
A COMPARATIVE STUDY OF NEURAL NETWORK MODELS FOR LEXICAL INTENT
CLASSIFICATION

Suman Ravuri1,3 Andreas Stolcke2,1

1International Computer Science Institute 3University of California, Berkeley, CA, USA
2Microsoft Research, Mountain View, CA, USA

ravuri@icsi.berkeley.edu anstolck@microsoft.com

ABSTRACT

Domain and intent classification are critical pre-processing
steps for many speech understanding and dialog systems, as it
allows for certain types of utterances to be routed to particular
subsystems. In previous work, we explored many types of
neural network (NN) architectures—some feedforward and
some recurrent—for lexical intent classification and found
that they improved upon more traditional statistical baselines.
In this paper we carry out a more comprehensive compar-
ison of NN models including the recently proposed gated
recurrent unit network, for two domain/intent classification
tasks. Furthermore, whereas the previous work was confined
to relatively small and controlled datasets, we now include
experiments based on a large set obtained from the Cortana
personal assistant application.

We compare feedforward, recurrent, and gated —such as
LSTM and GRU— networks against each other. On both the
ATIS intent task and the much larger Cortana domain classi-
fication tasks, gated networks outperform recurrent models,
which in turn outperform feedforward networks. Also, we
compared standard word vector models against a representa-
tion which encodes words as sets of character n-grams to mit-
igate the out-of-vocabulary problem. We find that in nearly all
cases, the standard word vectors outperform character-based
word representations. Best results are obtained by linearly
combining scores from NN models with log likelihood ratios
obtained from N-gram language models.

1. INTRODUCTION

Utterance classification is an important pre-processing step
for many dialog systems that interpret speech input. For ex-
ample, a user asking Siri or Cortana to “tell me about the
weather” should have her utterance classified as weather-
query so that the query can be routed to the correct natural
understanding subsystem. In previous work [1], we compared
feedforward neural network addressee models in a related
task of lexical addressee detection, in which a system must
identify whether speech is directed at the machine, or another
human, and recently, we compared recurrent neural network

and long short-term memory units [2] for both addressee and
intent detection. Most recently, we have started to investigate
gated recurrent units (GRU) models [3] as replacements for
LSTMs.

The motivation for neural network models is that previ-
ous n-gram-based classification approaches, such as standard
LMs and boosting, suffer from two fundamental and com-
peting problems: the limited temporal scope of n-grams, and
their sparseness, requiring large amounts of training data for
good generalization. The longer the n-grams one chooses to
model, the more the sparseness issue is exacerbated. To ad-
dress sparseness of data, one can try to enlist outside training
data for n-gram LMs [4], but these approaches are ultimately
limited by the domain-specific nature of n-gram distributions
(i.e., models trained from outside data often do not general-
ize). Neural network language models (NNLMs), [1], are able
to enlist outside data to train word embeddings and improve
the models.

NNLMs, along with standard n-gram LMs, however, suf-
fer from a different problem: the limited temporal scope of n-
grams may render it unable to to classify an utterance which
rely on long-term dependencies (“Tell me about your day”
and “how was the Mexican restaurant” are likely directed at
other humans while “Tell me about the weather” and “Tell me
about Mexican restaurants” are likely directed at the system).
Models based on recurrent neural networks (RNN) and long
short-term memory (LSTM) [5] certainly outperformed stan-
dard n-gram models on small tasks, but how they compare to
NNLMs is an open question.

To our knowledge, none of the published work in neural
network intent detection have scaled to large-scale corpora to
determine whether the methods are indeed better than more
standard statistic models. Finally, we have started investigat-
ing word representations based on character n-grams [6], but
results on their utility for this task as compared to standard
word vectors was inconclusive.

This work aims to compare feedforward, recurrent, and
“gated”—such as LSTM and GRU—models on both small,
elicited and larger, realistic corpora to determine which mod-
els work best under which scenario. Moreover, we would

368978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

Fig. 1. The standard Neural Network Language Model. Pw,
the projection layer, is shared by w1 and w2. Word embed-
dings from those words, v1, v2, are stacked into a single vec-
tor, which serves as input to a multilayer perceptron. In this
architecture, the NNLM is predicting the next word, but can
also predict other labels, such as addressee labels.

like to compare standard word embedding representations to
representations based on character n-grams, which hold the
promise of better generalization to unseen words.

