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ABSTRACT

We propose approaches improving statistical machine translation
(SMT) performance, by developing name-aware language model
adaptations and sparse features, in addition to extracting name-
aware translation grammar and rules, adding name phrase table,
and name translation driven decoding. Chinese-English translation
experiments showed that our proposed approaches produce an ab-
solute gain of +2.3 BLEU on top of our previous high-performing,
name-aware machine translation system.

Index Terms— statistical machine translation, name translation,
sparse features, language model adaptation

1. INTRODUCTION

It has become increasingly important to extract reliable information
from the vast and multilingual streams of raw data flowing around
the world. Cross-lingual information distillation, such as entity link-
ing, event extraction, slot filling and question answer, can address
part of this need. However, a key bottleneck of high-quality cross-
lingual information distillation lies in the performance of statistical
machine translation (SMT). For example, in cross-lingual slot filling,
59% of omission errors and 85% of spurious errors were due to MT
errors on names [1]. Traditional SMT approaches focus on the flu-
ency and accuracy of the overall translation but fall short in their abil-
ity to translate certain information units (content words that contain
critical information), especially names, concepts, events and topics.
Names often contribute significantly to the meaning of sentences,
yet a typical state-of-the-art Chinese-English statistical MT system
can only translate 60% of person names correctly [1]. Furthermore,
incorrect name translations could also cause incorrect translations of
long contexts.

Prior research effort on incorporating name translations into
SMT systems all focused on loose coupling of the two systems.
They can be largely categorized into the following two types of ap-
proaches, namely, preprocessing and postprocessing. Preprocessing
approaches identify names in the source input and propose name
translations to the MT systems. Then name translation results can
be transferred from the source side to the target side using word
alignment, or can be added to the phrase table and let the language
models (LMs) decide which translations to choose [1]. [2] de-
veloped heuristic rules to create the “do-not-translate” list and [3]
learned supervised models to decide when to transliterate. In con-
trast, post-processing approaches explore online query names in a
cross-lingual information retrieval or question answering framework
to obtain translations and post-edit the MT output [4] [5] [6] [7].

In our prior work [8], we developed a name-aware machine
translation (NAMT) approach that is different from these prior ef-
forts. Our NAMT approach tightly integrates name processing into
the MT model, by jointly annotating parallel corpora, extracting
name-aware translation grammar and rules, adding name phrase ta-
ble, and exploiting name translations during decoding. The NAMT
system yields consistent gains on BLEU [9] and Translation Edit
Rate (TER) [10] on all test sets and up to 23.6% relative error reduc-
tion on name translation. There has been effort on employing and
studying the NAMT approach for other language pairs and specific
domains. For example, [11] replicated the NAMT approach using
Moses for English-Spanish translations, but observed that the room
for improvement on name translation accuracy is much smaller than
that for Chinese-English. Based on their named entity translation er-
ror analysis, they left named entities with more than one occurrence
to the SMT system to handle. For named entities with zero or one
occurrence, they used a specialized module to generate translations
and add them dynamically to the phrase table. This module merges
results from several name translation techniques, for example, dif-
ferent dictionaries. They observed a small but statistically significant
BLEU gain (+0.2) but no gain on name translation accuracy. On the
other hand, [12] proposed ideas for porting the NAMT approach to
handle names in the information technology domain.

In this work, we advance our prior research [8] by exploring
named entity information in language model adaptation for MT, both
for search and for N-best reranking with bilingual recurrent neu-
ral network language models, and by exploring sparse features and
name-aware sparse features. The rest of the paper is organized as fol-
lows. Section 2 describes the baseline MT system. Our prior work
of the name-aware machine translation approach is reviewed in Sec-
tion 3. Section 4 and Section 5 present our innovations on exploring
named entity information for SMT LM adaptation and sparse fea-
tures, respectively. Experimental results and discussions appear in
Section 6 and we conclude in Section 7.

2. BASELINE MT SYSTEM

Our baseline Chinese-English MT system, denoted baseline-MT,
is based on the hierarchical phrase-based translation framework
(Hiero) [13] using weighted synchronous context-free grammar
(SCFG). All SCFG rules are associated with a set of features that are
used to compute the derivation probabilities in a log-linear model
[14]. We incorporate six dense features for each SCFG rule, in-
cluding the IBM Model-1 lexical scores in both source-to-target and
target-to-source directions, relative frequencies for bilingual SCFG
rules in both directions learnt from the parallel data, phrase penalty
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for a rule with no non-terminal being used in derivation, rule penalty
for a rule with at least one non-terminal being used in derivation,
glue rule penalty if a glue rule is used in derivation, and translation
length as the number of words in the translation output.

