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ABSTRACT

This study proposes an i-Vector based approach to gender
identification. Gender-labeled utterances from the Fisher En-
glish (FE) corpus are used to formulate an i-Vector extraction
framework, and a Probabilistic Linear Discriminant Anal-
ysis (PLDA) back-end is employed to compute the scores
for gender identification. A novel duration mismatch com-
pensation strategy is also presented that offers very little
degradation in identification accuracy even with a large re-
duction in the duration of the test-segment. The proposed
method is shown to consistently outperform a GMM-UBM
based gender-identification scheme on several test-sets cre-
ated from a held-out portion of the FE corpus, and is able to
achieve an identification accuracy of up to 97.63%. On the
severely distorted and multilingual DARPA-RATS (Robust
Automatic Transcription of Speech) corpora, the proposed
approach achieves an identification accuracy of 76.48% us-
ing only the FE data in training. Next, a novel unsupervised
domain adaptation strategy is also presented that utilizes only
unlabeled RATS data to adapt the out-of-domain PLDA pa-
rameters derived from the FE training data. The strategy is
able to offer a 6.8% relative improvement in identification
accuracy, and a 14.75% relative reduction in Equal Error Rate
(EER) compared to using the out-of-domain PLDA model on
the RATS test-utterances. These improvements are signifi-
cant since: 1) RATS test-utterances are severely distorted, 2)
No labeled data of any kind is used for 4 of the 5 languages
present in the test-utterances.

Index Terms: gender identification, i-vector, noisy, mul-
tilingual, duration mismatch, unsupervised domain adapta-
tion

1. INTRODUCTION

Male and female speech differ due to a variety of factors,
which can be primarily examined under three broad cate-
gories: physiological, acoustical and perceptual [1]. Several
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physiological parameters responsible for the differences be-
tween male and female speech have been identified, and
examined. The primary reason for the differences between
male and female speech are: difference in the vocal tract
length, difference in length of vocal folds, and difference in
the larynx anatomy [1].

Gender identification from speech is important for knowl-
edge extraction to direct model selection/weighting in Au-
tomatic Speech Recognition (ASR), dialog systems, and di-
arization applications. While gender identification may be a
somewhat solved problem for clean and monolingual corpora
such as TIMIT, in extreme adverse conditions such as the
DARPA RATS corpus, where the speech is both highly dis-
torted and multilingual, gender identification is an extremely
challenging problem. An automatic gender identification ap-
proach that can work on severely distorted and multilingual
speech utterances, can serve a plenitude of purposes: im-
proving speaker independent speech recognition accuracy;
improving speaker-recognition accuracy. Gender identifica-
tion algorithms are also used in accent identification, speaker
health identification, emotion recognition, and in commercial
applications such as: surveillance, call-center business appli-
cations, Human Computer Intelligent Interaction [1, 2, 3].

Several approaches for gender identification have been re-
ported in the literature [1, 4, 5, 6]. In the gender identifi-
cation approach outlined in [1], acoustic features including
autocorrelation, linear prediction coefficients and others were
used to form reference and test templates for vowels, frica-
tives, and unvoiced fricatives, and Euclidean distance was
used in the identification experiments. In [4], a combina-
tion of scores using pitch estimation, and those from a Hid-
den Markov Model (HMM) system trained using Mel-scale
based filter-bank coefficients, was used for gender identifi-
cation. More recently, a Gaussian Mixture Model Universal
Background Model (GMM-UBM) framework was used for
gender identification in [5]. The use of GMM supervectors
to train Support Vector Machines (SVM) for gender identi-
fication was also explored in the same work [5]. Very re-
cently, a combination of several different strategies for gen-
der and age identification like GMM-UBM posteriors based
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scoring, GMM mean supervectors based SVM classification,
sparse representation based on UBM weight posterior proba-
bility scores etc. were reported in [6].

i-Vector based systems are the current state-of-the-art in
speaker verification, and offer a very effective way of repre-
senting speaker-specific models in a fixed dimensional space
[7]. i-Vectors have also found widespread use in language
identification [8]. Motivated by prior work on gender identi-
fication using the GMM-UBM framework, and the continued
widespread use of i-Vectors in speaker verification/language
identification tasks, this study presents a gender identification
framework using i-Vectors.

