̂). (9)
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Fig. 4. Action distribution for different types of meetings.

With the integrated objective Φ(Q̂, R̂), the sets of adapted action
embeddings and adapted utterance embeddings (Q̂ and R̂ respec-
tively) can be obtained simultaneously by an efficient iterative up-
dating method [26, 31]. The updates for q̂i and r̂i are:

∆q̂i =
αqi +

∑
βij r̂j

α+
∑
β

,∆r̂i =
αri +

∑
βij r̂j

α+
∑
β

. (10)

Then the adapted action embeedings Q are obtained in order to esti-
mate better scores for the target domain. Below we use the notation
ŷA to refer to the adapted action embeddings.

4. ACTIONABLE ITEM DETECTION

In order to predict the possible actions given utterances, for each
utterance U , we transform it into a vector yU , and then estimate the
semantic similarity with vectors for all actions.

For the utterance U , the estimated semantic score of the k-th
action is defined as:

̂CosSim(U,Ak) =
yU · ˆyAk

‖yU‖‖ ˆyAk‖
, (11)

which is similar to (4), but replaces the original action embeddings
yA with the adapted embeddings ŷA. Note that the utterance embed-
dings are the original ones, so they can match the embeddings of test
utterances.

The estimated semantic scores can be used in two ways [27]:

1. As final prediction scores: ̂CosSim(U,A) is directly treated
as the prediction score of the actionable item detector.

2. As features of a classifier: ̂CosSim(U,A) is an input feature
of a classifier and then a multi-class classifier can be trained
as an actionable item detector. Then the trained classifier out-
puts the final prediction scores of actions given each test ut-
terance for the detection task.

4.1. Unidirectional Estimation

With predictive and generative models from Section 2.2.1 and 2.2.2,
here for the utterance Ui, we define the final prediction score of the
action Aj using the predictive model as SP (i, j) and using the gen-
erative model as SG(i, j), where the prediction score can be obtained
via above two ways.

4.2. Bidirectional Estimation

Considering that the estimation from two directions may model the
similarity in different ways, we can incorporate the estimation from

two directions by fusing the prediction scores, SP (i, j) and SG(i, j),
to balance the effectiveness of predictive and generative models.

SBi(i, j) = γ · SP (i, j) + (1− γ) · SG(i, j), (12)

where γ is a weight to control the contributions from both sides.

5. EXPERIMENTS

5.1. Experimental Setup

The dataset is from the ICSI meeting corpus2 [3], where 22 meetings
previously used as test and dev sets are included for the actionable
item detection task [32]. These include three types of meetings, Bed,
Bmr, and Bro, which include regular project discussions between
colleagues and conversations between students and their advisors3.
The total numbers of utterances are 4544, 9227, and 7264 for Bed,
Bmr, and Bro respectively.

Actionable items were manually annotated, where the annota-
tion schema was designed based on the Microsoft Cortana conver-
sational agent schema. There are in total 42 actions in Cortana data,
and we identified 10 actions that are relevant to meeting scenar-
ios: find calendar entry, create calendar entry, open agenda,
add agenda item, create single reminder, make call, search,
send email, find email, and open setting4. There are total 318 ut-
terances annotated with actionable items, which accounts for about
2% of all utterances. Fig. 4 shows actionable item distribution in
the meeting corpus, where it can be found that different types of
meetings contain slightly different distribution of actionable items,
but some actions frequently occur in all meetings, such as cre-
ate single reminder and find calendar entry.

Two meetings were annotated by two annotators, and we test the
agreement for two settings using Cohen’s Kappa coefficient [33].
First, the average agreement about whether an utterance includes an
actionable item is 0.64; second, the average agreement about anno-
tated actions (including others; total number of considered intents
is 11) is 0.67, showing that the actionable items are consistent across
persons.

5.2. Evaluation Metric

Due to imbalanced classes (number of non-actionable utterances is
larger than number of actionable ones), the evaluation focuses on
detection performance for each action. Here for each action, we
use the area under the precision-recall curve (AUC) as the metric to
evaluate whether the detector is able to effectively detect it for test

2http://www.icsi.berkeley.edu/Speech/mr/
3Bed (003, 006, 010, 012), Bmr (001, 005, 010, 014, 019, 022, 024,

028,030), Bro (004, 008, 011, 014, 018, 021, 024, 027)
4find email and open agenda do not occur in Cortana data.
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Table 1. Actionable item detection performance on the average area of the precision-recall curve (AUC) (%).