The baseline MT system uses a log-linear combination of mul-
tiple language models (LMs) trained on various sources using mod-
ified Kneser-Ney smoothing algorithm [15] and converted to Bloom
filter LMs [16] supporting memory map. The feature weights are op-
timized by minimum error rate training (MERT) to maximize BLEU
scores [17]. The decoding is chart-based, and the standard CKY al-
gorithm is applied to derive translations from a packed forest.

3. BASELINE NAME-AWARE MACHINE TRANSLATION

The name-aware machine translation system we developed previ-
ously is described in [8], and this is the baseline name-aware MT
system for this paper, denoted baseline-NAMT. We use the name
tagged parallel corpora for training and name tagged test set with
name translations for evaluation. For training, we run our joint name
tagger on the training parallel text, replace tagged name pairs with
their entity types, and then use GIZA++ and symmetrization heuris-
tics to regenerate word alignment. We found the name tags appear
very frequently and the existence of such name tags yields improve-
ment in the word alignment quality. We merge the name-replaced
parallel data with the original parallel data, and extract grammars
from the combined corpus. Note that the joint name tagger ensures
that each tagged source name has a corresponding translation on the
target side (and vice versa), we can extract SCFG rules by treating
the tagged names as non-terminals.

For decoding, names in the test sets with their frequencies fewer
than five instances in the training data are translated through the
name translation system; and the rest are translated by the MT sys-
tem. Our decoder rewrites the non-terminals in SCFG rules into the
extracted names, hence allowing unseen names in the test sets to
be translated. Also, our decoder exploits the dynamically created
phrase table from name translations and competes with originally ex-
tracted rules, through the LMs, to find the best translation hypothesis
for the source language input. More details of this baseline-NAMT
system can be found in [8].

4. NAME-AWARE LANGUAGE MODEL ADAPTATION

We develop name-aware, topic-based language model adaptation
both for decoding and for N-best reranking. For decoding, we
combine a dynamically adapted word n-gram LM with the baseline
mixture of LMs for search. For N-best reranking, we investigate the
efficacy of name-aware bilingual recurrent neural network (BiRNN)
LM adaptation for N-best reranking. The general framework of
conventional topic-based LM adaptation approaches is as follows.
Topic analysis is conducted on documents in the LM training text
collection and each document is assigned a topic among K topics.
During testing, for each test set document, we identify its topic T �

through topic analysis and adapt the decoding LM or N-best rerank-
ing LM. Since we use different strategies for adapting the decoding
and reranking LMs, we discuss them separately in the following
subsections.

4.1. Name-aware Adaptation of Decoding Word N-gram LMs

Inspired by the work in [18], we investigate clustering-based topic
analysis and LDA topic analysis for adapting the decoding word n-
gram LM.

Clustering-based Topic Analysis. We use the CLUTO toolkit
1 to cluster the documents in the MT parallel training data into K

clusters. CLUTO first converts the set of documents into the vector
space format, i.e., representing each document as a feature vector,
then finds a predefined number K of clusters based on a specific cri-
terion. We choose the cosine-distance based metric to measure the
similarity between two documents. After clustering, we train one
word n-gram LM for each cluster using the documents in this clus-
ter, resulting K topic LMs. For this work, we modified the doc2mat
tool from CLUTO to correctly process Chinese documents. Dur-
ing decoding, for a test set document, we compute the perplexity of
each topic LM pti����� � i � K on this test set document where
ti is the ith topic, and select the topic cluster T � with the lowest
perplexity. The corresponding pT���� is selected as the adapted LM
LMa, that is, pLMa

�wjh� � pT��wjh�. We then combine LMa

in log-linear interpolation with the baseline mixture of LMs, de-
noted LMbg, for decoding, and tune the interpolation weight be-
tween LMa and LMbg, on one development set.

In the conventional clustering-based topic analysis, all words
(with optional stopwords removal and stemming) are considered to
construct the feature vectors for the documents. In our name-aware
approach, we use tagged named entities to construct the feature vec-
tors during training.