The current study proposes an i-Vector based gender iden-
tification approach, trained using gender-labeled data from
the Fisher English (FE) corpus, with a portion of the cor-
pus randomly set aside for creating test-sets [9]. To identify
the gender of a test utterance, the corresponding i-Vectors are
extracted and scored against i-Vector models for both male
and female speakers, using a Probabilistic Linear Discrimi-
nant Analysis (PLDA) back-end [10]. A novel duration mis-
match compensation approach to handle shorter duration test
segments is also presented. The proposed approach is shown
to consistently outperform a GMM-UBM based gender iden-
tification approach on the FE test-sets of different duration.

The proposed gender identification approach is also con-
sidered on the severely noisy and degraded test utterances
from the DARPA RATS corpora, with the test utterances from
8 different channels, and in 5 different languages (English,
Pashto, Farsi, Urdu and Arabic). We also present a novel un-
supervised domain adaptation strategy which uses unlabeled
RATS data to adapt the out-of-domain PLDA back-end (de-
rived from the FE training data) used in the gender identifica-
tion.

This paper is organized as follows: Sec. 2 describes
the proposed i-Vector PLDA based gender identification ap-
proach. A novel unsupervised domain adaptation strategy to
adapt an out-of-domain PLDA model is presented in Sec. 3.
Experiments, results and discussions are presented in Sec. 4,
and the conclusions are in Sec. 5.

2. I-VECTOR BASED GENDER IDENTIFICATION

2.1. i-Vector Extraction

An i-Vector is a fixed low dimensional representation of
a speech utterance that preserves the speaker-specific in-
formation. Since gender is important as a speaker-specific
attribute, we hypothesize that gender information can be well
represented by i-Vectors. In the i-Vector paradigm, a gender-
specific GMM mean supervector M can be represented in
terms of the gender and channel independent supervector m,
a low rank total variability matrix T , and a vector w as

M = m+ Tw. (1)

In (1), w is a random vector with a standard normal distribu-
tion N(0, I). The T matrix is learned using large amounts of
labeled training data. In the gender-identification framework,
utterance-labels are the gender of the corresponding speakers.
The i-Vector of an utterance are its coordinates in the total
variability space (i.e. space spanned by the columns of T ),
extracted as the maximum a posteriori (MAP) point estimates
of w given the utterance [11].

2.2. Probabilistic Linear Discriminant Analysis (PLDA)
back-end for Gender Identification

After the training and test i-Vectors have been extracted, a
variety of scoring techniques can be used to decide if they
correspond to the same or different labels [7, 12, 13]. Here,
we use a Probabilistic Linear Discriminant Analysis (PLDA)
back-end for scoring which is the current state-of-the-art in
speaker recognition systems.

Using i-Vectors extracted from a large labeled-training
set, a PLDA model learns the within-class and across-class
variabilities using an Expectation Maximization (EM) algo-
rithm [10]. Specifically, we use a Gaussian PLDA (G-PLDA)
of the form described in [12]. AssumingR training utterances
of a gender, an entire collection of gender-specific i-Vectors
may be expressed as {ηr : r = 1, 2, ..., R}. In the G-PLDA
parlance, an i-Vector of this collection can be expressed as,

ηr = m+ Φβ + εr. (2)

In (2), m is a global offset, columns of Φ constitute a basis
for the gender-specific subspace , β corresponds to the coor-
dinates in the gender-specific subspace, and εr is a Gaussian
with zero mean and covariance Σ. The G-PLDA model pa-
rameters {m,Φ,Σ} are estimated using an EM algorithm on
a large collection of gender-labeled training data. Given a
test utterance, scores corresponding to competing hypotheses
that belong to a female, or a male speaker are computed using
the G-PLDA model, and a decision is made in favor of the
hypothesis with the higher score. A closed form solution of
G-PLDA model based score computation is given in [12], and
is employed in the present work. For computing the scores,
each gender is represented by a single i-Vector computed as
the average of all training i-Vectors of the corresponding gen-
der. A single gender-identification trial thus requires access
to the two gender-specific i-Vectors, the test i-Vector, and the
G-PLDA model parameters {m,Φ,Σ}.