There is a vast literature on domain and intent classifi-
cation for purposes of speech understanding; for prior work
see [7, 8] and references therein. In this work, we focus on
binary classification tasks (which can be treated as detection
tasks), although the proposed systems can easily be extended
to multi-class situations.

2. COMPARISON SYSTEMS

2.1. Baseline systems

As our experimental baseline we use two classifier architec-
tures based on n-gram features. One system is a pair of class-
specific n-gram language models, each of which computes a
class likelihood. The log ratio of these likelihoods is then nor-
malized for the utterance length (number of words) so obtain
a detection score that is thresholded. A detailed study of this
approach can be found in [4]. The other baseline approach
is the “Boostexter” boosting algorithm [9, 10], whose output
score may also be used as a detection score for thresholding.

2.2. NNLM-based utterance classifier

Figure 1 shows our architecture for the NNLM baseline sys-
tem, first proposed in [1]. It is based on the Neural Network
Language Model, first introduced in [11] as an alternative to
the traditional language model. Unlike traditional language
models, it encodes words as n-dimensional vectors, with stan-
dard dimensions ranging from 100 to 1000 depending on the

Fig. 2. Proposed RNN classifier model.

task. For utterance classification, the NNLM is trained to pre-
dict the utterance class based on two consecutive words at a
time. The aggregate score for an utterance is calculated as:

P (L|w) ≈ P (L1, . . . , Ln|w) =

n∏
i=1

P (Li|w)

≈
n∏

i=2

P (Li|wi−2, wi−1, hi) =

n∏
i=1

P (Li|hi)

The best class is calculated as argmaxL log p(L|w).

2.3. RNN-based utterance classifier

Recurrent neural network language modeling (RNNLM) [12]
grew out of the observation that temporal modeling of an
entire sentence through a series of hidden units can outper-
form models based on the Markov (limited memory) assump-
tion. Similar to Neural Network Language Model [13], the
RNNLM maps words to a dense n-dimensional word embed-
ding. The hidden state ht is a function of the current embed-
ding, the previous hidden state, and a bias: ht = σ(Wtht−1+
vt + bh). Typically, the optimal dimension for the word em-
bedding is less than half of that in the feedforward language
model.

Adapted for use in utterance classification, we train a sin-
gle RNN model on utterance class labels, shown in Figure 2.
The RNN attempts to classify the utterance based on the in-
formation stored thus far in ht. At test time, the probability
of an utterance label is calculated as:

P (L|w) ≈ P (L1, . . . , Ln|w) =

n∏
i=1

P (Li|w)

≈
n∏

i=1

P (Li|wi, hi−1) =

n∏
i=1

P (Li|hi)

where the final equality is embodied in the softmax output
function.

2.4. LSTM- and GRU-based utterance classifier

Ideally a model performing utterance classification would
predict a single class label per utterance. In earlier experi-

369

ments, we did not obtain competitive performance with RNN
models predicting a single label at the end of an utterance,
likely due to the vanishing gradient problem. This argues
for the use of long short-term memory (LSTM) units for
utterance classification.

The LSTM, first described in [5], attempts to circumvent
the vanishing gradient problem by separating the memory and
output representation, and having each dimension of the cur-
rent memory unit depending linearly on the memory unit of
the previous timestep. A popular modification of the LSTM
uses three gates—input, forget, and output—to modulate how
much of the current, the previous, and output representation
should be included in the current timestep. Mathematically, it
is specified by the equations:

it =σ(Wivt + Uiht−1 + bi)

ft =σ(Wfvt + Ufht−1 + bf)

ot =σ(Wovt + Uoht−1 + Vomt + bo)

mt =it ◦ tanh(Wcvt + Ucht−1 + bc) + ft ◦mt−1

ht =ot ◦ tanh(mt)

where it, ft, and ot denote the input, forget, and output gates
respectively, mt, the memory unit, and ht, the hidden state,
and is shown in Figure 3. We found that, unlike for RNNs,
a model making a single prediction at utterance end does
achieve good performance.

More recently, gated recurrent units have been proposed
([3]) as a simplification of the LSTM, while keeping the
ability to retain information over long sequences. As in the
LSTM, “memory” is handled by a simple linear interpola-
tion between a hidden-like state in the previous time step
and a RNN-like component representing a current time step.
Unlike the LSTM, however, it uses only two gates, memory
units do not exist, and the linear interpolation occurs in the
hidden state. We use a slight modification of the original
GRU, proposed in [14], as is described by equations:

zt =σ(Wzvt + Uzht−1 + bz)

rt =σ(Wrvt + Urht−1 + br)

ht =zt ◦ tanh(Whvt + Uh(rt ◦ ht−1)) + (1− zt) ◦ ht−1

One question is whether the one-hot vector w should input
directly to the LSTM or GRU, as proposed by [15] for a slot-
filling task. We found it better to use a separate linear em-
bedding, and use the embedding vt as input to the LSTM or
GRU. Figure 3 depicts this model.

