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ABSTRACT

Although deep neural networks (DNNs) have achieved great suc-
cess in automatic speech recognition (ASR), significant performance
degradation still exists in noisy environments. In this paper, a novel
multi-task joint-learning framework is proposed to address the noise
robustness for speech recognition. The architecture integrates two
different DNNs, including the regressive denoising DNN and the
discriminative recognition DNN, into a complete multi-task struc-
ture and all the parameters can be optimized in a real joint-learning
mode just from the beginning in model training. In addition, the
basic multi-task structure is further explored and reorganized into a
more general framework which can get substantial gains. Further-
more, noise adaptive training can also be easily incorporated within
this architecture to achieve further performance improvement. Ex-
periments on the Aurora4 task showed that the proposed approach
can achieve a WER below 10% without using adaptation or sequence
training, a very large and significant (more than 20% relative) im-
provement over a strong DNN-HMM baseline.

Index Terms— Robust speech recognition, Deep neural net-
work, Feature denoising, Multi-task, Noise aware training

1. INTRODUCTION

Automatic speech recognition (ASR) has come a long way in the last
few years, and especially gets great success after the introduction of
deep neural network (DNN) based acoustic modelling [1, 2, 3]. De-
spite the advanced development on ASR systems, noise robustness
is still one of the critical issues to make ASR systems widely used
in real scenarios. Many technologies [4, 5, 6] have been proposed to
handle the problem of mismatch between training and testing, and
generally most of these proposed methods can be grouped into two
categories: feature denoising and model adaptation.

Feature denoising attempts to remove the corrupting noise from
the observations prior to recognition [7]. Model adaptation meth-
ods leave the observations unchanged and instead update the model
parameters to be more representative of the observed noisy speech
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[8, 9]. Furthermore, the combination of feature denoising and model
adaptation is also performed to get more improved performance.
However, most of these algorithms are well designed for the tra-
ditional GMM-HMM framework, and there are still no maturely de-
veloped approaches to be applied on the DNN-HMM systems.

The recent breakthrough of DNN based acoustic modelling has
shown a powerful capacity for ASR [2, 3], and also gotten a promis-
ing performance in the noisy scenario [10, 11]. However the noise
robustness problem and the mismatch phenomenon still exist in the
DNN-HMM systems [12]. Some methods are proposed in the DNN-
HMM to improve the noise robustness: In [13], several conventional
front-end techniques can still yield gains for DNN-HMM systems
for some small tasks, but may lead to a degradation for the large
vocabulary tasks [10]. In [14], time-frequency masking and noise
adaptive training are used to improve the DNN system in noisy sce-
narios. More recently, the work in [15, 16, 17, 18] proposed DNN
based feature denoising to suppress the noise on the feature level,
which is beneficial for later acoustic modelling. Besides, the new
DNN structures are also investigated to get better performance [19].

In this paper, inspired by recent work [15, 16, 17] on speech de-
noising using neural networks, we proposed a novel multi-task joint-
learning framework to unify feature denoising and acoustic mod-
elling into an integrated model and optimize the parameters in a real
joint-learning strategy. Different from the previous work [15, 17]
which only used the denoising model as a pre-processor and per-
formed on a feature level independently, the new multi-task archi-
tecture combines the regressive denoising DNN and the discrimi-
native recognition DNN into one unified multi-task framework, and
all the parameters are optimized considering two different criteria
simultaneously from the beginning in training. Compared to the
more recent work [18] using a front-end DNN following a back-
end DNN, which demands a specific training order on the individ-
ual parts, a real joint-learning strategy is implemented on the pro-
posed multi-task model to refine the entire structure simultaneously,
and this strategy is relatively more efficient and effective for robust
ASR. In addition, the multi-task joint-learning framework is further
developed and extended to a more general architecture to get a more
improved position.

Moreover subband based noise-aware training is applied to take
more advantages of the environmental information to improve the
system. The proposed final framework achieves very promising re-
sults on the Aurora4 task for all testing cases, and even gets the best
published results without any adaptation or sequence training. The
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experiments on the unseen noisy scenario also demonstrate the good
generalization of the proposed multi-task joint-learning strategy.

The remainder of the paper is organized as follows. In Section
2 a novel multi-task joint-learning framework is proposed for ro-
bust speech recognition, including a further developed general ar-
chitecture and advanced refinement. The experiments and analysis
are given in Section 3 and finally draw the conclusions in Section 4.