3. UNSUPERVISED DOMAIN ADAPTATION FOR
OUT-OF-DOMAIN PLDA MODEL

The estimation of PLDA model parameters require large
amounts of labeled training data for the corresponding do-
main. For many domains, such a large collection of labeled
and balanced data may not be available, and in the extreme
case, there may not be any labeled data for some domains. For
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example, one such specific case occurs when large amounts of
gender-labeled data from Conversational Telephone Speech
(CTS) is available to train an i-Vector PLDA based gender
identification system, but no gender-labeled data from radio-
channel speech is available. Such a system, trained entirely
on CTS data may not perform well on test utterances from
the radio-channel data. Recently, speaker recognition systems
have focused on adapting out-of-domain PLDA models to a
new domain with no labeled data [14, 15]. Such unsupervised
domain adaptation strategies focus on using clustering algo-
rithms to assign labels to unlabeled i-Vectors corresponding
to a new domain, and then using these estimated labels to
adapt the out-of-domain PLDA model to the new domain.
The following subsections outline the clustering and adap-
tation steps involved in adapting an out-of-domain PLDA
model to a new domain.

3.1. Unsupervised Binary Clustering

Unsupervised clustering techniques to perform domain adap-
tation for speaker recognition system were investigated in
[15], and the performance of the speaker recognition system
was shown to be sensitive to the choice of clustering algo-
rithm used. In the same work, Agglomerative Hierarchical
Clustering (AHC) was reported to offer better performance
compared to other techniques. For a gender ID system, how-
ever, the number of desired clusters (i.e. 2) is much less
compared to the number of clusters used in a typical speaker
recognition system (AHC was used to create 1000 clusters in
[15]).

We investigated 3 unsupervised clustering techniques:
AHC, K-means and Label Generating-Max Margin Cluster-
ing (LG-MMC), and observed the gender ID system to be
not very sensitive to the choice of the clustering algorithm.
Label Generating-Max Margin Clustering (LG-MMC) is an
unsupervised algorithm that operates by maximizing the mar-
gin of a 2-class dataset by generating the most violated labels
iteratively, which are then combined using a multiple kernel
learning strategy [16]. We adopted LG-MMC to assign labels
to the unsupervised data since it can simultaneously learn
both the optimal gender-labels, and the optimal separating
hyperplane between the utterances corresponding to the two
genders [16].

3.2. Model Adaptation for Out-of-domain PLDA Model

Once labels of the new domain’s i-Vectors are estimated, we
employ the same out-of-domain PLDA model adaptation pro-
cedure as described in [14]. Specifically, let Γ be the across-
class covariance matrix (Γ = ΦΦT ), and Λ be the within-
class covariance matrix (same as Σ of the G-PLDA model).
Let (Γout,Λout) denote the parameters estimated using a re-
source rich out-of-domain gender-labeled dataset. Using the
labels estimated by LG-MMC on the new domain’s i-Vectors,

a new set of parameters (Γin,Λin) is estimated. Next, a set of
adapted parameters (Γadapt,Λadapt) is evaluated using,

Γadapt = α1Γin + (1− α1)Γout (3)

Λadapt = α2Λin + (1− α2)Λout. (4)

The parameters α1, α2 ∈ [0, 1] appearing in (3) and (4)
control the contribution of the in-domain, albeit initially un-
labeled data to adapt the out-of-domain G-PLDA model. Fig-
ure 1 shows the setps involved in adapting an out-of-domain
PLDA model to a new domain. The adapted parameters
(Γadapt,Λadapt) are then used to perform a G-PLDA based
scoring for gender identification on i-Vectors of the test utter-
ances from the new domain.

4. EXPERIMENTS, RESULTS AND DISCUSSIONS

4.1. Datasets

4.1.1. Fisher English (FE) Datasets

For training the proposed gender identification (ID) system,
utterances from the FE corpus are used [9]. Specifically, ap-
proximately 11% of all FE utterances are randomly set aside
for testing, and all remaining utterances used in training. A to-
tal of 20,652 utterances were used in training, and 2,600 utter-
ances for testing. The average length per utterance after run-
ning an unsupervised Speech Activity Detection (SAD) algo-
rithm was 234s [17]. Smaller training and test-sets were also
created from the original sets described previously. We aimed
to investigate the proposed gender ID system’s performance
across several test-sets with different duration. To this end,
test-sets of duration 3s, 10s, and 20s were created from the
original (complete) test-sets, by randomly selecting a single-
segment of the desired duration per file.

i-Vector based speaker recognition systems are known to
degrade when tested on shorter duration segments. To com-
bat this issue, including shorter duration segments in training
was suggested in [18]. We created separate training-sets of
duration 3s, 10s, and 20s from the FE corpus by following
the same procedure that was used for creating shorter dura-
tion test-sets. These training-sets were used later for testing
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Fig. 1. Adapting the out-of-domain PLDA model to a new
domain using unlabeled data.
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shorter duration test-sets, using a novel duration mismatch
compensation strategy (presented in Sec 4.4).

