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ABSTRACT
In this paper, we propose a recurrent transductive support
vector machine (RTSVM) for semi-supervised slot tagging.
Taking advantage of the superior sequence representation ca-
pability of recurrent neural networks (RNNs) and the semi-
supervised learning capability of transductive support vector
machines (TSVMs), the RTSVM is stacking a TSVM on top of
a RNN. The performance of the traditional TSVM is sensi-
tive to the regularization weight for unlabeled data in semi-
supervised learning. In practice, a suitable unlabeled data
regularization weight is difficult to determine. To make the
RTSVM semi-supervised learning robust, we propose a confi-
dent subset regularization method enforcing that the new de-
cision boundaries learned from unlabeled data would not sep-
arate the confident clusters learned from labeled data. The ex-
periments based on two datasets show that without using unla-
beled data, the supervised version of RTSVM achieves signif-
icant F1 score improvement over previous best methods. By
taking the unlabeled data into account, the semi-supervised
RTSVM gets significant improvement over its supervised op-
ponent.

Index Terms— Recurrent neural networks, transductive
support vector machines, semi-supervised learning

1. INTRODUCTION

Slot tagging is a key component in spoken language under-
standing systems [1, 2, 3, 4, 5], which labels a user query
with semantic meaning. The goal of slot tagging is to find a
map F : X → Y from a sequence of words to a sequence
of slot labels, where X is the word set with vocabulary size
N , and Y the slot set with vocabulary size M . For example,
the query “flights from dallas to san francisco” is tagged in
the following way. The word “dallas” is labeled as “B-from-
city”. “san” and “francisco” are labelled as “B-to-city” and
“I-to-city”, respectively. {B, I} is used to indicate the posi-
tion of a slot label.

flights from dallas to san francisco
O O B-from-city O B-to-city I-to-city

Recurrent neural network (RNN) and its variants [6, 7, 8,
9, 10, 11] are the cutting-edge techniques for slot tagging.

The outstanding performance of RNN based slot tagging is
due to its effective sequence feature representation capability.
In RNN based slot tagging, a query is represented by a con-
tinuous valued vector that implicitly carries the semantic and
syntactic information [12, 13]. The special loop structure in
RNN acts as a memory to accumulate the history information.
Comparing with classic sequential labeling models, for ex-
ample, conditional random fields (CRFs) [14] and structured
support vector machines (SVMs) [15], RNN is able to build slot
tagging models from scratch–no feature engineering work is
required. However, most of RNN based slot tagging models
are still trained via supervised learning.

Supervised learning requires labeled data that needs hu-
man annotation. In practice, data manual labeling, especially
sequential data manual labeling is time consuming and expen-
sive. In real system, large amount of unlabeled data can be
obtained easily from live user logs. It is impractical to man-
ually label all these live queries to improve the real system.
One option is semi-supervised learning methods.

The goal of semi-supervised learning methods is to learn
a model from a combination of a small size of labeled data
set with a large size of unlabeled data set for better perfor-
mance than to learn from a labeled data set alone. The intu-
ition behind many semi-supervised sequential learning meth-
ods is that the intrinsic similar queries share the same label
sequence [16]. The intrinsic structure revealed by the unla-
beled data can be leveraged to improve the slot tagging mod-
els. One widely used discriminative semi-supervised method
is transductive support vector machine (TSVM) [17, 18] that is
based on the same assumption as most semi-supervised meth-
ods but from the other perspective. The assumption of TSVM
is that similar data forms the same cluster. In TSVM, the sep-
aration of different clusters is achieved by putting decision
boundaries in low density area.