LDA Topic Analysis. LDA model [19] is a Bayesian exten-
sion of a mixture of unigram models where a vector of topic mixture
weights � is drawn from a prior Dirichlet distribution:
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where � � ��� � � � � �K represents the prior observation count of the
K latent topics and �k � �. For a document d � w�� w�� � � � � wn,
the LDA model assigns it the following probability:
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During training, the LDA analysis generates the topic mixture
weights � for each document and we choose the topic with the high-
est mixture weight as the topic for the certain document. Then we
train a topic-specific LM using documents belonging to each topic.
During decoding, for each test set document d � w�� w�� � � � � wn,
the LDA model generates a mixture of topics and we compute the
dynamically adapted LMa as follows:

pLMa
�wjh� �

KX
i��

�i � pti�wjh� (3)

where pti represents the ith topic specific LM and �i is the mixture
weight. We compute �i as follows [18]:

�i �

nX
j��

p�tijwj�p�wjjd�

p�tijwj� �
fjiPK

p��
fjp

p�wjjd� �
freq�wjjd�Pn

q��
freq�wqjd�

(4)

1http://glaros.dtc.umn.edu/gkhome/views/cluto
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where freq�wjjd� denotes the frequency of a word wj in the doc-
ument d and fji represents the frequency of a word wj generated
from a topic ti�i � �� �� � � � � K� over the training data, based on
the LDA analysis.

In this work, we employ the Java implementation of LDA using
Gibbs sampling for parameter estimation and inference 2, for LDA
topic analysis. Note that in our name-aware approach, we use tagged
named entities to represent the documents, instead of considering all
words as in the conventional LDA topic analysis.

4.2. Name-aware Adaptation of Bilingual RNN LMs

A recurrent neural network language model (RNNLM) [20] captures
complex long-distance history across sentence boundaries. Given
a sentence E � e� � � � ej � � � eJ , it predicts the current word ej
given the previous word ej�� and the previous hidden state vec-
tor hj��. A bilingual recurrent neural network (BiRNN) LM is
proposed in [21] and it produced significant gain on MT perfor-
mance compared to using monolingual RNN LMs (i.e., standard
RNNLMs trained on the monolingual data in the target language)
for reranking N-best lists. BiRNNLMs are trained on parallel cor-
pora and have stronger word prediction power than RNNLMs trained
on monolingual corpora, since for BiRNNLMs, word prediction can
be conditioned on the complete source sentence in addition to the
previous target word and hidden state vector, whereas monolingual
RNNLMs only condition word predictions based on the previous
word and hidden state vector. In other words, given a set of parallel
sentences and corresponding word alignment F�E�A where F �
f� � � � fi � � � fI , E � e� � � � ej � � � eJ , and A � a� � � � aj � � � aJ
denote a source sentence, target sentence, and a word alignment re-
spectively, the standard monolingual RNN LM for the target side is
p�ejjej��� hj���; whereas, the BiRNN LM can be represented as
p�ejjej��� hj��� F� A�.

For developing our BiRNN LMs, a “bag-of-word” (BOW) ap-
proach [21] is used on a source sentence to construct a sparse in-
put feature vector. The BOW approach does not consider word fre-
quencies in order to minimize the effect of frequent function words
like “the”. To minimize direct modeling of source-to-target word
translations, which has already been covered by IBM-1 model, i.e.
p�ejf�, the “less-one” approach is employed, in which we deactivate
the source words that are direct translations to the current and previ-
ous target words according to the word alignment. These translation
pairs may have been well captured by IBM translation models that
are used as features in the log-linear framework. Also, these aligned
source words may significantly reduce the impact of other predic-
tors, such as the previous target word predictor. In this work, the
BiRNN LMs are all trained with the BOW and less-one approaches.

We use the aligned sentence pairs following their orders in the
original training documents, for training BiRNN LMs. We selected
10% of the training data for cross-validation on word perplexity to
set the learning rates and to decide when to terminate the train-
ing. We use 100 output classes for the class layer in BiRNN to
reduce computational complexity, similar to factorizing the output
layer with the class layer in the RNNLM [22]. Words in the target
language vocabulary are assigned to the 100 classes based on their
frequencies, i.e., through frequency binning. We use the backprop-
agation through time algorithm [20] for training the weights. Ini-
tial learning rate is chosen as 0.1, with the learning rate started to
halve when the perplexity reduction on the validation set in cross-
validation is small.