2.5. Word hashing

One issue we noticed especially with recurrent models is that
they are somewhat more sensitive to the occurrence of un-
known words than standard feedforward networks. This is
best explained by example. Consider an utterance which be-
gins with an unknown word. In a trigram model, only the

Fig. 3. Proposed LSTM/GRU classifier model.

first two samples are affected by the unknown word, while
in recurrent NNs all future hidden states are affected by the
unknown word. For corpora with a high percentage of sin-
gletons in the training set, this problem is particularly acute,
as the standard practice is to map all such words to an un-
known token. Moreover, such unknown words may be infor-
mative, such as “Kleaners” in “Can you show me the address
of Happy Kleaners?”. To combat issues with unknown word
modeling, we investigate word representations based on sets
of character n-grams, as proposed in [6]. A word such as
“Kat” is transformed into a set of character n-grams, each of
which is associated with a bit in the input encoding. In the
case of character trigrams, this hash is the set “#Ka”, “Kat”,
“at#”, and the probability of a collision in the hash is less than
0.01%.

3. METHOD

For evaluation purposes we chose two very distinct corpora.
Our first source of data is ATIS, a small corpus (by today’s
standards) collected under controlled conditions and carefully
transcribed, and widely used in work on automatic speech un-
derstanding. Our second corpus, by contrast is from an actual
deployed speech understanding system with open-ended uses
and orders of magnitude more data. In both cases, our aim
was to define the task such that it was independent of class
priors and as similar as possible in nature. As described be-
low we defined binary classification task in both cases with
well-balanced class distributions. As a evaluation metric we
use equal error rate (EER), the rate of misclassification ob-
tained when both types of class confusions are equally likely
(after choosing an appropriate threshold). This results in a
metric that is independent of class priors (the EER of a ran-
dom classifier, or one that always output the majority class, is
50%).

3.1. ATIS Intent Classification Task

We follow the ATIS corpus setup used in [16, 17] in this pa-
per. The training set comprises 4,978 utterances taken from

370

the Class A (context independent) portions of ATIS-2 and
ATIS-3, and 893 test utterances from the ATIS-3 Nov93 and
Dec94 datasets. The corpus has 17 different intents, which
we mapped to a binary “flight” versus “other” classification
task (70% of the utterances are classified as “flight”, though
our metric is insensitive to prior distribution, as explained be-
low). Training was based on reference transcripts, but test-
ing used ASR output as described in [8], with a word error
rate of around 14%. There are two versions of the input:
one uses only the original transcript words, the other—known
as “autotagged”—replaces entities by phrase labels such as
CITY and AIRLINE, obtained from a tagger [15].

3.2. Cortana Domain Classification

Our second corpus and task is drawn from the Microsoft Cor-
tana personal assistant [7]. Utterances directed at the system
need to be routed to different semantic subsystems based on
the domain of discourse (such as communication, weather,
etc.), and those for which no specialized handling is available
are treated as web search queries. The binary classification
task we chose for our study is the detection of web search
queries versus all others domains. For training purposes, a
corpus of 2.1 million utterances was available. Temporally
later and disjoint utterance sets were used for development
(138k utterances) and testing (221k utterances). Close to half
the utterances were in the web search domain (47% of the test
set). The inputs to our systems are the words as obtained from
automatic speech recognition.

3.3. Experimental Setup

NNLM addressee models use a 500-dimensional word em-
bedding along with a hidden layer of 1000 hidden units, as
this was optimal in previous work and new experiments on
both datasets. Possibly owing to the size of the word embed-
ding, we found poor results in initial experiments with word
hashing; hence they are not included in the study. The RNN,
LSTM, and GRU models use a 200-dimensional word embed-
dings for one-hot and word hashing on both corpora, as those
parameters experimentally produced the best results. In addi-
tion, the LSTM and GRU included a layer of 15-dimensional
hidden and memory units. Not including word embeddings,
the LSTM model has roughly 150% more parameters than the
RNN, while the GRU uses fewer than the RNN. For large-
vocabulary tasks, however, the size of the embeddings dwarf
the number of other parameters, so we just use the structure
which produced the best results. For word hashes, we use a
concurrent trigram and bigram representations. For example,
the set describing “cat” is “#c”, “ca”, “at”, “t#”, “#ca”, “cat”,
and “at#’.

