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ABSTRACT 
 

Convolutional deep neural networks (CDNNs) have consistently 

shown more robustness to noise and background contamination 

than traditional deep neural networks (DNNs). For speech 

recognition, CDNNs apply their convolution filters across 

frequency, which helps to remove cross-spectral distortions and, to 

some extent, speaker-level variability stemming from vocal tract 

length differences. Convolution across time has not been 

considered with much enthusiasm within the speech technology 

community. This work presents a modified CDNN architecture 

that we call the time-frequency convolutional network (TFCNN), 

in which two parallel layers of convolution are performed on the 

input feature space: convolution across time and frequency, each 

using a different pooling layer. The feature maps obtained from the 

convolution layers are then combined and fed to a fully connected 

DNN. Our experimental analysis on noise-, channel-, and 

reverberation-corrupted databases shows that TFCNNs 

demonstrate reduced speech recognition error rates compared to 

CDNNs whether using baseline mel-filterbank features or noise-

robust acoustic features.  

 

Index Terms— time-frequency convolution nets, deep 

convolution networks, robust features, robust speech recognition. 
 

1. INTRODUCTION 
 

Deep learning techniques [1] are now integral to current automatic 

speech recognition (ASR) systems [2]. Deep learning has been 

used for feature representation [3], acoustic modeling [1], and 

language modeling [4]. Although the results from deep neural 

networks (DNNs) have always been encouraging, current research 

is focused on both improving the state-of-the-art and increasing 

scientific understanding of deep learning’s strengths and 

weaknesses. Although DNNs have been observed to work highly 

reliably under matched conditions, they are susceptible to 

performance degradations under mismatched conditions [28]. 

Speech-signal degradations (such as reverberation, noise, and 

channel mismatch) can significantly reduce DNN recognition 

accuracy, revealing DNN’s vulnerability [4, 5] to unseen 

conditions.  

Noise, reverberation, and channel mismatches are the usual 

causes of speech data mismatches and, hence, are the common 

sources of performance degradation for ASR systems [4]. Robust 

features have been demonstrated to help in noisy [5] and 

reverberant [7-9] conditions, where such features provide an 

invariant representation of speech despite environmental 

distortions.  

Recently, convolutional neural networks (CNNs) [10, 11] have 

been proposed and are often found to outperform fully connected 

DNN architectures [6, 9]. CNNs are also expected to be noise-

robust [11], especially in the cases where noise/distortion is 

localized in the spectrum. Speaker-normalization techniques, such 

as vocal tract length normalization (VTLN) [12], are also found to 

have less impact on speech recognition accuracy for CDNNs as 

compared to for DNNs. With CDNNs, the localized convolution 

filters across frequency tend to normalize the spectral variations in 

speech arising from vocal tract length differences, enabling the 

CDNNs to learn speaker-invariant data representations. Recent 

results [6, 7, 8] also showed that CDNNs are more robust to noise 

and channel degradations than DNNs. Typically for speech 

recognition, a single layer of convolution filters is used on the 

input contextualized feature space to create multiple feature maps 

that, in turn, are fed to fully connected DNNs. However, in [10], 

adding multiple convolution layers (usually up to two) was shown 

to improve the performance of CDNN systems beyond their single-

layer counterparts. 

In [13, 14], convolution across time has been applied over 

windows of acoustic frames that overlap in time to learn classes 

such as phone, speaker, and gender. In 1980s, the notion of weight 

sharing over time was first introduced through the time-delay 

neural network (TDNN) [15]. Recent DNN/CDNN architectures 

use a hybrid topology, in which DNN/CDNNs produce subword 

unit posteriors, and a hidden Markov model (HMM) performs the 

final decoding. As the HMMs typically do model time variations 

well, time convolution is usually ignored in current CNN 

architectures. However, with environmental degradation such as 

reverberation, the introduced distortion typically corrupts time-

scale information.  

