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ABSTRACT

Human-computer interaction and statistical natural language
understanding has changed with the addition of a visual dis-
play screen in modern mobile devices, as visual rendering
is used to communicate the dialog system’s response. On-
screen item identification and resolution when interpreting the
user utterances is one critical problem to achieve the natural
and accurate human-machine communication. This problem,
also called Flexible Item Selection (FIS), has been posed as
a classification task to correctly identify intended on-screen
item(s) from user utterances. This paper presents a universal
FIS model that can be applied to dialog systems developed in
different languages. We design a set of input features for the
FIS model that makes it largely language-independent. We
demonstrate that a single universal FIS model can be used in
place of language specific FIS models with no loss in accu-
racy. We also show that such a model can generalize well
to new unseen languages with minimal loss in accuracy on
held out languages including English, French, Spanish, Ital-
ian, German, and Chinese. Eliminating the need for building
and maintaining a separate FIS model for each new language,
the universal FIS model helps scaling an existing dialogue
system to new languages faster at a lower development cost.

Index Terms— on screen item selection, multi language
and universal models, language expansion, spoken language
understanding, spoken dialog systems, language indepen-
dence.

1. INTRODUCTION

Spoken language understanding systems (e.g. SIRI, Cor-
tana, Google Now) running on smart phones and consoles
(e.g. Xbox) provide a natural user interface (NUI), enabling
a more natural interaction for the user. As NUI’s become
mainstream, scaling such applications to different languages
has created new and challenging problems in spoken dialog
systems. This paper focuses on building language indepen-
dent Flexible Item Selection (FIS) for spoken dialog systems
to identify and resolve on-screen item given a user query.

We previously introduced a FIS model in [1]. The model
is learned by associating the user utterances with items on
the screen. Consider a sample dialog in Table 1 between a
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[System]: How may i help you today ?
[User]:  Show me veggie places near me.
[System]: (Fetches the following restaurants)

Panchavati Indian
Veggie Foods
ok
Yeip (30)
460 Persian Dr

Garden Fresh
* . 5555

Merit Vegetarian
Restaurant

¥ 55853
Velp (632)
548 Lawrence Expy

Veggie Grill Yam Leaf Bistro
k- 53555 M

Yelp (553)

1245 W El Caming
Real

[User]:

Yelp (193)
565 San Antonio Rd
Mountain View

Yelp (160)
/699 Calderon Ave
Mountain View

»show menu for the Chinese one” or

“directions to the nearest one” or

”the one on el camino” or

»Saturday hours for the first one” or

is there a Starbucks nearby”

Table 1. A sample multi-turn dialog. A list of second turn utter-
ances (in bold) all referring to the first restaurant and a new search
query (highlighted) are shown.

user and spoken dialog system in a ’location search’ domain
that covers restaurants as a subset. After the system displays
results on the screen in response to the first turn user query,
the user may choose one or more of the on-screen items. Note
that, there are multiple ways of referring to the same item!.

In a typical SDS, the spoken language understanding
(SLU) engine maps user utterances into meaning representa-
tion by identifying user’s intent and token level semantic slots
via a semantic parser [2, 3, 4]. The dialog manager uses the
SLU components to decide on the correct system action. For
on-screen item selection SLU alone may not be sufficient.
For instance, consider the dialog in Table 1. SLU engine can
provide signals to the dialog model about the selected item,
e.g., that “chinese” is a restaurant-cuisine or content, but may
not be enough to indicate which restaurant the user is refer-
ring. FIS model provides additional information to the dialog
manager by indicating whether there is a relation between
the utterance and the item, representing each instance in the
training dataset with relational features.

The input features to FIS models are language indepen-
dent since the features are mostly derived in the semantic
space, e.g. the existence of a slot tag but not the actual words
tagged, or the position of the item and the positional refer-
ence in the utterance (e.g., “first one”). Provided that the set

' An item could be anything, e.g. restaurants, games, contact list, and
organized in different lay-outs, such as a list or grid on the screen.
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of domains handled by the dialogue systems are largely lan-
guage independent, FIS models should generalize well across
dialogue systems operating in different languages, including
previously unseen languages. This, if true, is a useful property
as it eases porting such systems to new languages in different
domains.

In the next section, we will provide related work followed
by details on FIS model and features. Later, we will intro-
duce the universal FIS models in section 4. Experiments are
discussed in section 5. Finally conclusions are drawn.