3.4. NN Training

As noted by other authors, parameter estimation for RNNs
is substantially more difficult than for feedforward networks.
Well-trained systems typically use a combination of momen-
tum, truncated back-propagation through time (BPTT), regu-
larization, and gradient clipping. Since utterance lengths for
the corpora investigated were typically under 20, we found
no improvement employing gradient clipping or truncated
BPTT. Moreover, regularization had either minimal or dele-
terious effect. While simple momentum did help for ATIS,
more advanced modifications such as Nesterov momentum
[18] yielded no improvement, and simple stochastic gradient
descent yielded good results on the Cortana corpus.

Despite the relative ease of the intent classification on
ATIS, we did find that final results were sensitive to initial
parameters, which, for RNN and non-gate LSTM weights
were drawn from a N (0.0, .04) distribution, while LSTM
gate weights were drawn from the same distribution, except
that the gate biases were a large positive value (around 5) to
ensure those values started at approximately 1.0. The vari-
ance of performance is investigated in Section 4. We used
one heuristic that worked well from prior work [2]: prior to
training, we calculated the cross-entropy on a held-out set
across ten random seeds and picked the one which produced
the lowest cross-entropy. Variance in results seemed not to be
an issue on the Cortana dataset, so we did not include results
on the variance of equal error rates.

For ATIS, the initial learning rate for each of the systems
is 0.01, with a momentum of 3 × 10−4 for recurrent neural
networks, and 3× 10−5 for LSTM models. The learning rate
is halved once the cross-entropy on a held-out set decreases
less than 0.01 per example, continues at the same rate un-
til the same stopping point is achieved, and then is halved at
each epoch until cross-entropy no longer decreases. As stated
earlier, the best initial cross-entropy across 10 different ini-
tializations is used.

For the larger Cortana training set, momentum is not
needed. The learning rate parameters are similar to that for
ATIS, except that the learning rate is decreased when the
cross-entropy on a held-out set improve by less than 0.1%.
Since the larger dataset included much more training data,
initial results suggested that the variance between random
initializations is much lower for all models.

For model combination and evaluation, we use linear lo-
gistic regression (LLR) to calibrate all model scores and to
combine multiple scores where applicable [19]. To estimate
LLR parameters on the smaller ATIS dataset, we jack-knife
over nine equal-sized partitions of the test data, training on
all but one in turn, and cycling through all partitions. Scores
are then pooled over the entire test set and evaluated using
equal error rate (EER).

For experiments on Cortana data, the development set is
used to estimate LLR weights for model combination, which

371

Table 1. ATIS intent classification results. The column la-
beled autotagged refers to the condition in which certain
named entities are marked via lookup table.

System EER (%) Autotag EER (%)
word 3-gram LM 9.37 6.05
word 3-gram boosting 4.47 3.24
NNLM-word 6.05 4.03
RNN-word 5.26 2.45
RNN-hash 5.33 2.81
LSTM-word 2.45 1.94
LSTM-hash 2.88 2.81
GRU-word 3.24 1.58
GRU-hash 3.24 2.02

are then evaluated on the test set, also using EER.

4. RESULTS

Table 1 shows results for ATIS intent classification for the dif-
ferent neural network architectures. In both the standard and
Autotagged setting, the NNLM model is worse than all other
models, including a word-trigram boosted model. RNN mod-
els are next best, followed by GRU and LSTM models, which
performed similarly depending on condition. LSTM models
perform better in the regular setting while GRU models per-
form better in the autotagged setting. Both GRU and LSTM
models substantially outperform the other methods, and, as
can be seen by Table 2 are within a standard deviation of each
other. Hashing seems to perform as well as word vectors on
this small dataset.

Table 2 includes mean and standard deviation results for
all the models. Feed forward neural networks had by far the
lowest standard deviation of all the results, but also had the
worst performance. In general, the gated networks had higher
variance than recurrent one, although the effect is fairly mini-
mal. Finally, using the best seed for held-out set cross-entropy
across ten random seeds is a reasonable method for picking
the best random seed.