4.1.2. RATS Datasets

The DARPA RATS program was aimed at developing sev-
eral speech applications such as Keyword Spotting (KWS),
SAD, Speaker Identification (SID), and Language Identifica-
tion (LID) in severe noisy conditions. For the program, CTS
data was retransmitted through eight different communication
channels using multiple transmitters, receivers, and digitiza-
tion equipment by the Linguistic Data Consortium (LDC). As
a result of real-world radio transmission, the RATS data is
severely degraded due to a variety of phenomena like high
energy transmission bursts, nonlinear speech distortions, high
channel noise, frequency shifts, and band limits [19].

For the RATS test-set used in this study, we used a to-
tal of 438 utterances from LDC2011R77, LDC2011E86,
LDC2011E99 and LDC2011E111. A trained listener pro-
vided the gender-labels of the test files for the purpose of
scoring. The average length per utterance was 816s. The
test-set had data from all eight channels(A, B, C, D, E, F,
G, H), and the noise-free source (SRC) utterances, with 49
utterances per channel for all channels and SRC, except H
for which 46 utterances were present. Table 1 shows the
composition of the RATS test in terms of the 5 languages
present. Another dataset, with no gender-labels was also
created using LDC2011R77, LDC2011E86, LDC2011E99
and LDC2011E111, for use in the out-of-domain PLDA
model adaptation experiments. Specifically, 480 unlabeled
utterances were used for channel H, and 502 utterances per
channel for each of the remaining channels and the SRC.

Language No. of Test utterances
ENGLISH 90
PASHTO 90
FARSI 78
URDU 90

ARABIC 90
TOTAL 438

Table 1. Composition of the RATS test-set.

4.2. System configuration

4.2.1. Proposed i-Vector PLDA based Gender ID System

We use Mel-Frequency Cepstral Coefficients-Shifted Delta
Coefficients (MFCC-SDC) as the acoustic features in all our
experiments in this study [20]. MFCC-SDC are known to be
very efficient in several acoustic event detections tasks such
as LID and emotion recognition [20, 21]. It has been re-
ported that male and female speech exhibit a gender-specific
dynamic behavior due the difference in vocal tract dimensions
[22]. We adopted the use of SDC features to utilize additional

temporal information alongwith MFCC features, which may
benefit from capturing the gender-specific dynamic behavior
of speech. A common [7-1-3-7] configuration was used, with
a window size of 25ms and a skip rate of 10ms to yield 56-
dimensional features per frame [21]. The MFCC-SDC fea-
tures were then used to train a UBM. For the UBM training,
4 iterations of the EM algorithm were used until the penulti-
mate split, and 15 EM iterations were used in the final split.
The same data used in UBM training was used to train the T
matrix using 5 iterations of the EM algorithm [7, 23].

4.2.2. GMM-UBM Baseline System

The performance of our proposed i-Vector PLDA based gen-
der ID system was compared against a standard GMM-UBM
based approach. A MAP adaptation algorithm was used to
adapt the UBMs developed during i-Vector training to obtain
gender-specific GMMs [24]. The GMMs were then used to
calculate the likelihood of the test utterances to assign gender
labels.

4.3. Gender Separability in the i-Vector Space

We also investigated how genders are distributed in the i-
Vector space, and if i-Vectors belonging to male and female
speakers are clearly separated. To this end, a 3-dimensional
projection of the 400-dimensional i-Vectors was obtained us-
ing Maximization of Mutual Information (MMI) based pro-
jection [25]. This MMI based projection has been shown
to be better for representing several classes of high dimen-
sional data in low dimensions, versus traditional techniques
like Principal Component Analysis (PCA) or LDA [25]. Fig-
ure 2 shows a scatter plot of the first 2 dimensions of the
MMI based projection for the FE test-set (complete duration).
Clearly, gender information is well represented in the i-Vector
space, with female (black) and male (red) speakers well sep-
arated.