The environment where the speech sample is collected 

introduces reverberation, which is the effect of multiple reflections 

of the source sound from the ambient enclosure. The degree of 

reverberation is usually defined by the time (typically in seconds) 

required for the reflections of a direct sound to decay to 60 dB, 

which is denoted as the RT60 value of reverberation. The higher 

the RT60 values, the more distorted the reverberated speech 

sounds, and vice versa. Such multiple reflections or reverberation 

seriously degrade speech-signal quality, which, in turn, seriously 

degrades the performance of ASR systems. As reverberation 

introduces multiple delayed reflections of the source to itself, the 

distortion predominantly is hence spread across the time scale. A 

common approach to cope with such distortion has been to learn an 

inverse filter that models the room impulse response (RIR) and 

then to perform inverse filtering on the reverberated speech to 

mitigate the effects of reverberation [16]. 

In this work, we revisit the CNN architecture. We first revisit 

the two-layer convolution approach suggested in [10] (for 

simplicity, we call it the double-convolution neural network or 

DCNN) and evaluate its performance with respect to the 

conventional single-layer convolution network (CNN). We 

propose a modified convolution network in which two parallel 
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layers of convolution filters operate on the input feature space: one 

across time (time-convolution), and the other across frequency 

(frequency-convolution). The feature maps from these two 

convolution layers are fused and then fed to a fully connected deep 

neural network. We name this system the time-frequency 

convolution network or TFCNN. Finally, we present a third 

modified CNN, in which double convolution is performed over 

frequency (essentially replicating the DCNN), and a single parallel 

convolution layer is used for time. The final feature maps from 

these layers are merged and then fed to a deep neural net. We name 

this system the time-frequency double-convolution neural network 

(TFDCNN). 

We use two datasets for comparing the performance of 

different acoustic models. First, we use the data distributed through 

the REVERB (REverberant Voice Enhancement and Recognition 

Benchmark) 2014 challenge [17] to train and evaluate our systems. 

Second, we use the noisy English continuous speech dataset 

Aurora4 [18], which contains speech data corrupted by different 

noise types at different signal-to-noise ratios (SNRs) and recorded 

by different microphone types. We evaluate our system using both 

baseline mel-filterbank energy features and some of the noise-

robust acoustic features previously found to work well under noise 

and reverberation corruption. 

 

2. DATASET 
 

The REVERB 2014 challenge speech dataset [17] contains single-

speaker utterances recorded with one-channel, two-channel, or 

eight-channel circular microphone arrays. The dataset includes a 

training set, a development set, and an evaluation set. The training 

set consists of the clean WSJCAM0 [19] dataset, which was 

convolved with room impulse responses (with reverberation times 

from 0.1 sec to 0.8 sec) and then corrupted with background noise. 

The evaluation and development data contain both real recordings 

(real data) and simulated data (sim data). The real data is borrowed 

from the MC-WSJ-AV corpus [20], which consists of utterances 

recorded in a noisy and reverberant room. For the sim data, 

reverberation effects were artificially introduced. For our 

experiments, we used the channel-1 training data to build our 

acoustic models, which contained altogether 7861 utterances (5699 

unique utterances). The simulated dev set included 742 utterances 

in each of the far- and near-microphone conditions, almost equally 

spread in three room types (1, 2, and 3). The real dev set contained 

179 utterances almost equally spread into far- and near-

microphone conditions. The simulated evaluation set contained 

1088 utterances in each of the far- and near-microphone 

conditions, each of which was split into three room conditions (1, 

2, and 3). The real evaluation set contained 372 utterances split 

equally between far- and near-microphone conditions. For this 

dataset, no speaker information was used during acoustic model 

training and testing, and all processing was independent of the 

room impulse responses and the relative position of the speakers 

with respect to the recording device. We report our results in terms 

of word error rate (WER), using conditions identical to those of the 

baseline system distributed with the REVERB 2014 challenge 

data. 