2. RELATED WORK

As important as understanding the user’s flexible selection re-
quests for modern NUI designs, relatively few studies have
investigated their performance on the SDSs. Those that do
focus on the impact of the input from multimodal interfaces
such as gesture for understanding [5, 6, 7], touch for Auto-
matic Speech Recognition (ASR) error correction [8], or cues
from the screen [9, 10]. Most of these systems are engineered
for a specific task, making it harder to generalize for other
domains, languages or SDSs.

In [11] a reference resolution model is presented for a
question-answering system on a mobile, multi-modal in-
terface. Their system has several features to parse the posed
question and keep history of the dialog to resolve co-reference
issues. Their question-answering model uses gesture as fea-
tures to resolve queries such as “what’s the name of that
[pointing gesture] player?”, but they do not resolve loca-
tional referrals such as ’the middle one” or "the second harry
potter movie”. Others such as in [12] resolve anaphoric (’it”)
or exophoric ("this one”) types of expressions in user utter-
ances to identify geometric objects. In this paper, we study
several types of referring expressions to build a natural and
flexible interaction for the user and design features that are
language independent.

Several research focused on improving natural language
understanding for multi-modal interfaces for spoken or text
input. In [6] an intent prediction model enriched with gesture
detector is presented to help disambiguate between different
spoken user intents related to the interface. In [13, 14], the
impact of eye gaze on spoken language understanding mod-
els are investigated. In [15] a situated in-car dialog model
is presented to answer drivers’ spoken queries about the sur-
roundings (no display screen) by integrating multi-modal in-
puts of speech, geo-location and gaze. In [16] a smart se-
lection is presented for point finger touch interface (personal
tablet device), that tries to recover a user’s intent from the
selected text (a word or a phrase) on a screen showing a doc-
ument page. In their work, no user utterances are used as
input modality. We investigate automatic identification and
resolution of referring expressions as a classification task in-
troducing a wide range of syntactic, semantic and contextual
features extracted from spoken dialog data on different lan-
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guages. To the best of our knowledge, our FIS model is the
first domain-independent and language-independent referring
expression solution for handling on-screen items.

3. LANGUAGE SPECIFIC FLEXIBLE ITEM
SELECTION

The language specific FIS (Flexible Item Selection) model [1]
can detect if the user is referring to any item(s) on the screen,
and later resolve referring expressions to identify which items
are referred to and score each item. We have observed four
types of referring expressions, however, real usage analysis
of multi-model dialog systems have revealed that users mostly
refer to the items on the screen using expressions relating to
the implicit or explicit locational.

Explicit Referential: Explicit mentions of whole or por-
tions of the item’s title on the screen with no other descriptors,
e.g.,’show me the details of star wars six” (referring to the
item with title ”Star wars: Episode VI - Return of the Jedi”).

Implicit Referential : The user refers to the item using
distinguishing features other than the title, such as the release
or publishing date, actors, image content (describing the item
image), genre, etc. how about the one with Kevin Spacey”.

Explicit Locational : The user refers to the item using
the grid interface design, e.g., ”i want to watch the movie on
the bottom right corner’.

Implicit Locational: References in relation to other items
on the screen, e.g., the second of Dan Brown’s book” (show-
ing two of the Dan Brown’s book on the same row).

3.1. Relational Feature Extraction

The FIS problem is casted as a classification problem to detect
the relation between the utterance and the item, representing
each instance in the training dataset as relational features. As
summarized below, these features do not rely on any specific
domain or genre, and thus are domain independent.

Similarity Features: Similarity features represent the
lexical overlap between the utterance and the item’s title (that
is displayed on the user’s screen) and are mainly aimed to
resolve explicit referring expressions. Each utterance and
item-title is represented as sequence of words. Since inflec-
tional morphology may make a word appear in an utterance in
a different form than what occurs in the official title, we use
both the word form as it appears in the utterance and in the
item title. For example, burger and burgers, or woman and
women are considered as four distinct words and all included
in the bag-of-words. Using this representation we calculate
four different similarity measures:

Jaccard Similarity: A common feature that can represent
the ratio of the intersection to the union of unigrams.

Orthographic Distance: Represents the similarity of two
text and can be as simple as an edit distance (Levenshtein
distance) between their graphemes. The Levenshtein distance



[17] counts the insertion, deletion and substitution operations
that are required to transform an utterance into item’s title.

Word Order: This feature represents the similarity be-
tween the order of words in two text. Sentences containing
the same words but in different orders may result in different
meanings. Extending Jaccard similarity, this feature looks for
overlapping bi-grams in the utterance and item.