In this paper, we propose a recurrent transductive support
vector machine (RTSVM) that applies a TSVM on top of a RNN
for semi-supervised slot tagging. The stochastic gradient de-
scent algorithm is used to learn the model from the training
data. One critical parameter in TSVM is a hyper-parameter
for unlabeled data regularization, which is difficult to tune
in practice. To make the proposed semi-supervised slot tag-
ging robust to variations of the regularization weight for un-
labeled data, an additional constraint is appended to the ob-
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jective function. Basically, the additional constraint says that
in the training, the confident clusters learned from the labeled
samples should not be separated by the decision boundaries
learned from the unlabeled data. In this way, we actually dy-
namically adjust the trade-off weight for labeled data empir-
ical loss and unlabeled data regularization. Experiments on
one benchmark dataset namely ATIS (Airline Travel Informa-
tion Systems) dataset [19, 7], and one internal data set show
that the proposed semi-supervised method could achieve sig-
nificant improvement over its supervised opponent.

In the next section, we discuss about the related work
about using RNNs and their variants for slot tagging and other
techniques for semi-supervised slot tagging. Section 3 intro-
duces the conventional RNN based slot tagging method. In
Section 4, we describe the proposed RTSVMs and the semi-
supervised learning method. Section 5 gives the experimental
results on ATIS and internal Data. The final section draws
conclusions.

2. RELATED WORK

Recently, one interesting direction to improve slot tagging is
extracting useful information from large scale web logs and
knowledge graphs [20]. In this paper, we improves slot tag-
ging by modifying RNN based slot taggers to make use of
unlabeled data extracted form web logs.

Recurrent neural network based slot tagging is first pro-
posed by Yao et al.[6]. The first version of RNN-based slot
tagger is using local normalization. Each slot is predicted
according to current frame lexical information, contextual
history information and previous frame slot information. To
further exploit the dependency structure of the slot label
sequence, Yao et al.[8] propose the recurrent conditional ran-
dom field (RCRF) that stacks a CRF on top of a RNN. RNN
and RCRF based slot tagging models proposed by Yao et
al.are Elman-type of RNN. Slot tagging using the Jordan-
type of RNN, bidirectional RNN and the Jordan and Elman
hybrid RNN is investigated in [10]. The results in [10] show
that Elman-type RNN performs better than Jordan-type RNN
and using bidirectional structure helps to improve the perfor-
mance.

Comparing with classic models, RNN has the advantage
of modeling long term dependency. However due to gradi-
ent vanish or explosion in error back-propagation, the long
term dependency modeling is limited in RNN. To overcome
this issue, advanced RNN based slot tagging methods, for ex-
ample long short term memory (LSTM) networks [21, 22],
gated RNN [11] and RNN with external memory (RNNEM) [11]
have been proposed. By dedicated designing, these advanced
models have better sequence feature representation capability.
However, all these methods are based on supervised learn-
ing. The proposed RTSVM method uses the TSVM to take the
RNN sequence feature representation as input, which can be
extended to take the advanced RNN sequence feature repre-

sentation as input.
There have been extensive literature about semi-supervised

learning for structured variables. In general, there are three
paradigms for structured varaible semi-supervised learn-
ing: generative approach [23, 24], graph-based approach
[25, 26, 27, 28] and transductive method [18, 29, 17, 30].
These semi-suprevised methods are based on classic machine
learning techniques that need extra feature engineering. In
this paper, the proposed RTSVM applies transductive sup-
port vector machines (TSVMs) [29] on top of the feature
representation of RNNs that have superior sequence represen-
tation capability without involving feature engineering work.
The performance of TSVM is very sensitive to the hyper pa-
rameters for unlabeled data regularization term. Due to the
characteristics of stochastic gradient descent algorithm [31],
the proposed RTSVM adds another regularization to make
the semi-supervised method robust to the hyper-parameter
variations for unlabeled data regularization.

3. RECURRENT NEURAL NETWORKS

The conventional RNN based slot taggers [6, 10] illustrated in
Fig. 1 have three layers: input layer, hidden layer and output
layer. The observation x(t) and the auxiliary feature f(t) is
used as input to the network at each frame t. The hidden
layer h(t) takes the states from the input layer and previous
hidden layer h(t−1) as input. The sigmoid function is used as
activation function for the hidden layer. The output layer uses
the softmax activation function to compute the multinomial
probability distribution p(y(t)|x(t), f(t)).

pi(t) = p(y(t) = yi|x(t), f(t)) =
exp

(
wT
i h(t)

)∑m
j=1 exp

(
wT
j h(t)

) , (1)

where pi(t) gives the conditional probability of slot label yi
given input at frame t, and wi is the weight vector connecting
the hidden layer to the output state i. During training cross
entropy is applied as the loss function.