Results are much clearer for the larger dataset, as shown
in Table 3. As with the ATIS data, the relative ordering of
models from worst to best is: NNLM, then RNN, and finally
LSTM and GRU with roughly equivalent performance. Word
hashing seems to perform about as well as word vectors, with
it performing worse with gated models, and better for recur-
rent ones. Keeping character n-grams requires about one third
less storage space than the word vectors, as 12k character n-
grams are needed while 18k words are needed for this larger
dataset.

Figure 4 shows detection error tradeoff curves for the two
ATIS test conditions and the Cortana task. On the large data
set (Cortana) we observe very straight and parallel tradeoff
curves, meaning that the various systems have no particular

Table 2. Average, Best Held Out, and Oracle Errors on ATIS
intent classification. Best held out refers to the hypothetical
performance when the model with the lowest cross-entropy
on a held-out set is chosen (among 10 random seeds) after
training.

System EER (%) Autotag EER (%)
Average Error
NNLM-word 5.83± .238 4.15± .324
RNN-word 4.86± .919 3.50± .775
RNN-hash 4.32± .917 2.64± .324
LSTM-word 3.38± .986 2.22± 1.01
LSTM-hash 4.05± 1.13 2.64± 1.02
GRU-word 4.44± 1.69 3.58± 1.24
GRU-hash 3.79± 1.00 2.63± 1.08
Best Held-Out X-ent (Oracle Error)
NNLM-word 6.05 (5.61) 4.03 (3.60)
RNN-word 3.95 (3.95) 2.45 (2.45)
RNN-hash 3.59 (3.24) 2.45 (2.09)
LSTM-word 2.81 (2.45) 2.02 (1.30)
LSTM-hash 3.24 (2.88) 2.02 (1.22)
GRU-word 3.24 (1.70) 1.30 (1.30)
GRU-hash 3.24 (1.30) 2.02 (2.02)

strengths or weaknesses on one type of classification error.
That also means that the relative ordering of systems with re-
gard to performance stays the same regardless of the chosen
operating point.

5. CONCLUSIONS AND FUTURE WORK

We have investigated the performance of a variety of neu-
ral network architetures for two semantic utterance classifi-
cation tasks, using both a small, controlled corpus (ATIS) and
a large real-life dataset (Cortana). The relative ordering of
models according to performance was quite consistent: gated
recurrent networks (GRU and LSTM) were best, with roughly
equivalent performance, followed by regular recurrent net-
works, followed by feedforward networks. Gated unit net-
works performed better than standard n-gram LM-based clas-
sifiers or boosting classifiers. However, n-gram LMs were
able to further improve the NN-based systems by way of lo-
gistic regression combination. Unlike what we found on an-
other utterance classification task (addressee detection) [2],
we did not see consistent gains from word-hashing into char-
acter n-gram encodings.

The present study only examines lexical information,
and what can be inferred from the utterance at hand. In
future work it would worthwhile to incorporate nonlexical
(e.g., prosodic) information [20], as well as utterance context
preceding the one to be classified [7]. With regard to mod-
eling, the inclusion of a layer performing convolution on the
word sequence [7] is a promising architectural feature that is

372

False Alarm probability (in %)
 1 2 5 10 20

M
is

s
pr

ob
ab

ilit
y

(in
 %

)

 1

 2

 5

 10

 20

nnlm-word
rnn-hash
rnn-word
word-boosted
gru-hash
gru-word
lstm-hash
lstm-word

False Alarm probability (in %)
 1 2 5 10 20

M
is

s
pr

ob
ab

ilit
y

(in
 %

)

 1

 2

 5

 10

 20

nnlm-word
rnn-hash
rnn-word
word-boosted
gru-hash
gru-word
lstm-hash
lstm-word

False Alarm probability (in %)
 5 10 20

M
is

s
pr

ob
ab

ilit
y

(in
 %

)

 5

 10

 20

nnlm-word
rnn-hash
rnn-word
word-fourgram
lstm-hash
lstm-word
gru-hash
gru-word
word-fourgram+gru-word

(a) (b) (c)

Fig. 4. DET curves for (a) intent detection from ATIS words (b) intent detection from ATIS autotags and (c) domain classification
in Cortana

Table 3. Cortana domain classification results. The col-
umn labeled “Combo” refers to system performance when
NN scores are combined with the baseline word fourgram
system. (Note: boosting with 4-grams performed worse than
with 3-grams.)

System EER (%) Combo EER (%)
word 3-gram boosting 7.37 –
word 4-gram LM 7.29 –
NNLM-word 9.33 7.30
RNN-word 7.99 6.80
RNN-hash 7.76 6.87
LSTM-word 6.86 6.56
LSTM-hash 7.11 6.63
GRU-word 6.78 6.46
GRU-hash 7.08 6.64

orthogonal to the aspects studied here.