The Aurora4 [18] dataset was created from the standard 5K Wall 

Street Journal (WSJ0) database and includes 7180 training 

utterances of approximately 15 hours total duration, and 330 test 

utterances, each with an average duration of 7 seconds. It contains 

six additive noise versions with channel matched and mismatched 

conditions. The acoustic data (both training and test sets) comes 

with two different sampling rates (8 kHz and 16 kHz). Two 

different training conditions were specified: (1) clean training, 

which is the full SI-84 WSJ train set without any added noise; and 

(2) multi-condition training, with about half of the training data 

recorded by using one microphone, and the other half recorded by 

using a different microphone (hence incorporating two different 

channel conditions), with different types of added noise at different 

SNRs. The noise types are similar for the training and testing data 

sets. The Aurora4 test data includes 14 test sets from two different 

channel conditions and six different added noises (in addition to 

the clean condition). The SNR was randomly selected between 0 

and 15 dB for different utterances. The six noise types used were 

(1) car; (2) babble; (3) restaurant; (4) street; (5) airport; and (6) 

train (set07), along with a clean condition. The evaluation set 

comprised 5K words in two different channel conditions. The 

original audio data for test conditions 1–7 was recorded with a 

Sennheiser microphone, while test conditions 8–14 were recorded 

by using a second microphone that was randomly selected from a 

set of 18 different microphones (more details in [18]). The 

different noise types were digitally added to the clean audio data to 

simulate noisy conditions. These 14 test sets mentioned above 

were typically grouped into four subsets: (A) clean; (B) matched-

channel, noisy; (C) matched-channel, clean with channel 

distortion, and (D) noisy with channel distortion, which are usually 

referred to as test sets A, B, C, and D, respectively. A part of the 

clean training (893 out of 7139 utterances) and the matched-

channel noisy training (2676 utterances), which were not used in 

the multi-conditioned training set of Aurora4, were used as a held-

out cross-validation set that was used to track the cross-validation 

error during neural network training. 

 

3. ACOUSTIC FEATURES 
 

We used several different acoustic features to parameterize speech. 

We briefly outline the features explored in this section.  

 

3.1 Damped Oscillator Coefficients (DOC) 

DOCs use forced damped oscillators to model the hair cells found 

within the human ear [21]. DOC tracks the dynamics of the hair 

cell oscillations to auditory stimuli and uses that as the acoustic 

feature. In human auditory system, the hair cells detect the motion 

of incoming sound waves and excite the neurons of the auditory 

nerves, which then transduce the relevant information to the brain. 

For our DOC processing, a bank of gammatone filters that 

produces 40 bandlimited subband signals analyzed the incoming 

speech signal. The gammatone filters were equally spaced on the 

equivalent rectangular bandwidth (ERB) scale. The outputs of the 

gammatone filters were used as the forcing functions to an array of 

40 damped oscillators, whose response was then used as the 

acoustic feature. We analyzed the damped oscillator response by 

using a Hamming window of 26 ms with a frame rate of 10 ms. 

The power signal from the damped oscillator response was 

computed and then root compressed using the 15th root, resulting in 

the 40 dimensional features that comprised the DOC feature in our 

experiments. 

 

3.2 Normalized Modulation Coefficients (NMC) 

The NMC [22] feature captures and uses the amplitude modulation 

(AM) information from bandlimited speech signals. NMC is 

motivated by AMs of subband speech signals playing an important 

role in human speech perception and recognition [23]. NMCs are 

obtained by using the approach outlined in [22], with which the 
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features are generated from tracking the AM trajectories of 

subband speech signals in a time domain by using a Hamming 

window of 26 ms with a frame rate of 10 ms. For our processing, a 

time-domain gammatone filterbank with 40 channels equally 

spaced on the ERB scale was used to analyze the speech signal. A 

modified version of the Discrete Energy Separation algorithm 

(DESA) that produced instantaneous estimates of AM signals then 

processed the subband signals. The powers of the AM signals were 

then root compressed using the 15th root. The resulting 40-

dimensional feature vector was used as the NMC feature in our 

experiments. 
 