2http://jgibblda.sourceforge.net/

The adaptation process for the BiRNN model is a one-iteration
retraining using the source input and their 1-best translation output
from the rescored n-best lists. We extend this approach to a topic-
based BiRNNLM training and adaptation paradigm. For BiRNN
LM, during training, we trainK BiRNNLMs based on parallel docu-
ments belonging to each topic. The topic assignment for each paral-
lel document is from the clustering-based topic analysis or the LDA
analysis on the source side, described above. During testing, we as-
sign each test set document its topic based on topic analysis on the
source input and select the corresponding topic-specific BiRNNLM
for rescoring. Then we adapt the topic-specific BiRNNLM based on
the parallel text of the source input and their 1-best translation output
from rescored N-best lists from test documents belonging to this cer-
tain topic, instead of adapting based on 1-best output from rescored
N-best lists on the entire test set. The learning rate of BiRNNLM
adaptation is determined based on optimizing the perplexity on the
development test set.

For name-aware adaptation of BiRNNLMs for reranking, simi-
lar to the approaches for adapting word n-gram LMs for decoding,
the topic analysis is conducted on tagged named entities instead of
all words for documents.

5. SPARSE FEATURES

Statistical machine translation decoding follows a log-linear frame-
work for translating a foreign language F into English E, as shown
in Equation 5.

E
� � argmax

E
P �EjF � � argmax�� � �h�F�E� (5)

where �h�F�E� is a vector of features defined for a given source sen-
tence and target sentence pair: F� E. The feature weights, denoted��,
are learned from a tuning set of sentence pairs. Traditionally SMT
systems only use the order of tens of dense features. Recent in-
troductions of large-scale tuning algorithms such as MIRA [23] or
tuning-as-reranking (PRO) [24] enable MT systems to use a large
amount of features. Sparse features are designed to fix specific ma-
chine translation errors. For example, a lexical error can be fixed by
checking a particular word-pair and assigning a weighted penalty to
the error. We add seven categories of sparse features to help check
specific evidences in the SCFG rules and fix errors in the SMT output
[25], as shown in Table 1. Among these categories, the rule type cat-
egory is a more detailed description of SCFG rules. We use 38 rules
types in this work. In this work, on our data set, we start with a list
of 1,489,960 sparse features based on the seven categories. Most of
the sparse features are simple binary-valued features. Many sparse
features are very specific. Also, the majority of the features over-
lap with each other, for example, the Bigram features overlap with
word n-gram language model scores. Optimizing this large amount
of over-lapping features could easily get over-fitted to the tuning set.

We employ the tuning-as-reranking algorithm [24] for optimiz-
ing the sparse features. We use the linear support vector machine
(SVM) classifier using a L2 regularizer to learn the weights. To al-
leviate the overfitting problem for optimizing sparse features, the
weights learned for each feature are used for feature selection, that
is, all the features with a weight close to zero will be removed from
the feature list, and the remaining features are used for the next op-
timization iteration and so on. In these iterations, we only kept the
top 5K weighted sparse features. For learning the weights for both
dense features and sparse features, we use a two-stage optimization
strategy. We first optimize the weights for the dense features. Then
we optimize the weights for the 5K sparse features together with the
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dense features while fixing the weights learned earlier for the dense
features. In our experiments, we find this approach of feature se-
lection and two-stage optimization is most stable and produces the
best BLEU and TER gain over the dense features. Table 2 shows
examples of selected spare features and their weights.

We then add a set of name-aware sparse features on top of the
5K selected sparse features, including

� name(f, NULL) fires when a source input name f is dropped

� name(NULL, e) fires when a target name e is generated un-
aligned

� name(f, �ne) fires when a source input name f translates to a
non-name word �ne

� name( �ne, e) fires when a source non-name word �ne translates
to a target name e

� name(match(f,e)) fires when a source input name f translates
to a target name e with matched name types

� name(mismatch(f,e)) fires when a source input name f trans-
lates to a target name e with mismatched name types

� name types in rules, i.e., enriched Hiero rule types with name
types

� Binned frequency of enriched Hiero rule types with name
types

Table 2. Example selected sparse features and their weights.
Features Weights

F-X-F-X-F� X-E-X 0.1210
X-F-X� E-X-E-X-E 0.2686

X1X0W -0.10161
BI most awesome 0.15436

6. EXPERIMENTS

We present the experimental results from name-aware language
model adaptation and sparse features, compared to the baseline MT
and the baseline-NAMT systems.