Word Vector: This feature is the cosine similarity between
the utterance and the item-title that measures the cosine of the
angle between their vectors.

Location Bearing Features: This feature set captures
spatial cues in utterances and is mainly aimed to resolve ex-
plicit locational referring expressions. The SLU models aim
at resolving a domain independent slot-tag, the position-ref
for locational references. This tag indicates the tokens in ut-
terances that are indicative of a position (e.g., "first one”, or
“last one”). A language dependent canonicalization engine
first converts the position-ref slot value to a numerical value
(e.g., “first” is converted to ’1”) and then checks against the
position of the item on the screen. This simple conversion
applies to screen designs where items are listed as a single
row (as in Table 1) or as a list in single column. See [1] for a
statistical approach designed to resolve locational cues in ut-
terances for more complex screen designs (e.g., grid based).

SLU Features: The SLU (Spoken Language Understand-
ing) features are used to resolve implicit and explicit referring
expressions. The language specific SLU model is a multi-
turn, multi-domain statistical model that consists of a set of
semantic attributes from utterances: the domain, user’s intent
and semantic slots based on a pre-defined semantic schema.
For each domain, the intents are determined using a multi-
class SVM intent model. The best intent hypothesis is used as
a categorical feature for the FIS model. Although FIS is not
an intent detection model, the intent from SLU is an effective
semantic feature in resolving referring expressions. Consider
second turn utterance such as “weather in seattle”, which is
a ’find’ intent that is a new search or not related to any item
on the screen. Finally entities (slots) are tagged using con-
ditional random fields (CRF) [18]. The best slot hypothesis
from the SLU slot model and the feature value is determined
based on the full overlap of any recognized slot value with
either the item’s title or meta-information from knowledge
source (address, year, etc.) Although the top intent may indi-
cate whether the user is referring an item on the screen (does
not resolve which item is being referred to), it is not a domain
independent feature since in each domain the top intent might
be different. On the other hand, the slot matching features
are domain and language independent as the feature value is
determined based on the partial or exact match between the
recognized slot in utterance and the item text or its meta in-
formation.

Knowledge Feature: This binary feature is used to rep-
resent overlap between utterance and the meta information
about the item and is mainly aimed at resolving implicit
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referring expressions. First, the meta information about
the on-screen items using knowledge graph and other web
sources are obtained. These correspond to the knowledge
about classes (books, movies, ...) and their attributes (title,
publisher, year-released, ...). For each semantic frame rele-
vant knowledge, e.g. database hits, are fetched and appended.
Then, this information is checked against the utterance for
any overlaps. For instance, given an utterance “how about
the one with Kevin Spacey”, and the item-title ”House of
Cards”, the knowledge graph attributes include year(2013),
cast(Kevin Spacey), director(James Foley),... For the FIS
models, we turn the knowledge graph feature 'on’ since the
actor attribute of that item is contained in the utterance. We
also consider partial matches, e.g., last name of the actor
attribute.

3.2. Learning the FIS Model

In this paper the FIS models are trained using GBDT (gradi-
ent boosted decision tree) [19] models, also known as MART
(Multiple Additive Regression Trees). GBDT? is an efficient
algorithm which learns an ensemble of trees and they are
easy to interpret compared to other non-linear classifiers such
SVM (support vector machines) [20] or NN (neural networks)
[21]. In [1], GBDTs were shown to perform considerably bet-
ter on language dependent FIS models than SVMs.

4. UNIVERSAL FLEXIBLE ITEM SELECTION

Our hypothesis for building a universal FIS model is that
given a shared approach to SLU and back-end knowledge
resources across all languages, a single universal language-
independent FIS model used for dialog systems deployed
in different languages should perform as accurately as the
language-dependent FIS models. Furthermore, that such uni-
versal FIS model should generalize well to such a dialogue
system operating in an unseen language.

To be a universal FIS model, the extracted features should
not rely on language specific information in which the FIS
model is deployed. Thus we carefully selected features so
that none of the extracted features directly contain words or
phrases from the user’s utterance, e.g., no n-gram features.
On the other hand, the SLU models trained per domain and
language do use lexical features. Therefore, during feature
extraction for universal FIS models, we deliberately decided
to avoid using lexical features primarily to avoid the GBDT
model from having to recompute the lower level lexical anal-
ysis already taken upon by the SLU models. We also elim-
inated intent-type specific features, (e.g., best intent hypoth-
esis) and slot-type specific features, (e.g. best slot hypothe-
sis). However, we kept the slot matching features, which are

2Treenet: http://www.salford-systems.com/products/ treenet is the imple-
mentation of the GBDT which is used in this paper.