 

3.3 Modulation of Medium Duration Speech Amplitudes 

(MMeDuSA) 

MMeDuSA [24] is similar in essence to the NMC features, as it 

tracks the subband AM signals of speech by using a medium-

duration analysis window. On top of tracking the subband AM 

signals, MMeDuSA also tracks the overall summary modulation 

information. The summary modulation plays an important role in 

both tracking voiced speech and locating events, such as vowel 

prominence/stress, etc. Unlike NMCs, MMeDuSA does not use the 

DESA algorithm to track the AM signals, but instead directly uses 

the nonlinear Teager energy operator [25] to crudely estimate the 

AM signal from the bandlimited subband signals. For our 

processing, the MMeDuSA-generation pipeline used a time-

domain gammatone filterbank with 40 channels equally spaced on 

the ERB scale. The MMeDuSA pipeline used a Hamming analysis 

window of ~51 ms with a 10 ms frame rate. The powers were root 

compressed, and the resultant information was used as the acoustic 

feature in our experiments. More details regarding MMeDuSA 

feature extraction can be obtained in [24]. 

 

 

4. TIME FREQUENCY CONVOLUTION 
 

CNNs [11] have demonstrated lower WERs compared to 

DNNs for clean [10], noisy [6], and reverberated [8, 9] datasets. 

Traditional CNNs for speech recognition usually apply the 

convolution operation across frequency, providing the network 

with immunity to small spectral shifts, such as those introduced by 

speaker-specific vocal tract length differences. In cases such as 

reverberation, where delayed versions of reflection introduce 

temporal artifacts, convolution across time can be useful. Figure 1 

shows block diagram of a network using two separate convolution 

layers, one operating across time, and the other operating across 

frequency.  

To illustrate how time and frequency convolution followed by 

ax-pooling is performed, let us assume the input feature map can 

be represented by either feature vectors V or U where  
 

                   

                    
 

where,    representing the feature vector at frequency band f 

and    represents the feature vector at a time frame t. Note that for 

simplicity let us assume that these feature vectors only represents 

the spectral energies and their dynamic information (Δ and ΔΔ) is 

not used. For frequency convolution, let us assume that the layer 

has K bands with N activations. Following the representation in 

[11], the convolution layer activations after non-linear activation 

function operation can be represented as 
 

                                          
    

         (1) 

where σ(.) is the output activation function; B is the band size 

for convolution operation on V; w and β represents the weight and 

bias terms of the convolution layer. Similarly for time convolution, 

let us assume the layer has L bands (operating on time frames) and 

M activations, in such case the convolution layer activations after 

non-linear activation function operation can be represented as 
 

                                         
   
        (2) 

 

where σ(.) is the output activation function; C is the frame-

band size for convolution operation on U; ω and   represents the 

weight and bias terms of the time convolution layer. Now, after the 

pooling layer the outputs of each of these layers can be represented 

as 

                                                     

                                                      (3) 

 

where, r and s are the pooling size, i and j are the sub-sampling 

factor, b and c are the pooling band sizes for frequency and time 

convolution layers respectively. The output feature space is 

flattened to a vector and then concatenated and fed to the fully 

connected neural net. We have used 75 filters to perform time 

convolution, and 200 filters to perform frequency convolution. For 

time and frequency convolution, eight bands were used. A max-

pooling over three samples was used for frequency convolution, 

while max-pooling over five samples was used for time 

convolution. The feature maps after both the convolution 

operations were concatenated and then fed to a fully connected 

neural net, which had 1024 nodes and four hidden layers. Figure 1 

briefly outlines the TFCNN architecture. Instead of a 2-D 

convolution operation, we selected to perform two independent 1-

D convolutions, because optimizing the parameter configuration 

when the two layers are treated independently is easier, and 

because it also enables using different input feature maps or 

context sizes. 