In decoding, the slot label y(t) at frame t is selected as
follows:

y(t) = argmax
yi(t)∈{y1,y2,...,yM}

pi(t). (2)

To further exploit the dependency structure of slot labels,
recurrent conditional random fields (RCRFs) are proposed in
[8]. RCRF can be viewed as stacking a CRF on top of a RNN.
The RCRF jointly learns the weights for slot label transition
and weights for RNN using the maximum likelihood training
criteria. In the decoding, Viterbi algorithm is used to find
the slot label sequence with the highest probability given the
observation sequence.

354



h(0) h(1) h(t)...

x(0) f(0) x(1) f(1) x(t) f(t)

y(0) y(1) y(t)
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O

Fig. 1. RNN based slot tagger. U is the weight matrix connect-
ing the word input to the hidden layer, V is the weight matrix
connecting the auxiliary feature input to the hidden layer, O is
the weight matrix connecting the previous hidden activation
state to the current hidden layer state and W is the weight
matrix connecting the hidden layer to the output layer.

4. RECURRENT TRANSDUCTIVE SUPPORT
VECTOR MACHINES

The proposed RTSVM is illustrated in Fig. 2. The lower part
of the figure is a simple RNN that extracts features from user
queries. The frame t in the query is represented by a vector
W th(t) using RNN. On top of the RNN, it is the TSVM that
jointly learns the weights matrix A for slot transition features
and the weights in RNN using semi-supervised learning.

In semi-supervised learning, the training data is consti-
tuted by labeled samples Xi, i ∈ [1, n], and unlabeled sam-
ples Xj , j ∈ [n + 1, n + m], where usually n << m. The
training objective in RTSVM is the following constrained op-
timization.

min
W,A

1

2
||W ||22 +

1

2
||A||22 + C

∑
i

ζi + C̄
∑
j

ζ̄j + Ĉ
∑
k

ζ̂k

s.t. F (Y i∗) + ζi ≥ F (Y i) + L(Y i, Y i∗) ∀Y i (3)
F (Y j∗) + ζ̄j ≥ F (Y j) + L(Y j , Y j∗) ∀Y j (4)
F (Y k∗) + ζ̂k ≥ F (Y k) + L(Y k, Y k∗) ∀Y k (5)
ζi, ζ̄j , ζ̂k ≥ 0 (6)
i ∈ [1, n], j ∈ [n+ 1, n+m], k ∈ S ⊆ [1, n] (7)

where

F (Y ) =
T∑

t=1

ay(t−1)y(t) +WT
y(t)h(t) (8)

where Y i and Y j represent the possible slot sequence for
labeled sample Xi and unlabeled sample Xj , respectively.
Y i∗ is the ground truth slot sequence for labeled sample Xi.
For unlabeled sample Xj , Y j∗ corresponds the slot label
sequence that get the largest discriminative function scores
Y j∗ = argmaxF (Y ). ayk(t−1)yk(t) is the weight for the slot
transition features from yk(t − 1) to yk(t). L(.) defines the
loss function of a possible slot label sequence for a training
sample. For labeled training sample Xi, L(Y i, Y i∗) is actu-
ally used as a margin to separate the score F (Y i∗) with score
of all other possible slot sequences in Ineq. (3). For unlabeled

training sample, L(Y j , Y j∗) is actually used as a margin to
separate the slot sequence that get the highest score with all
other slot sequences in Ineq. (4). ζi, ζ̄j and ζ̂k are the slack
variables that penalize the slot label sequence violating the
margin constraints.