Domain Intents (I) & Slots

I: find-place, select-item(first one)..
Slots: place-type, rating, nearby(closest)....

places

I: send—email, send-text,
Slots: email-subject, to-contact-name,message,

communication

reminder I: change-reminder-text, set-alarm,

Slots: reminder-text, change-to-time, location,...

Table 2. A sample of intents and semantic slot tags of utter-
ance segments per domain. Examples for some slots values
are presented in parenthesis as italicized.

binary features indicating the presence or absence of a partic-
ular entity (slot) value (captured by the SLU slot models) in
the item’s title as well as the item’s meta information - hence
a domain independent relational feature.

The similarity features are not only domain but also lan-
guage independent as they are solely based on the lexical sim-
ilarity of words and word orders between the utterance and
item. In addition, location bearing features also match the lo-
cation bearing phrase in the utterance to the position of the
item on the screen (as user sees). Although the position-ref
slot value is SLU specific, which in turn is not language spe-
cific, similar to slot matching features, the position matching
against screen location is essentially language independent.

5. EXPERIMENTS

5.1. Datasets

The internal corpora used for training and testing consists
mostly of logs of spoken utterances or typed input collected
from real users of Cortana — Microsoft’s personal digital as-
sistant. This is mixed with a much smaller fraction of man-
ually engineered or crowd sourced data. The log data is seg-
mented into sessions based primarily on when users closed
the Cortana application.

Collection: Our experimentation data is collected for six dif-
ferent languages. Since our initial FIS model investigations
were on American English (en-us), the en-us data is twice
as much as the rest of the languages. Around 100K train-
ing utterances were collected for Spanish (es-es), and Chinese
Mandarin (zh-cn) languages and around fifty-thousand train-
ing utterances were collected for the French (fr-fr), German
(de-de), and Italian (it-it) languages. The corpora for all of
the languages span three distinct domains (places, communi-
cations, reminder) with multiple intents per domain as shown
in Table 2. Around 20K of these utterances are held out for
testing purposes.

Six dialogue systems were set up, one corresponding to
each of the language pairs for which user data was collected.
Each of these dialogue systems has a different, language spe-
cific SLU models and language specific knowledge sources.
To run the experiments in this paper, the transcribed utter-
ances and typed input text were processed to match the ex-
pected form of the 1-best output of the ASR and then fed into
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the SLU component.

The training corpora were run through their correspond-

ing dialogue system in each language just until the user utters
the subsequent turn (turn-#>1 indicates utterances at dialog
turns other than the first turn). Note that since no items are
displayed on the screen when the user starts the conversation,
the FIS model is only triggered on the follow-up turns. Once
the system returns results and the user utters the second turn,
the feature extraction stage for FIS models starts. Features
are collected and stored from the set of query-item pairs, one
set for each displayed item (see Table-1). The result is a set
of training examples with input features required by the FIS
models which are associated with selection or no-selection
labels as supervisory signals. A separate test corpora is also
collected for each language and processed in the same way.
The test corpora is held out from SLU model training as well
as FIS model training.
FIS Data Annotation: We use Microsoft’s crowd-sourcing
services to annotate the training utterance-item pairs. Particu-
larly, the labelers are shown a screen shot showing the search
results after a search query is (turn-# >1) issued. Since we are
building a relational model between utterances and each item
on the screen, we ask the annotators to label each utterance-
item as ’0’ or ’1’ indicating if the utterance is referring to
that item or not. ’1’ means the item is the intended one. *0’
indicates the item is not intended one or the utterance is not
referring to any item on the screen, e.g., new search query.
For example, given the screen shot and the query “the one on
el camino” from Table-1, the labeler is asked to tag the rela-
tion between utterance and item-1 as ’1” and ’0’ for all the
rest of the items.

5.2. Experiment Setup

We run three experiments to investigate the universal FIS
models as follows:

Experiment-1: Universal Model Performance: In this ex-
periment, we train a single, universal FIS model on the entire
training corpora from all six languages. This model is then
tested in each of the six dialogue systems using the language
specific test set for that dialogue system. The universal FIS
model is compared to those of language specific FIS models,
each of which are trained solely on the language corpus that
matches that dialogue system’s language.