6.1. Data and Experimental Setup

We use exactly the same Chinese-English MT training data and
the tune set as in [8] for training the MT system and optimizing
parameters. For evaluation, we use the NIST part of the 2006 and
2008 NIST openMT evaluation test sets, denoted NIST2006 and
NIST2008 test sets. The large training data covers various sources
and genres, including newswire, web text, broadcast news and con-
versation transcripts. We also used some translation lexicon and
Wikipedia translations. The majority of the parallel training data
were released by LDC for U.S. DARPA Translingual Information
Detection, Extraction and Summarization (TIDES) program, Global
Autonomous Language Exploitation (GALE) program, and Broad
Operational Language Translation (BOLT) program, and National
Institute of Standards and Technology (NIST) open MT evalua-
tions. The name tagged parallel training data includes 1,686,458
sentence pairs. 1,890,335 name pairs were tagged (295,087 Per-
sons, 1,269,056 Geopolitical entities, and 326,192 Organizations).
The decoding LM is a log-linear combination of four word n-gram

LMs, trained from different English corpora, including the target
side of BOLT parallel text, English monolingual discussion forums
data R1-4 released in BOLT Phase 1 (LDC2012E04, LDC2012E16,
LDC2012E21, and LDC2012E54), English Gigaword Fifth Edi-
tion (LDC2011T07), the web text portion of the parallel text, and
the broadcast news and conversation transcripts released under the
DARPA GALE program.

For generating training documents for topic analysis described
in Section 4, we use document boundaries for a corpus when the
information is released with the corpus. For a corpus without doc-
ument boundaries, we simply split them into shorter segments and
treat each segment as a “document”. In total, we have 48,975 docu-
ments based on the MT training data. We use these as the documents
for clustering-based and LDA topic analysis during training. For this
work, we set K � �� as the predefined number of topics for topic
analysis, which is empirically chosen based on the perplexity on the
development set from the adapted LM, with a fewK values from 10
to 100.

MT feature weights, including sparse features, are tuned on a set
of 2,770 sentences. The efficacy of sparse features and name-aware
sparse-features is evaluated on the NIST2006 and NIST2008 test
sets. For investigating the efficacy of name-aware language model
adaptation, the log-linear interpolation weight � between the base-
line LM LMbg and the adapted LM LMa is tuned on the NIST2006
test set by a grid search. Then the resulting � is used for evaluat-
ing the LM adaptation performance on the NIST2008 test set. The
LDC releases of the NIST part of the NIST2006 (LDC2010T17) and
NIST2008 (LDC2010T21) test sets include 79 and 109 documents,
respectively. We manually adjusted the document boundaries for the
NIST2006 test set into 83 documents.

For the tune set, NIST2006, and NIST2008 test sets, we extract
names with the baseline monolingual name tagger described in [26]
from the source documents. The performance of this monolingual
name tagger is comparable to the best reported results on Chinese
name tagging on Automatic Content Extraction (ACE) data [26].
Then we apply a state-of-the-art name translation system [1] to trans-
late names into the target language. As in [8], this name translation
system was enhanced by a name origin classifier based on Chinese
last name list (446 name characters) and name structure parsing fea-
tures to distinguish Chinese person names and foreign person names,
so that pinyin is applied for Chinese names whereas name translit-
eration is applied for foreign names. For the extracted names from
test sets, a joint bilingual name tagger [26] was employed to mine
bilingual name translation pairs from the parallel training data. The
automatically mined unique name translation pairs were used to cre-
ate a name phrase table, which was added for MT decoding.

Table 3 summarizes the statistics of the name tagged NIST2006
and NIST2008 test sets with name translations. Both NIST2006
and NIST2008 test sets are composed of documents from newswire,
broadcast news, and web blogs.

6.2. Results

Table 4 shows the BLEU scores from adapting the decoding word n-
gram LMs using clustering-based (denoted CL) and LDA (denoted
LDA) topic analysis, comparing between considering all words (de-
noted CL,LDA(All)) and considering only named entities (denoted
CL,LDA(NE)) for topic analysis. The BLEU scores from the base-
line MT and baseline-NAMT systems are also shown.