Noting that different from traditional TSVM, there is an
additional constraint (Ineq. (5)) in the optimization problem.
Basically, a subset of confident labeled training samples are
selected to guarantee that the new decision boundary learned
from unlabeled data would not make mistake for these sam-
ples. Using stochastic gradient descent algorithm, each it-
eration of the semi-supervised training consists two phases.
In the first phase, the training sweeps over the mixture of la-
beled training data and unlabeld training data. During the first
phase, the confident subset S is formed by the labeled train-
ing data that satisfying the constraint (Ineq. 3). In the second
phase, the model is only trained on the confident subset.

Note that Ineq. (3), (4) and (5) are equivalent to the fol-
lowing equations:

ζ = [ max
Y ̸=Y ∗

(F
(
Y ) + L(Y, Y ∗)

)
− F (Y ∗)]+, (9)

where [x]+ is the Hinge function that maps x to zero when
x is smaller than zero, otherwise [x]+ = x. By substituting
all the slack variables ζi, ζ̄j and ζ̂k using Eq. (9), the con-
strained optimization problem is transformed to the following
unconstrained optimization problem:

min
W,A

F (W,A) =
1

2C
||W ||22 +

1

2C
||A||22

+

n∑
i=1

[ max
Y i ̸=Y i∗

(
F (Y i) + L(Y i, Y i∗)

)
− F (Y i∗)]+

+ λ̄

n+m∑
j=n+1

[ max
Y j ̸=Y j∗

(
F (Y j) + L(Y j , Y j∗)

)
− F (Y j∗)]+

+ λ̂
∑

k∈S⊆[1,n]

[ max
Y k ̸=Y k∗

(
F (Y k) + L(Y k, Y k∗)

)
− F (Y k∗)]+.

(10)

where λ̄ = C̄
C and λ̂ = Ĉ

C .
In TSVM, the regularization weight λ̄ for unlabeled sam-

ples is difficult to tune. Big λ̄ usually seriously degrades the
performance of model in which labeled training samples have
little effect, while small λ̄ makes model similar to the model
trained by labeled data alone. As discussed before, we pro-
pose a confident subset constraint to make semi-supervised
learning robust to the variations of λ̄. In the experiment,
without using the additional confident subset regularization
term (the last term in Eq. (10)), we rarely get a suitable λ̄
that makes the semi-supervised learning achieve improve-
ment over its supervised learning opponent. By setting the
λ̂ = 1, we find that the models trained using the proposed
semi-supervised method achieve similar performance by ran-
domly selecting λ̄ in the range of [0.01, 0.09]. Furthermore,
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using the modified TSVM, the model could achieve significant
improvement from the unlabeled data over the model trained
from labeled data alone.

Another critical factor in TSVM training is the selection of
the loss function L(Y, Y ∗) that defines the margin between a
slot sequence Y with slot sequence Y ∗. In our experiment,
the following two types of loss functions are investigated.

L(Y, Y ∗) =
T∑

t=1

1
(
y(t) ̸= y∗(t)

)
(11)

L(Y, Y ∗) = 1
(
y(1 : T ) ̸= y∗(1 : T )

)
(12)

Eq. (11) is Hamming loss [32] that is the number of frames at
which the slot label in a sequence Y is different from the Y ∗.
Eq. (12) is sequence level hard loss function that assigns loss
one to a slot label sequence that is different from the Y ∗. In
this paper, we use the margin defined by Eq. (12) as it gives
best performance in our experiment.

4.1. Training Procedure For Recurrent Transductive
Support Vector Machines

In this paper, models are trained via stochastic gradient de-
scent method. For each training sample x(1 : T ), the training
procedure includes a forward inference and a backward learn-
ing.

h(0) h(1) h(T)...

x(0) f(0) x(1) f(1) x(T) f(T)

...

U V

W

O

1

2

m

...

1

2

m
...

1

2

m

...

y(0) y(1) y(T)
AA

Fig. 2. Recurrent transductive support vector machines for
slot tagging. U is the weight matrix connecting the word in-
put to the hidden layer, V is the weight matrix connecting
auxiliary feature input to the hidden layer, O is the weight
matrix connecting previous hidden state to the current hidden
state and W is the weight matrix connecting the hidden layer
to the output layer. A represents the weight for slot label tran-
sition features.