4.4. Compensating Duration Mismatch for Gender Iden-
tification

We investigated the degradation in performance of the pro-
posed i-Vector PLDA based gender ID approach when the
duration of the test-segment is drastically reduced. To this
end, we tested the system trained on complete FE utterances
on FE test-sets of shorter duration. Table 2 shows the classifi-
cation accuracy and EER obtained on 4 different test-sets. As
can be seen, the accuracy decreases sharply from 97.62% for
complete-duration test utterances to 65.58% for test-segments
of duration 3s. A very drastic increase in corresponding EER
can also be observed. It may also be observed that the degra-
dation in performance is highly nonlinear, with the most se-
vere degradation occurring when the test-segment’s duration
is reduced to 3s.
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Fig. 2. First 2 dimensions of MMI based projection of 400-
dimensional i-Vectors of FE female (in black), and male (in
red) test-set utterances.

Test Segment
Duration Accuracy (%) EER (%)

Complete 97.62 2.31
20s 82.12 17.85
10s 77.77 22.10
3s 65.58 34.33

Table 2. Degradation in performance of the proposed i-
Vector PLDA based gender ID system due to duration mis-
match. The gender ID system was trained on complete-
duration FE training set.

It was observed in [18] that including shorter duration
segments in training can help to mitigate the effect of dura-
tion mismatch in a speaker recognition system. Along simi-
lar lines, we propose a novel strategy of training separate i-
Vector PLDA systems such that the training and test duration
segments are exactly matched. To keep the approach compu-
tationally efficient, we extracted only a single shorter dura-
tion training segment from the corresponding larger duration
FE training utterance. While including more training data for
shorter duration segments by creating multiple training seg-
ments per complete-utterance can certainly offer better gender
ID performance, it will also lead to increased computational
burden. Our simple, yet, novel strategy of using only a sin-
gle short duration training segment per complete-utterance is
highly effective, as we shall see subsequently (in Table 4).

Since we trained separate i-Vectors based systems corre-
sponding to the different duration FE test-sets, both the num-
ber of components in the UBM, and the i-Vector dimensions
were adjusted to account for the corresponding duration of the
training utterances. Table 3 lists the configuration of duration
mismatch compensated i-Vector PLDA based gender ID sys-
tems that were used on test-sets of corresponding duration.

Train
Duration

No. of mixtures
in UBM

i-Vec
Dim

3s 512 200
10s 1024 200
20s 1024 200

Complete 1024 400

Table 3. Number of mixtures in the UBM, and i-Vector di-
mensions for the training-sets of different duration.

4.5. Gender Identification Results

4.5.1. Results on Fisher English Data

Table 4 shows classification accuracy and EER obtained us-
ing our proposed approach compared against a GMM-UBM
baseline system. For all the EERs reported in this study, the
target class was female and Likelihood Ratio (LR) scoring
was used. As can be seen, our approach consistently outper-
forms the GMM-UBM baseline in both metrics, and is able
to achieve an accuracy of 97.62% on the complete duration
test-set, and a low EER of 2.31%.

The difference in classification accuracy between our pro-
posed system and the GMM-UBM baseline increases with in-
crease in the duration of test (and training) set. It appears that
with an increase in duration of test data, the i-Vectors are bet-
ter able to utilize the additional information contained in the
longer utterances than a GMM-UBM based framework.

It can also be observed that the identification accuracy
and EER suffer very little degradation compared to the cor-
responding results in Table 2, demonstrating the efficacy of
the novel duration mismatch compensation strategy presented
earlier in sec 4.3. Since the test segments for the experi-
ments reported in Table 2 and Table 4 are the same, a one-to-
one comparison for the corresponding identification accuracy
and EER of the i-Vector PLDA based gender ID system is
valid. For the test-segments of durations 3s, the proposed do-
main mismatch compensation strategy offers an absolute gain
of 25.69% in identification accuracy, and a 25.66% absolute
reduction in EER compared to the uncompensated i-Vector
PLDA based gender ID system.

Test
Duration Accuracy (%) EER (%)

I-VEC
PLDA

GMM
UBM

I-VEC
PLDA

GMM
UBM

Complete 97.62 95.23 2.31 4.46
20s 96.15 94.62 3.85 4.69
10s 94.85 93.65 5.15 6.23
3s 91.27 90.73 8.67 9.00

Table 4. Comparison of classification accuracy, and EER
between the i-Vector PLDA based Gender ID approach and a
GMM-UBM based system on test-sets from the FE corpus.
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4.5.2. Results on RATS Data

Our proposed gender ID system was also tested on utterances
from the RATS test set. Since no gender-labeled RATS data
is available, an unsupervised domain adaptation strategy to
adapt the out-of-domain PLDA model (trained on the FE data)
was also implemented to account for the domain mismatch.