Figure 2 shows the block diagram of a two-layered or double-

convolution network (DCNN), where the first convolution layer 

operates on the input feature map. The max-pooled output of the 

first convolution layer is used as the input to the second 

convolution layer. This architecture is similar to the two-layered 

convolution network presented in [10]. Note that the convolution 

operation performed in this architecture is only across the 

frequency scale. The first convolution layer uses 128 filters with 8 

bands and a pool size of 3. The second convolution layer uses 256 

filters with 8 bands and a pool size of 3. 

Figure 3 shows the block diagram of a time-frequency 

convolutional net using a double-layer convolution on frequency. 

This is a hybrid of the previous two CNNs (TFCNN and DCNN). 

We name the time-frequency double-convolution neural network 

(TFDCNN). It uses a three-hidden-layer, fully connected network 

after the convolution layers. The double-convolution layer has the 

same architecture as mentioned in the last paragraph. 

 

5. RESULTS 
 

We performed different sets of acoustic model training for the 

two datasets mentioned in Section 2. First, we present the results 

from using the REVERB 2014 dataset. For this dataset, we trained 

traditional CNNs systems by using the top-performing robust 

features (NMC and DOC) reported in [9]. Note that [9] showed 

that using the velocity coefficient (Δ) is helpful, hence the 

filterbank features with their Δ were used to train the acoustic 

model presented in this section. In order to generate the alignments  
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Figure 1. Block diagram showing time-frequency convolution neural nets (TFCNN). The top dotted block shows convolution filters 

working across time, and the bottom dotted block shows convolution filters working across frequency. The max-pooled outputs of these 

convolution filters are fed to a fully connected four-layered deep neural net.  

 

 
Figure 2. Block diagram showing double-layer convolution neural nets (DCNN). The feature maps from the first convolution layer after 

max-pooling are used as the input feature maps to the second convolution layer. The max-pooled outputs of the second convolution layer 

are fed to a fully connected three-layered deep neural net.  

 

 
 

Figure 3. Block diagram showing TFDCNN, which performs two-layer convolution on frequency and one-layer convolution on time. The 

feature maps from the max-pooled output of each of the two parallel convolution branches are used as the input feature to a fully connected 

three-layered deep neural net.  

 

necessary for training the CNN system, a GMM-HMM model was 

used to produce the senones’ labels. Altogether, the GMM-HMM 

system produced 3276 senones. The input layer of the CNN 

systems was formed by using a context window of 15 frames (7 

frames on either side of the current frame).  

The CNN acoustic model was trained by using cross-entropy 

on the alignments from the GMM-HMM system. Two hundred 

convolutional filters of size 8 were used in the convolutional layer, 

and the pooling size was set to 3 without overlap. The subsequent 

fully connected network had four hidden layers, with 1024 nodes 

per hidden layer, and the output layer had 3276 nodes representing 

the senones. The networks were trained by using an initial four 

iterations with a constant learning rate of 0.008, followed by 

learning rate halving based on cross-validation error decrease. 
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Training stopped when no further significant reduction in cross-

validation error was noted or when cross-validation error started to 

increase. Backpropagation was performed using stochastic gradient 

descent with a mini-batch of 256 training examples. In [9], it was 

demonstrated that for this dataset, the CNNs perform much better 

than the GMM-HMM system, offering more than 15% relative 

reduction in word error rates. 

We also trained the TFCNN, DCNN, and TFDCNN 

architectures using the DOC and NMC features. For the TFCNN, 

the deep neural network had four hidden layers with 1024 neurons 

in each layer; whereas in the DCNN and TFDCNN, the fully 

connected network had three hidden layers with 1024 neurons in 

each layer. Table 1 and 2 present the WERs from the dev and eval 

sets of the REVERB 2014 challenge. 

 

Table 1. WERs from the different systems using the dev. data of 

REVERB 2014 dataset. 
 

 WER (sim. eval. data) WER (real eval. data) 

Far  

(avg.) 