As can be seen from Table 4, combining the baseline LMs with
an adapted LM always improves BLEU scores. LM adaptation based
on the clustering-based topic analysis yields better BLEU scores
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Table 1. Sparse Feature Types and Descriptions.
Feature Categories Description

Lexical If the word-pair f � e occurs in the derivation from the IBM model-1.
Fertility The number of times a word is aligned to 1 word, 2 words, or 3+ words.
Rule type Detailed Hiero rule types (e.g., F-X1-F-X2� X1-E-X2).

Reorder type If the target side contains monotone or reordering of non-terminals (e.g., X1X0W).
Target spontaneous words Pre-defined English spontaneous words (e.g., this, the, such)

Bigrams Bigrams seen in the target side of the phrases (e.g., BI w� w�)
Frequency of rules Binned frequency of the observed rules

Table 3. Statistics and name percentages of the NIST2006 and NIST2008 test sets.
Test set #Documents #Sentences #Words in Source #Words in Refs #All names (%occurred � 5)

NIST2006 83 1,664 38,442 45,914 2,853 (73.1)
NIST2008 109 1,357 32,646 37,315 1,462 (72.0)

than using LDA topic analysis. And replacing all words with only
named entities for topic analysis produces better BLEU scores for
both CL and LDA topic analysis approaches. It is worth noting that
the baseline LMs are trained on much larger data than the MT train-
ing parallel data, whereas the adapted LM is either a topic-specific
LM (the CL approaches) or a mixture of topic-specific LMs (the
LDA approaches) based on documents from the MT training paral-
lel data. So it is encouraging to see the gain from combining this
much smaller adapted LMa with the baseline LMs. LMa from
CL(NE) produces the best BLEU gain, +0.5 and +0.4 absolute, for
the NIST2006 and NIST2008 test sets. We use this configuration
to dump 2000-best lists for investigating the efficacy of name-aware
adaptation of BiRNNLM N-best reranking.

Table 5 shows the BLEU scores from applying bilingual
RNNLM (BiRNNLM) for reranking 2000-best lists from the best
configuration in Table 4. In this work, we set the number of hidden
unit as 600 for training the BiRNN LMs. Again, we compare be-
tween using a single BiRNNLM trained on the entire MT training
data, and training K BiRNNLMs for the K topic clusters from
CL and LDA topic analysis approaches and adapting a BiRNNLM
for the ith topic on test set documents belonging to ith topic, as
described in Section 4. We also compare between considering all
words and only named entities for topic analysis. We observe ap-
plying a single BiRNNLM for reranking produces +0.4 and +0.3 ab-
solute BLEU gain on NIST2006 and NIST2008 test sets. However,
when adapting this BiRNNLM on the entire test set and reranking
the test set again, i.e., the row of (2) + single BiRNNLM-adapt, it
doesn’t change BLEU on the NIST2006 test set and hurts slightly
on NIST2008 test set. The following four rows correspond to the
topic-specific BiRNNLM adaptation approach described in Section
4. We observe that the LDA(All) adaptation approach slightly hurts
BiRNNLM reranking performance, whereas CL(All) produces a
small BLEU gain. The LDA(NE) adaptation approach produces
only +0.1 BLEU gains from adapting BiRNNLMs, but CL(NE)
produces +0.4 BLEU gain, compared to using the single, unadapted
BiRNNLM for reranking. For both adapting decoding word n-gram
LM and reranking BiRNNLM, we observe that using named entity
information can produce more consistent improvement on the LM
adaptation performance than considering all words for topic analy-
sis, for both clustering and LDA approaches. Since topic analysis
could be noisy, we also combine the reranking scores from the single

BiRNNLM trained on the entire MT training data with the CL(NE)
adapted topic-specific BiRNNLM reranking scores, and this yields
another +0.2 BLEU gain on both NIST2006 and NIST2008 test sets.
Combining name-aware LM adaptation for decoding LM and bilin-
gual RNNLM for N-best reranking, we achieve an improvement of
+1.5 and +1.3 BLEU on the NIST2006 and NIST2008 test sets (i.e.,
37.8 and 31.3 BLEU over 36.3 and 30.0 BLEU, for NIST2006 and
NIST2008 respectively).