In the forward inference, a sweep over the RNN part in
the Fig. 2 is carried out to calculate the unnormalized score
vector y(t) based on the input x(t) and f(t) at each frame t.
Taking account of the slot transition feature, a slot lattice is
generated for the training sample x(1 : T ). In the training,
the best slot sequence Y top and the runner up slot sequence
Y second are derived from the lattice using Viterbi algorithm.
In the decoding phase, only the best slot sequence is needed.

Due to the hinge function and maximum function, the ob-
jective function of the unconstrained optimization (Eq. 10) is
not differentiable. In backward learning, the sub-gradient [33]
is used. For labeled training sample Xi, the sub-gradient is

∂ζi
∂θ

=
∂F (Y itop)

∂θ
− ∂F (Y i∗)

∂θ
. (13)

when the slot sequence Y itop is not identical to the ground
truth slot sequence Y i∗. Otherwise, when the margin between
the yi

∗ and the runner up slot sequence Y isecond is less than
the margin L(Y i), the sub-gradient is

∂ζi
∂θ

=
∂F (Y isecond)

∂θ
− ∂F (Y i∗)

∂θ
. (14)

For the unlabeled data Xj , as we discussed before, the Y jtop

is assumed to be the same as Y j∗. So when the margin be-
tween the Y jtop and the runner up slot sequence Y jsecond is
less than the margin L(Y j), the sub-gradient is

∂ζj
∂θ

=
∂F (Y jsecond)

∂θ
− ∂F (Y jtop)

∂θ
. (15)

In Eq. (13), (14) and (15), θ represents the weights in RTSVMs
that include W , A, U , V and O. In the backward learning,
the weights W , A, U and V are updated using sequence level
mini-batch method. The weights O are updated using back-
propagation through time (BPTT) [34].

In each training iteration, a confident subset of labeled
samples is automatically formed and appended to the original
training data. Scheduling the confident subset labeled data at
the end of training data is intend to penalize the new deci-
sion boundary learned from unlabeled data that separates the
confident clusters learned from labeled training data.

5. EXPERIMENTS

To investigate the effectiveness of the proposed RTSVM
method, we need to do two types of experiments. One is
to test whether max-margin training criteria on top of RNN
feature representation could achieve better performance in
slot tagging. This can be tested by setting the regularization
weight for unlabeled samples and the confident subset to
zero. In this way, the proposed RTSVM becomes a supervised
method. The other one is to test whether the proposed RTSVM
is able to use unlabeled data to improve the model that trained
from labeled data alone. To do this test, we partition the orig-
inal training data into two parts. One part of the training data
is treated as unlabeled data by removing all the slot labels.

5.1. Data

In this paper, the experiments are carried out on two datasets.
The first one is the benchmark ATIS (Air Traffic Intelligent
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Service) dataset [19, 8] that consists of 893 testing queries
from ATIS-III, Nov93 and Dec94, and 4978 training utter-
ances from the rest of ATIS-III and ATIS-II. There are 127
unique slot tags.

The second data used in the experiment is internal live
log data which contains 8 domains. In total, there are 52506
text queries for training and 5290 text queries for testing. The
training data contains 71 unique slot tags.

5.2. Settings

In all the experiments, a predetermined maximum iteration
number is set to terminate the training for RTSVMs. Ada-
Grad [35] is used to dynamically adjust learning rate as fol-
lows:

αi(t) =
α√∑t

j=1 gi(t)
2 + ε

, (16)

where αi(t) is the learning rate for weight i at time step t.∑t
j=1 gi(j) is the sum of all the historical gradients of weight

i. A small positive ε is used to make the AdaGrad robust. As
indicated by Eq. (16), the learning rate gets too small very
quickly. In the experiment, the learning rate is reseted every
20 iterations “α := α/10” to slow the learning rate reduction.