6. ACKNOWLEDGMENTS

We thank Dilek Hakkani-Tur and Kaisheng Yao for their help
with setting up the ATIS corpus and discussion on LSTM use
for this task. We also wish to thank Minwoo Jeong and Ruhi
Sarikaya for assistance with the Cortana data.

7. REFERENCES

[1] Suman Ravuri and Andreas Stolcke, “Neural network
models for lexical addressee detection,” in Proc. Inter-
speech, Singapore, Sept. 2014, pp. 298–302.

[2] Suman Ravuri and Andreas Stolcke, “Recurrent neural
network and LSTM models for lexical utterance classi-
fication,” in Proc. Interspeech, Dresden, Sept. 2015.

[3] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio, “On the properties of neu-
ral machine translation: Encoder-decoder approaches,”
CoRR, vol. abs/1409.1259, 2014.

[4] Heeyoung Lee, Andreas Stolcke, and Elizabeth
Shriberg, “Using out-of-domain data for lexical ad-
dressee detection in human-human-computer dialog,”
in Proceedings North American ACL/Human Language
Technology Conference, Atlanta, GA, June 2013, pp.
221–229.

[5] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, Nov. 1997.

[6] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck, “Learning deep structured
semantic models for web search using clickthrough
data,” in ACM International Conference on Informa-
tion and Knowledge Management, San Francisco, Oct.
2013.

[7] Puyang Xu and Ruhi Sarikaya, “Contextual domain
classification in spoken language understanding systems
using recurrent neural network,” in Proc. ICASSP, Flo-
rence, May 2014, pp. 136–140.

[8] Gokhan Tur, Dilek Hakkani-Tür, Larry Heck, and
S. Parthasarathy, “Sentence simplification for spoken
language understanding,” in IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing. May
2011, IEEE SPS.

[9] Robert E. Schapire and Yoram Singer, “Boostexter: A
boosting-based system for text categorization,” Machine
Learning, vol. 39, no. 2/3, pp. 135–168, 2000.

373

[10] Benoit Favre, Dilek Hakkani-Tür, and Sébastien Cuen-
det, “icsiboost. open-source implementation of Boost-
exter,” http://code.google.come/p/icsiboost, 2007.

[11] Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain, “Neu-
ral probabilistic language models,” in Studies in Fuzzi-
ness and Soft Computing, vol. 194, pp. 137–186. 2006.

[12] Tomáš Mikolov, Martin Karafiát, Lukaš Burget,
Jan “Honza” Černocký, and Sanjeev Khudanpur, “Re-
current neural network based language model,” in
Proc. Interspeech, Makuhari, Japan, Sept. 2010, pp.
1045–1048.

[13] Y. Bengio, R. Ducharme, and P. Vincent, “A neu-
ral probabilistic language model,” Tech. Rep. 1178,
Department of Computer Science and Operations Re-
search, Centre de Recherche Mathématiques, University
of Montreal, Montreal, 2000.

[14] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” CoRR,
vol. abs/1412.3555, 2014.

[15] Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi, “Spoken language un-
derstanding using long short-term memory neural net-
works,” in IEEE SLT, 2014.

[16] Yulan He and S. Young, “A data-driven spoken language
understanding system.,” in Proceedings IEEE Work-
shop Automatic Speech Recognition and Understand-
ing, 2003.

[17] Christian Raymond and Giuseppe Riccardi, “Genera-
tive and discriminative algorithms for spoken language
understanding.,” in INTERSPEECH. 2007, pp. 1605–
1608, ISCA.

[18] Yu Nesterov, “A method for unconstrained convex
minimization problem with the rate of convergence
o(1/k2),” Doklady AN SSSR (Soviet. Math. Docl.), vol.
269, pp. 543–547, 1983.

[19] Stéphane Pigeon, Pascal Druyts, and Patrick Verlinde,
“Applying logistic regression to the fusion of the
NIST’99 1-speaker submissions,” Digital Signal Pro-
cessing, vol. 10, no. 1-3, pp. 237–248, Jan. 2000.

[20] Elizabeth Shriberg, Andreas Stolcke, and Suman
Ravuri, “Addressee detection for dialog systems using
temporal and spectral dimensions of speaking style,” in
Proc. Interspeech, Lyon, Aug. 2013, pp. 2559–2563.

374