Near  

(avg.) 

avg. Far  

 

Near  

 

avg. 

D
O

C
 CNN 8.10 14.13 11.12 25.80 27.50 26.65 

TFCNN 7.73 12.90 10.32 23.50 26.30 24.90 

DCNN 8.03 13.77 10.90 24.30 27.70 26.00 

TFDCNN 8.33 13.53 10.93 25.90 27.90 26.90 

N
M

C
 CNN 7.73 13.50 10.62 24.90 28.80 26.85 

TFCNN 7.63 12.87 10.25 23.90 26.70 25.30 

DCNN 8.03 13.83 10.93 24.40 26.20 25.30 

TFDCNN 7.90 13.23 10.57 25.80 26.70 26.25 

 

Table 2. WERs from the different systems using the eval. data of 

REVER-2014 dataset. 
 

 WER (sim. eval. data) WER (real eval. data) 

Far  

(avg.) 

Near  

(avg.) 

avg. Far  

 

Near  

 

avg. 

D
O

C
 CNN 8.60 13.13 10.87 31.70 32.40 32.05 

TFCNN 7.90 12.67 10.28 29.00 30.00 29.50 

DCNN 8.40 13.27 10.83 29.80 30.80 30.30 

TFDCNN 8.40 13.30 10.85 31.90 29.50 30.70 

N
M

C
 CNN 8.10 12.90 10.50 31.00 29.80 30.40 

TFCNN 7.97 12.67 10.32 30.10 30.00 30.05 

DCNN 8.80 13.60 11.20 29.20 28.70 28.95 

TFDCNN 8.50 13.43 10.97 29.00 28.20 28.60 

 

Tables 1 and 2 show that TFCNN always demonstrate 

reduction in WERs compared to the CNN baseline. The 

improvements are more pronounced for the unseen real dev and 

eval data (the last three columns of Tables 1 and 2) than for the 

seen (simulated) dev and eval data. For DOC features, TFCNN 

provided a relative reduction of 6.5% and 7.9% in WER on the real 

dev and eval data compared to the CNN baseline. For NMC 

features, the relative reductions in WERs for real dev and eval data 

from TFCNN were 5.7% and 1.1%, respectively, compared to the 

CNN. Note that for almost all the conditions, DCNN and 

TFDCNN provided reduction in WERs, but overall TFCNNs 

performed better than the CNNs. Interestingly for the real eval data 

using NMC features, the TFDCNN performed the best, reducing 

the WER by 4.8% compared to the TFCNNs. From the results in 

Tables 1 and 2, we can conclude that time convolution is definitely 

beneficial for reverberated data and, hence, convincingly reduced 

WERs across all different datasets. 

Next, we present ASR results from the Aurora-4 dataset. 

Similar to the last task, a GMM-HMM model was used to align the 

training data to produce senone labels for training the CNN 

systems. Altogether 3162 senones were used to train the systems. 

The input layer of the CNN systems was formed by using a context 

window of 15 frames (7 frames on either side of the current 

frame). The CNN acoustic model was trained using cross-entropy. 

The CNN model had a four-layer (with 1024 neurons) fully 

connected network; the convolution layer had 200 convolutional 

filters with 8 bands; and the pooling size was set to 3 without 

overlap. The networks were discriminatively trained by using an 

initial few iterations with a constant learning rate of 0.008, 

followed by learning rate halving based on cross-validation error 

decrease. Training stopped when no further significant reduction in 

cross-validation error was noted or when cross-validation error 

increased. Backpropagation was performed by using stochastic 

gradient descent with a mini-batch of 256 training examples. The 

TFCNN, DCNN, and TFDCNN systems had a three-hidden-layer 

fully connected network, each with 1024 neurons. 