Approach #dim Mismatch-CDSSM Adapt-CDSSM Match-CDSSM
P (A|U) P (U |A) Bidir P (A|U) P (U |A) Bidir P (A|U) P (U |A) Bidir

(a) Sim (CosSim(U,A)) 47.45 48.17 49.10 48.67 50.09 50.36 56.33 43.39 50.57
(b) AdaptSim ( ̂CosSim(U,A)) 54.00 53.89 55.82 59.46 56.96 60.08 64.19 60.36 62.34
(c)

SVM
Embeddings 300 53.07 48.07 55.71 60.06 59.03 63.95 64.33 65.58 69.27

(d) (c) + Sim 311 52.80 54.95 59.09 60.78 60.29 65.08 64.52 64.81 68.86
(e) (c) + AdaptSim 311 52.75 55.22 59.23 61.60 61.13 65.71 64.72 65.39 69.08

utterances. In the experiments, we report the average AUC scores
over all classes (10 actions plus others).

5.3. CDSSM Training

To test the effect of CDSSM training data, we perform the experi-
ments using the following models:

• Mismatch-CDSSM: a CDSSM trained on conversational
agent data, which mismatches with the target genre.

• Adapt-CDSSM: a CDSSM pretrained on conversational
agent data and then continually trained on meeting data.

• Match-CDSSM: a CDSSM trained on meeting data, which
matches with the target genre.

The conversational agent data is collected by Microsoft Cortana,
where there are about 1M utterances corresponding to more than
100 intents. For meeting data, we conduct the experiments on the
manual transcripts. For all experiments, the total number of training
iterations is set to 300, the dimension of the convolutional layer is
1000, and the dimension of the semantic layer is 300, where Adapt-
CDSSM is trained on two datasets with 150 iterations for each.

5.4. Implementation Details

Considering that individuals may have consistent ways of referring
to actionable items, to show the applicability of our approach to dif-
ferent speakers and meeting types, we take one of meeting types as
training data and test on each of remaining two. Hence, we have 6
sets of experiments and report the average of AUC scores for evalu-
ation, which is similar to 6-fold cross-validation. Note that the meet-
ing data used in Match-CDSSM and Adapt-CDSSM is the training
set of meeting data. The multi-class classifier we apply for action-
able item detection in Section 4 is the SVM with RBF kernel using
a default setting [34]. The parameters α and β in (9) are set to 1 to
balance the effectiveness of original embeddings and the utterance
embeddings with the same action. The parameter γ in (12) is set as
0.5 to allow predictive and generative models contribute equally.

6. EVALUATION RESULTS

Experimental results with different CDSSMs are shown in Table 1.
Rows (a) and (b) use the semantic similarity as final prediction
scores, where Sim (row (a)) uses CosSim(Ui, Aj) and AdaptSim
(row (b)) uses ̂CosSim(Ui, Aj) as SP (i, j) or SG(i, j). Rows (c)-
(e) use the similarity as features and then train an SVM to estimate
the final prediction scores, where row (c) takes utterance embedding
vectors as features, and rows (d) and (e) include the semantic simi-
larity as additional features for the classifier. Hence the dimension
of features is 311, including 300 values of utterance embeddings and
11 similarity scores for all actions.

When we treat the semantic similarity as final prediction scores,
adapted embeddings (AdaptSim) perform better, achieving 55.82%,
60.08%, and 62.34% for Mismatch-CDSSM, Adapt-CDSSM, and
Match-CDSSM respectively. Considering that the learned embed-
dings do not fit the target genre well, the similarity treated as features
of a classifier can be combined with other features to automatically
adapt the reliability of the similarity features. Row (c) shows the per-
formance using only utterance embeddings, and including the simi-
larity scores as additional features can improve the performance for
Mismatch-CDSSM (from 55.71% to 59.09%) and Adapt-CDSSM
(from 63.95% to 65.08%). The action embedding adaptation further
adjusts embeddings to the target genre based on Section 3.2, and row
(c) shows that the performance can be further improved (59.23% and
65.71%). Below we discuss the results in different aspects.

6.1. Comparing Different CDSSM Training Data

Because the target genre is not always available or not enough for
training CDSSM, we compare the results using CDSSM trained on
different data. From Table 1, model adaptation (Adapt-CDSSM) im-
proves the performance of Mismatch-CDSSM in all cases, showing
that the embeddings pre-trained on the mismatched data are success-
fully adapted to the target genre and then resulting in better per-
formance. Although Adapt-CDSSM takes more data than Match-
CDSSM, Match-CDSSM performs better. However, for row (a), we
can see that Match-CDSSM is not robust enough, because gener-
ative model (P (U | A)) performs 43.39% on AUC, even worse
than Mismatch-CDSSM. It shows that the bidirectional model, the
embedding adaptation, and additional classifier help improve the ro-
bustness so that Match-CDSSM achieve better performance com-
pared to Adapt-CDSSM.