In all the experiments, we set the hidden layer size to 300
and initial learning rate to 0.1. The regularization weights
for unlabeled samples and the confident subset are set to 0.01
and 1.0, respectively. The surrounding two words of the cur-
rent word are used as auxiliary feature represented as bag of
words. We set the maximum iteration to 20 for ATIS and 40
for internal live data.

5.3. Results on ATIS

ATIS is a well known benchmark data set in spoken language
understanding. The slot tagging F1 scores obtained by dif-
ferent models based on the same data settings are reported
in Table. 1. The bottom block gives the results using the
supervised version of the proposed RTSVM methods. Using
different random seeds, ten different models can be trained
from different random weight initialization. “-min”, “-max”,
and “-average” gives the minimum, maximum and average F1
scores obtained by the ten different models.

“CRF [10]” gives the F1 score of the linear chain CRF slot
tagger. It is obviously that RNN and its variants based methods
achieve superior improvement over CRF. The simple RNN
based slot tagger in [6] achieves F1 score of 94.1%. Two
different types of RNN, namely Elman RNN and Jordan RNN,
are extended and compared in [10]. Their results show that
by taking the whole sequence into account, the bidirectional
extension improves the Elman and Jordan RNN. The results in
[10] show that Elman RNN performs better than Jordan RNN
in slot tagging. The best result reported in [10] is achieved by
the Elman and Jordan hybrid model that get F1 score 95.1%.

model F1(%)
CRF [10] 92.9
RNN [6] 94.1
RNN-Jordan[10] 94.3
RNN-embed[36] 94.4
RNN-joint [9] 94.6
RNN-Elman[10] 95.0
RNN-hybrid[10] 95.1
LSTM [7] 94.9
LSTM-ma3[7] 94.9
deep-LSTM [7] 95.0
RNNEM-min[11] 94.7
RNNEM-average[11] 95.0
RNNEM-max[11] 95.2
supervised-RTSVM-min 94.9
supervised-RTSVM-average 95.2
supervised-RTSVM-max 95.5

Table 1. F1 score (in %) for slot tagging on ATIS achieved
by different models using only lexicon feature. ”-min”, ”-
max”, and ”-average” each denotes minimum, maximum and
average F1 scores for a corresponding method.

By jointly modeling the intent classification and slot tagging
[9], “RNN-joint” can obtain F1 score of 94.6%.

In general, the advanced RNN, for example long short
term memory network (LSTM) and RNN with external mem-
ory (RNNEM) gets better F1 scores than simple RNN by
improving the sequence representation capability. Replacing
simple RNN with LSTM, the F1 score achieve absolute 0.7%
improvement. The RNNEM is recently proposed by Peng et al.
[11]. In their experiments, they generated 10 different models
using different random seeds. The best F1 score achieved
by RNNEM is 95.2%. On average, RNNEM obtains F1 score
95.0%. Using the same method as [11], we also generate
10 different models. As shown in the bottom of Table. 1,
the supervised version of RTSVM achieves the state-of-the-art
F1 score on ATIS data. The average F1 score of RTSVM is
similar to the best score of RNNEM. F1 score distribution
of 10 RTSVM models gets significant improvement over the
average score of RNNEM (z-test p− value = 0.0002).

To test the semi-supervised RTSVM performance on ATIS
data, we generate an unlabeled data set from original training
data by sampling a subset of labeled data and removing all the
slot labels. The rest of labeled data is used as training data for
supervised RTSVM. As shown by row “10L+90U” in Table. 2,
based on 10% of training data, the supervised RTSVM get av-
erage F1 score 87.2%. Taking advantage of additional 90%
of original training data (treated as unlabeled data), the pro-
posed semi-supervised method gets absolute 0.7% improve-
ment over the models trained from labeled data alone. On
“10L+90U” settings, the paired t-test shows that the semi-
supervised method get significant improvement over the su-
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setting ss(%) s(%)
90L+10U 95.1 94.9
80L+20U 94.9 94.7
70L+30U 94.7 94.6
60L+40U 94.0 94.2
50L+50U 94.0 93.9
40L+60U 93.4 93.2
30L+70U 92.7 92.3
20L+80U 90.9 90.5
10L+90U 87.9 87.2
p-value 0.017