In [6], it was shown that for Aurora-4, the robust features 

provided lower WERs compared to the mel-filterbank (MFB) 

features, which is also found to be the case here. It was also 

observed in [6] that VTLN helped to reduce the WER slightly even 

for CNN systems, hence all the features used in the following 

experiments were VTLN transformed. Note that unlike the 

experiments reported earlier, Δ features were not used for the 

Aurora-4 task. Table 3 presents the WERs from the following 

features: MFB, DOC, MMeDuSA, and NMC, selected based on 

their performance cited in [6]. For decoding, we used the standard 

WSJ trigram language model distributed with the WSJ0 corpus. 

 

Table 3. WER on multi-conditioned training task of Aurora-4 (16 

kHz) from the different CNN architectures. 
 

 
 A B C D avg. 

M
F

B
 CNN 3.50 6.17 6.60 15.72 10.10 

TFCNN 3.60 5.75 6.60 14.58 9.44 

DCNN 3.80 6.25 7.20 15.35 10.04 

TFDCNN 4.20 5.88 6.70 15.75  10.05 

D
O

C
 CNN 3.60 5.80 6.20 14.03 9.20 

TFCNN 3.70 5.82 6.50 13.82 9.14 

DCNN 4.00 6.08 6.40 14.67 9.64 

TFDCNN 3.60 6.05 6.40 14.62  9.57 

N
M

C
 CNN 3.20 5.77 5.70 14.32 9.24 

TFCNN 3.10 5.63 5.50 14.33 9.17 

DCNN 3.70 6.27 5.80 15.00 9.79 

TFDCNN 3.40 5.78 5.60 14.52  9.34 

M
M

eD
u

S
A

 CNN 3.50 5.85 5.40 14.25 9.25 

TFCNN 3.30 5.98 5.40 13.88 9.14 

DCNN 3.60 6.28 5.90 14.62 9.64 

TFDCNN 3.50 6.13 5.50 14.20  9.36 

 

Unlike the results in Tables 1 and 2, we did not see substantial 

reduction in WER from the new CNN architectures compared to 

the baseline CNN system. As before, TFCNNs did provide some 

reduction in WER, but that reduction is not significant. For DOC, 

NMC, and MMeDuSA, TFCNN provided an approximate 1% 

relative reduction of WER compared to the baseline CNN systems, 

but for MFBs that gain was much higher, roughly 6.5%. This may 
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indicate that the time domain filtering is more effective for the 

MFB features compared to the robust features DOC, NMC and 

MMeDuSA under noisy conditions which may be because the 

robust features already perform filtering across time during their 

feature extraction process to achieve their robustness, whereas the 

MFB has none. Finally it can be seen that for channel-mismatched 

condition (i.e., for test-set D) the TFCNNs always gave the lowest 

WER compared to the other networks. 

Note that in Table 3, the training and testing conditions (i.e., 

noise, channel mismatch, etc.) are simulated, hence the acoustic 

variation is limited and is not completely unseen by the model. 

Whereas in the REVERB 2014 dataset, the real testing condition is 

much different than the simulated training condition, and, 

interestingly, the TFCNN model performed much better in the 

unseen condition than the seen condition. This result may indicate 

that under controlled train-test environments, the traditional CNN 

architecture is robust enough; however, for unseen conditions, its 

performance can be further improved by using the additional time-

convolution layer.  

 

6. CONCLUSION 
 

In this work, we revisited the CNN architecture commonly used 

for acoustic modeling in automatic speech recognition. We 

demonstrated that using an additional time convolution layer 

improved ASR performance under reverberant condition. A 

separate study [26] using a much larger Fisher corpus distributed 

by IARPA through the ASpIRE speech recognition challenge [27] 

also showed similar performance gains.  

For Aurora-4 noisy data conditions, the TFCNNs showed 

marginal improvements over the conventional CNNs. Note that the 

TFCNNs had fewer parameters than the CNNs, as they had one 

fewer 1024-neuron hidden layer, replaced by the extra convolution 

layer having 75 filters with 8 bands.  

Future research should explore the new CNN architectures with 

larger datasets, such as Fisher, and explore their benefits compared 

to the standard CNN architecture. 
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