Table 5 shows the channel-wise Gender ID classifica-
tion accuracies, and EERs obtained using the out-of-domain
FE-only trained i-Vector PLDA based system (shown as BE-
FORE), and that obtained after adapting the out-of-domain
PLDA model using unlabeled RATS data (shown as AFTER).
Clearly, the unsupervised domain adaptation approach gives
significant improvement, as evident by an increase in the av-
erage classification accuracy by 5.25% (relative improvement
of 6.8%), and a 3.08% (14.75% relative) reduction in the
average EER.

Channel Accuracy (%) EER (%)
BEFORE AFTER BEFORE AFTER

A 61.22 79.59 32.65 20.41
B 73.47 79.59 23.47 20.41
C 77.55 77.55 21.43 21.43
D 75.51 77.55 19.39 21.43
E 61.22 61.22 37.76 37.76
F 81.63 89.80 17.35 10.20
G 95.92 100 4.08 0.00
H 65.22 73.91 29.35 26.09

SRC 95.92 95.92 3.06 3.06
AVG 76.48 81.73 20.89 17.80

Table 5. Channel-wise classification accuracy, and EER of
the i-Vector PLDA based Gender ID approach. BEFORE
and AFTER refer respectively to results without, and with the
adapted PLDA model (using unsupervised domain adapta-
tion).

Since the test-set has utterances from multiple chan-
nels with widely varying degradation and characteristics, we
observe a large variation in performance for unsupervised
model adaptation, when viewed channel-wise. Specifically,
no change in classification accuracy is observed for channel
C, E and SRC utterances, whereas large improvements are
observed for channels A, F, and H. Here, the proposed model
adaptation approach is not able to offer any improvements on
the SRC test-utterances, since they correspond to clean CTS,
which is similar (but not the same) to the FE corpora gender-
labeled utterances. Thus, in this case, the out-of-domain
PLDA model (estimated using FE data) is already very close
to the adapted model. This hypothesis is also validated by the
already high classification accuracy (95.92%), and low EER
(3.06%) of the SRC test utterances. Moreover, the high SRC
results also point to language-robustness of our proposed
gender ID approach, as the SRC test utterances are from 5
different languages.

It appears that channel G test-utterances are gender iden-
tified perfectly (classification accuracy 100%) after model
adaptation, as a result of some channel artifacts which when
incorporated in the PLDA model (by the model adaptation)
improve gender separability in the i-Vector space. Appar-
ently, the nature of data from channels C and E prevent any
improvements. The i-Vector system trained using the com-
plete duration FE training-set was used for all the results in
Table 5. We have used optimized model-adaptation parame-
ters α1, α2 for the results, but it has been reported to be not a
significant issue, as the model adaptation has been shown not
to be sensitive around optimized values of the parameters as
observed in [14, 15].

5. CONCLUSIONS

In this study, we presented an i-Vector PLDA based strategy
for gender identification. We also presented a novel duration
mismatch compensation approach that offered little degrada-
tion in gender identification accuracy and EER, even with a
drastic reduction in the duration of the test-segments. Our
proposed approach outperformed a GMM-UBM baseline on
multiple test-sets created from the Fisher English corpus, and
achieved classification accuracy and EER of up to 97.63% and
2.31% respectively.

We tested our approach on the severely distorted and mul-
tilingual DARPA RATS data, where no labeled data was avail-
able to adapt the out-of-domain PLDA model derived from a
different corpus. We also presented a novel unsupervised do-
main adaptation strategy to adapt the out-of-domain PLDA
model using only unlabeled data. Efficacy of this strategy
is strongly validated by 6.8% relative gain in classification
accuracy, and a 14.75% relative drop in EER compared to
when only using the out-of-domain PLDA back-end. These
improvements are significant since: 1) the RATS test data is
highly degraded, with open-set languages, and from multi-
ple low performance communication channels, while all the
labeled training data is taken from the FE clean English cor-
pus; 2) The RATS test data has utterances from 4 unseen lan-
guages (only English is common to our RATS test-set and the
FE corpus). The proposed i-Vector PLDA based Gender Iden-
tification solution is highly effective for unseen noisy speech
applications.
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