Table 2. Average F1 score (in %) comparison of semi-
supervised RTSVM with supervised RTSVM using different
data settings. “XL+YU” means that X percent of data is
treated as labeled data, and Y percent of data as unlabeled
data. “ss” and “s” columns give the semi-supervised results
and supervised results, respectively. Each F1 score in the ta-
ble is an average F1 score of 10 models trained using different
random seeds.

pervised method (p− value = 0.006). Based on the average
F1 score distributions over different data settings, the paired
t-test also show that the semi-supervised RTSVM gets signifi-
cant improvement over supervised RTSVM with p− value =
0.017 shown in the bottom row in Table. 2.

5.4. Results on Internal Live dataset

In a multi-domain language understanding systems [37], a
user query is firstly classified into different domains. A do-
main dependent slot tagger is further applied to extract the
slot labels from the query. In this section, we compare differ-
ent slot models on different domains. In this paper, we focus
on slot tagging task. Queries are classified into different do-
mains according to the oracle domain labels. Table. 3 gives
the overall performance comparison of different models us-
ing the weighted average F1 score over all domains. In this
table, we can find that the proposed supervised RTSVM also
achieve the best performance. On average supervised RTSVM
get 0.6% and 0.7% F1 score improvement over joint-RNN [9]
and RCRF [8], respectively.

model F1(%)
CRF 92.6
RNN 92.8
RCRF 93.9
joint-RNN 94.0
supervised-RTSVM-min 94.0
supervised-RTSVM-average 94.6
supervised-RTSVM-max 95.2

Table 3. The weighted average F1 score of different slot tag-
ging models over all the domains.

Table. 4 gives the average F1 score comparison of semi-
supervised RTSVM with supervised RTSVM. Each F1 score in
Table. 4 is an average F1 score of 90 different models accord-
ing to different training data settings and random seeds. For
each domain, we consider about 9 different training data set-
tings in which the unlabeled data portion ranges from 10% to
90% as shown in Table. 4. For each domain and each type of
data setting, 10 different models are generated using different
random seeds. Overall speaking, except on “dom-5” domain,
the semi-supervised RTSVM achieves improvement over its
supervised opponent. Based on the average F1 score distribu-
tion over different domains, the paired t-test shows that semi-
supervised RTSVM gets significant improvement from the un-
labeled data (p− value = 0.035).

domain ss(%) s(%)
dom-1 96.54 96.53
dom-2 95.90 95.84
dom-3 93.31 93.15
dom-4 88.00 87.87
dom-5 94.20 94.29
dom-6 87.39 87.11
dom-7 96.08 95.98
dom-8 97.72 97.70
p-value 0.035

Table 4. The average F1 score comparison of semi-
supervised RTSVM with supervised RTSVM. “ss” and “s”
columns give the average F1 score of semi-supervised
RTSVMs and supervised RTSVMs on different domains.

6. CONCLUSIONS

This paper presented a recurrent transductive support vec-
tor machine (RTSVM) for semi-supervised slot tagging. The
RTSVM is a combination of a recurrent neural network (RNN)
and a transductive support vector machine (TSVM), which
uses a RNN to do sequence feature representation and a large
margin based TSVM to do semi-supervised learning. In or-
der to make the semi-supervised learning robust to the varia-
tions of the regularization weight for unlabeled data, we pro-
posed to add an confident subset regularization term to ob-
jective function. In the training, the confident subset reg-
ularization avoids using the new decision boundary learned
from unlabeled data to separate the confident clusters learned
from labeled data. By removing the unlabeled data regular-
ization and the confident subset regularization from the objec-
tive function, the proposed RTSVM is transformed to a super-
vised learning method. Based on the experiments on a bench-
mark data and an internal live log data, the supervised ver-
sion of RTSVM achieves the state-of-the-art performance on
both datasets. By learning from the unlabeled data, the semi-
supervised RTSVM achieved significant improvement over the
model learned from labeled data alone.
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