Table 6 shows the efficacy from sparse features, adding name-
aware sparse features, and adding the best configuration of name-
aware LM adaptation (shown in Table 5). The selected 5K sparse
features out of the seven types produce +0.7 and +0.8 better BLEUs
on the NIST2006 and NIST2008 test sets. Adding name-aware
sparse features yields +0.4 and +0.3 BLEU gain on the two test
sets. Note that the weights of the sparse features are optimized on
the 2,770-sentence tune set. Finally, employing the best configu-
ration of name-aware LM adaptation for both decoding LM and
BiRNNLM reranking (the configuration as the last row in Table 5)
yields an additional +1.0 and +1.2 BLEU improvement on the two
test sets. Overall, the name-aware sparse features and name-aware
LM adaptation proposed in this work achieve +1.4 and +1.5 BLEU
gain on the NIST2006 and NIST2008 test sets, over the second
row of baseline-NAMT+sparse features, and achieve +2.1 and +2.3
BLEU gain over our name-aware MT performance published in [8].
These four BLEU gains are statistically significant at p � ����,
using a paired bootstrap resampling test [27].

7. CONCLUSION

We investigated incorporating named entity information into lan-
guage model adaptation and sparse features for improving statisti-
cal machine translation. Chinese-English SMT experiments have
shown that using named entities for topic analysis is always more
stable for the performance of adapted LMs, compared to consider-
ing all words. And we obtained consistent gains on BLEU from
name-aware adaptation of the decoding word n-gram LMs and the
bilingual RNN LMs for N-best reranking, using the clustering-based
topic analysis approach. Furthermore, the gains from sparse features
and name-aware sparse features, and from name-aware LM adapta-
tion are additive, yielding an overall +2.3 absolute BLEU gain on the
test set.
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Table 4. BLEU scores on the NIST2006 and NIST2008 test sets exploring name-aware language model adaptation for decoding word n-gram
LM, compared to the baseline MT system and the baseline-NAMT system. CL denotes the clustering-based topic analysis and LDA denotes
LDA topic analysis. CL,LDA(All) denote topic analysis considering all words as in the conventional approaches, whereas CL,LDA(NE)
denote topic analysis only considering named entities.

BLEU
NIST2006 NIST2008

(1) baseline MT 35.5 29.3
(2) baseline-NAMT (Li et al., ACL 2013) 36.3 30.0

Adapt decoding LM (2) + CL(All) 36.5 30.3
(2) + LDA(All) 36.4 30.2
(2) + CL(NE) 36.8 30.4
(2) + LDA(NE) 36.6 30.4

Table 5. BLEU scores on the NIST2006 and NIST2008 test sets exploring name-aware language model adaptation for bilingual RNNLM
(BiRNNLM) N-best reranking. CL denotes the clustering-based topic analysis and LDA denotes LDA topic analysis. CL,LDA(All) denote
topic analysis considering all words in a document as in the conventional approaches, whereas CL,LDA(NE) denote topic analysis only
considering named entities. Topic analysis was used for adapting theK topic-specific BiRNNLMs.

BLEU
NIST2006 NIST2008

(1) baseline-NAMT (Li et al., ACL 2013) 36.3 30.0

(2) (1) + CL(NE)-adapted-decoding 36.8 30.4
Reranking (2) + single BiRNNLM 37.2 30.7

Adapt reranking BiRNNLM (2) + single BiRNNLM-adapt 37.2 30.6
(2) + CL(All) 37.4 30.9
(2) + LDA(All) 37.0 30.7
(2) + CL(NE) 37.6 31.1
(2) + LDA(NE) 37.3 30.8

(2) + single BiRNNLM + CL(NE) 37.8 31.3

Table 6. BLEU scores on the NIST2006 and NIST2008 test sets
from adding sparse features, adding name-aware sparse features,
and adding the best configuration of name-aware LM adaptation,
compared to the baseline-NAMT. The orig inal Hiero baseline-MT
BLEU scores are also listed.

BLEU
NIST2006 NIST2008

baseline-MT 35.5 29.3

baseline-NAMT (Li et al., ACL 2013) 36.3 30.0
+ sparse features 37.0 30.8
++ name-aware sparse features 37.4 31.1
+++ name-aware LM adaptation 38.4 (+2.1) 32.3 (+2.3)

In our future work, we plan to investigate other name-aware
sparse features, including incorporating name tagging confidences
and incorporating topic information into sparse features for adapta-
tion. We also plan to extend proposed name-aware SMT approaches
to other information elements other than named entities, such as
events. We will also leverage the proposed approaches on statistical
machine translations for low-resource languages, where the infor-
mation extraction systems for the low-resource language, e.g., name
tagging, if available, could have much lower performance than the
information extraction performance on languages such as Chinese.
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