Experiment-2: Scalability of Universal Models to Unseen
Languages: In the second experiment, we tested the scalabil-
ity of the universal FIS models, specifically by testing the FIS
models on unseen languages. One language’s training data is
completely held-out and a "universal’ FIS model trained using
the data from the the remaining languages. This was repeated
for all the languages. As a comparison each of the language
specific FIS models trained in the previous experiment were
also tested against non-matching languages in order to test the
assumption that a universal FIS model would generalize bet-



Language Specific Universal FIS Ain
language Accuracy FIS Accuracy Accuracy
en-us 94.74% 96.08% +1.34%
fr-fr 93.81% 90.33% -3.48%
es-es 92.45% 92.84% +0.39%
it-it 95.39% 92.70% -2.69%
de-de 95.37% 92.35% -3.02%
zh-cn 94.64% 98.23% +3.59%

Table 3. Accuracy in selection models of Universal FIS
trained on all languages versus FIS models trained on one
specific language. A in accuracy % is the absolute difference
between the accuracy achieved by the universal FIS models
(third column) and the language dependent FIS models (sec-
ond column). The absolute gain by the universal models are
bolded.

ter to unseen languages compared to randomly selecting some
language specific FIS model. All of the FIS models, both uni-
versal and language specific models, were trained using the
same parameter settings, i.e. same learning rate, number of
trees, etc.

Experiment-3: Amount of Data Needed in a New Lan-
guage to Train Universal Models: In this experiment, we
tested the minimum amount of a new/unseen language train-
ing data required for training universal FIS model that would
yield as good performance of as the universal FIS data that is
trained as if substantial amount of unseen language is present
at training time. For this experiment, we used the all unseen
language training data but held-out one language data at first
and then incrementally added back some percentage of held-
out language to the training data. The goal is to find out how
much training data would be sufficient if we would happen to
adapt the universal FIS model to a specific language.

5.3. Results

Experiment-1: Table 3 presents results showing the accu-
racy of the selection models trained solely on that language’s
corpus and dialogue system by language specific FIS models.
This is compared with a single, universal FIS model trained
using all the languages. The en-us, es-es, zh-ch show the most
gains among all languages, zh-ch having the most gain. The
accuracy degraded for the remaining languages compared to
the locale-specific FIS models. On average the language spe-
cific FIS models outperform the universal FIS models over
six languages by about 0.6%. In examining the low perform-
ing universal FIS models compared to their language specific
FIS models, it is noticeable that the distribution of the impact
of features are different. For instance, in the language spe-
cific FIS model in one language the position matching fea-
tures are far more important than explicit referring expression
features, which was not as much important among universal
FIS model features. It is possible that in some languages the
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Held-Out  Universal FIS ~ Universal FIS A in

Language Accuracy Accuracy Accuracy
(w/ held-out)  (w/o held-out) Degradation

en-us 96.08% 90.66% (5.42)%
fr-fr 90.33% 85.95% (4.38)%
es-es 92.84% 87.03% (5.81)%
it-it 92.70% 89.78% (2.92)%
de-de 92.35% 85.56% (6.79)%
zh-cn 98.23% 94.43% (3.80)%

Table 4. Test accuracy of 'universal’” FIS models trained on
all language data (second column), and ’universal’ FIS mod-
els trained on all but the held-out language data (third col-
umn). The performance degradation with universal FIS mod-
els trained on all but the held-out data versus the universal FIS
models trained on all language data is shown on the fourth
column.

user’s might have preferred shorter utterances and use posi-
tional cues when referring to items on the screen. Further
analysis is required to establish the likely cause. Nevertheless,
the results indicate that the impact of features for language de-
pendent FIS models are not identical across languages result-
ing in imbalance over some languages when trained globally.

Experiment-2: Table 4 presents results showing the accu-
racy of universal FIS models on previously unseen languages
to which the SLU and FIS models are adapted. We observe
that on average the absolute loss in accuracy for unseen lan-
guages compared to models trained when the language is ob-
served is 4.82% in average. This indicates that the universal
FIS model is able to achieve 85%-95% accuracy, which are
fairly high making the FIS model usable with SDSs in differ-
ent locales/languages.