The best result from the matched features is one using only em-
beddings features (69.27% in row (c)), and the possible reason is
that the embeddings fit well to the target genre, so adding similarity
cannot provide additional information to improve the performance.

6.2. Effectiveness of Bidirectional Estimation

From Table 1, it is shown that all results from the bidirectional esti-
mation significantly outperform the results using unidirectional esti-
mation across all CDSSMs and all methods except for rows (a) and
(b) from Match-CDSSM. Comparing between the predictive model
(P (A | U)) and the generative model (P (U | A)), the performance
is similar and does not show that a certain direction is better in most
cases. The improvement of bidirectional estimation suggests that
the predictive model and the generative model can compensate each
other, and then provide more robust estimated scores.
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6.3. Effectiveness of Adaptation Techniques

Two adaptation approaches, CDSSM adaptation and action embed-
ding adaptation, are useful when the features do not perfectly fit to
the target genre. When without SVM, model adaptation and action
embedding adaptation improve the performance from 49.10% to
50.36% and to 55.82% respectively. Applying both adaptation tech-
niques achieve 60.08% on average AUC. After we use the similarity
scores as additional features of SVM, using individual adaptation
improves the performance, and applying both techniques achieves
further improvement. Therefore, it is shown that the proposed
CDSSM and adaptation approaches can be applied when the data
for the target genre is unavailable or scarce.

On the other hand, when using the matched data for CDSSM
training (Match-CDSSM), action embedding adaptation still im-
proves the performance before SVM (from 50.57% to 62.34%).
Fig. 5 shows the performance distribution over all actions in the
training set before and after action embedding adaptation, where
we find that all AUC scores are increased except for others so that
overall performance is improved. The reason why matched data
cannot induce good enough embeddings is that there are much more
utterances belonging to others in the meetings, so CDSSM is more
sensitive to the action others due to data imbalance. However, the
adaptation adjusts all action embeddings equally, forcing to increase
the reliability of other action embeddings. Therefore, although the
adapted result of others drops, the performance of all other actions
is improved, resulting in better overall performance.

6.4. Effectiveness of CDSSM

To evaluate whether CDSSM provides better features for actionable
item detection, we compare the performance with three baselines
trained on the meeting corpus using the same setting:

• AdaBoost with ngram features
A boosting classifier is trained using unigram, bigram and
trigram features [35].

• SVM with ngram features
An SVM classifier is trained using unigram, bigram and tri-

Table 2. Actionable item detection performance on the area of the
precision-recall curve (AUC) (%).

Approach AUC

Baseline
AdaBoost ngram 54.31

SVM ngram 52.84
SVM doc2vec 59.79

Proposed
SVM CDSSM: P (A|U) 64.33
SVM CDSSM: P (U |A) 65.58
SVM CDSSM: Bidirectional 69.27

gram features [34].

• SVM with doc2vec embeddings
An SVM classifier is trained using paragraph vectors5 [36],
where the training set of paragraph vectors is the same as
CDSSM takes, the vector dimension is set to 300, and the
window size is 3.

First two baselines use lexical features while the third one uses
semantic features. Table 2 shows that two lexical baselines per-
form similarly, and AdaBoost is slightly better than SVM. Semantic
embeddings trained on the meeting data as features perform better
than lexical features, where doc2vec obtains 59.79% on AUC [36].
For the proposed approaches, both unidirectional CDSSMs outper-
form three baselines, achieving 64.33% for the predictive model and
65.58% for the generative model. In addition, bidirectional CDSSM
improves the performance to 69.27%, showing a promising result
and proving the effectiveness of CDSSM features.

6.5. Discussion

In addition to the power of CDSSM features, another advantage of
CDSSM is the ability of generating more flexible action embed-
dings. For example, the actions open agenda and find email in
the meeting data do not have the corresponding predefined intents in
the Cortana data; however, CDSSM is still able to generate the ac-
tion embeddings for find email by incorporating the semantics from
find message and send email. The flexibility may fill the gap be-
tween mismatched annotations. In the future work, we plan to inves-
tigate the ability of generating unseen action embeddings in order to
remove the domain constraint for practical usage.

7. CONCLUSION

This paper focuses on the task of actionable item detection in
meetings, where a convolutional deep structured semantic model
(CDSSM) is applied to learn both utterance and action embeddings.
Then the latent semantic features generated by CDSSM show the
effectiveness of detecting actions in meetings compared to lexi-
cal features, and also outperform semantic paragraph vectors. The
adaptation techniques are proposed to adjust the learned embeddings
to fit the target genre when the source genre does not match well
with target genre, showing significant improvements in detecting
actionable items. The paper highlights a future research direction
by releasing an annotated dataset and the trained embeddings for
actionable item detection.

5https://radimrehurek.com/gensim/index.html
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