To demonstrate the benefit of training a universal FIS
model over simply reusing one of the existing language spe-
cific FIS models in a new/unseen language, Table 5 presents
the FIS model accuracy when testing with each of the set
of other language specific FIS model against the unseen
language. The second column is just the accuracy of the uni-
versal FIS model where that language is previously unseen
(copy over from Table 4 for ease of comparison). Every other
column (column three to eight) is the accuracy of language
specific FIS model on the unseen language data (row), where
the ninth column is the average accuracy of all the language
data (aveage of column three to column eight). The tenth
column of Table 5 shows the average accuracy from all the
other language specific FIS models on the unseen language
(row). The last column is the absolute gain in accuracy by
the universal FIS model trained with that language is held-out
compared to the average of the rest of the language specific
FIS models on the unseen language. As can be seen, the
resulting gains from training a universal FIS model against
language specific models lies between min. absolute value of
+1.73% to max. absolute value of +11.59%, with an average



Held-Out | Universal FIS Other language specific FIS models A Gain
Language excludes in Accuracy by
held-out en-us fr-fr es-es it-it de-de zh-cn | Average | Universal FIS

en-us 90.66% — 87.87% | 86.76% | 88.09% | 90.36% | 87.87% | 85.43% +2.96%
fr-fr 85.95% 81.99% — 82.39% | 83.31% | 82.73% | 81.56% | 82.40% +3.55%
es-es 87.03% 86.98% | 85.29% — 86.73% | 83.79% | 83.74% | 85.03% +1.73%
it-it 89.78% 88.81% | 85.11% | 88.13% — 85.96% | 84.82% | 86.67% +3.21%
de-de 85.56% 84.52% | 83.15% | 83.02% | 85.13% — 81.04% | 83.37% +2.19%
zh-cn 94.43% 85.66% | 85.09% | 78.98% | 80.03% | 85.33% — 82.84% +11.59%

Table 5. Cross-testing of language specific FIS models on other (unseen/new) language FIS models. The last two columns are
the average language dependent FIS accuracy of other languages on the unseen language and the gain in absolute accuracy of
the universal FIS model against the individual models on unseen data.

of +4.2%.

Experiment-3: In experiment-2, we demonstrated that uni-
versal FIS models can be applied to unseen languages with
minimal loss in accuracy. In this experiment we are search-
ing for how much annotated data from the unseen language
would be enough to get the same performance as if the un-
seen language is observed.

Our empirical analysis results are demonstrated in Fig-
ure 1. The x-axis is the % of the training data randomly se-
lected from the unseen language and added to the training data
that contains all other language data but that language. Once
the percentage of unseen data is added to the overall training
data, a new global FIS model is re-trained and tested on the
held-out language’s test data. We repeat this experiment by
appending an additional 10% held-out language training data
and re-train and report the numbers. Our goal is to find out at
what percent of the unseen data will be enough to obtain as
good performance as the overall universal FIS model trained
on all other languages. The y-axis indicates the difference in
accuracy of each of these new FIS models versus the overall
universal FIS model that uses all the data from all languages
we have in our corpora. Looking closely at Figure 1, for in-
stance, when only 10% of en-us data is added to the overall
FIS training data, the loss in accuracy compared to the over-
all universal FIS model is just ~3%. It is to be noted that
for some languages where there is more data (en-us, it-it) the
elbow is around 20-30% (only 2% loss in accuracy) and for
other languages where there is less training data the elbow is
more towards 40% (around 3% loss in accuracy). As can be
seen, with as little as 20% training data on a new language, the
universal FIS models behave almost as good as the universal
FIS models that includes the new language. Thus, universal
FIS models can be scaled to new languages with even less
effort in annotation in the new language.

6. CONCLUSIONS

This paper presented a universal FIS model for spoken dia-
logue systems deployed in multiple languages. We demon-
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Fig. 1. Absolute Difference in Accuracy against universal FIS
model trained on all data that includes all data from the held-
our language. The delta is calculated based on the second
column in Table 4.

strated that as the set of input features used by FIS models are
largely language independent. A single, universal FIS model
can be used in place of language specific FIS models with
only a small loss in accuracy. In fact, the universal FIS model
actually has an average gain of 0.6% (max of 3.59%) over
language dependent FIS models. We also show that such an
approach can generalize well to new unseen languages, with
as low as 4.2% loss in accuracy when generalising to held-out
(previously unseen) languages. The latter, which is achieved
without retraining significantly, eases expansion of existing
FIS models to new languages and avoids portability of exist-
ing models.

As a future work, we will investigate the performance of
the universal FIS models on the overall dialog based on task
completion metrics such as task success and user dissatisfac-
tion.
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