2. MULTI-TASK JOINT-LEARNING OF DNN

2.1. Multi-task joint-learning for robust speech recognition

Different from the normal DNN using one criterion for optimization,
e.g., cross-entropy criterion, the multi-task joint-learning framework
usually uses more than one criterion in model training, such as in
several previous works: acoustic modelling of triphones and tri-
graphemes [20], multilingual training [21], and phone combining
speaker training [22], etc. In this work, we implemented the multi-
task joint-learning for the noise robust ASR for the first time. The
basic architecture is illustrated as Figure 1, which is also commonly
utilized in the other published work [20, 21, 22].

Fig. 1. The traditional multi-task joint-learning framework.

The proposed multi-task joint-learning DNN in Figure 1 has the
fully shared hidden layers at the bottom of the model, and two in-
dividual task-dependent targets on the outputs: including the re-
gressive denoising DNN and the discriminative recognition DNN
with specific criterion for each task. In this multi-task architecture,
the denoising task is optimized as a regressive model to predict the
clean FBANK features given the input noisy FBANK features1, and
it could be learned using some time-synchronized stereo-data with
clean and noisy speech pairs (these pairs can be obtained using syn-
thesizing artificially by corrupting the clean speech utterances with
additive noises in various types and SNRs or channel distortions).
The predicated target feature could be chosen from three types in-
cluding the single frame static FBANK (24dim), single frame static
plus ∆/∆∆ FBANK (72dim), or fully context-extended FBANK
features (792dim) as the model input. The minimized mean squared
error (MMSE) criterion between the DNN outputs and the reference
clean features is used for the denoising task. The other recognition

111 ∗ 72 = 792 dim FBANK features are used in all DNNs in this paper,
including the proposed approach and the normal baseline.

task is learned as a discriminative model to predict the state poste-
riors, same as the normal DNN in ASR, and could use the cross-
entropy (CE) criterion. The two objective functions are listed:

Emse =
∑T

t=1
||xt − xt||22; Ece =

∑T

t=1
Dt log(Pt) (1)

where xt and xt are the tth frame vector of estimated and reference
clean features respectively inEmse. InEce, Dt and Pt represent the
target reference state probabilities and the predicted state posteriors
in frame t individually.

In the real optimization, all the parameters of the entire model
are jointly learned using both the CE and MMSE criteria from the
beginning of training. More specifically, the objective function for
the multi-task joint-learning is comprised of two criteria:

E(θ) = Ece(θ) + λEmse(θ) (2)

where θ represents all the DNN parameters. The Ece(θ) and
Emse(θ) are the cross-entropy and mean square error function
respectively, which are defined in equation (1). λ is a mixing factor
to balance these two criteria.

Different from the work only using the denoising model as a
pre-processor and performing denoising on the feature level inde-
pendently [15, 17], we could unify feature denoising and acoustic
modelling into one integrated multi-task joint-learning framework.
In addition, compared to the more recent work using front-end and
back-end DNN [18], the proposed new one optimized the parameters
in a real joint-learning strategy, and no specific training order is de-
manded for different model parts. Optimizing the whole parameter
set at the same time could take advantages from both two purposes
(discrimination & denoising) for all the parameters.

2.2. The more general architecture for multi-task

Normally in the traditional architecture shown as Figure 1, the multi-
task joint-learning model will share all the hidden layers for different
tasks, and only leave the target outputs individually. It is indeed
the most straightforward mode for the multi-task structure, and is
relatively easy to design. However, this traditional structure makes
all the hidden layers task-independent for all tasks, and no special
hidden layers are task-dependent. This may not be very appropriate
due to several considerations: (1) one task may be more important
than the other, and more task-dependent hidden layers are helpful for
that task; (2) some task may be relatively easier to over-training, so
fewer hidden layers may be more suitable.

Accordingly a more general architecture is designed for the
multi-task joint-learning in Figure 2. All the layers in the new model
are divided into three parts, illustrated as the green, yellow and
blue ones in the figure. The green part represents the shared hid-
den layers for both tasks, and the other two are the task-dependent
layers individually. More specifically, in the work here using the
CE and MSE criteria for different tasks, the hidden layer depth
for these three parts are indicated as Lshare (shared hidden layer),
Lce (CE-dependent hidden layer) and Lmse (MSE-dependent layer)
respectively. Comparing Figure 2 with Figure 1, it shows that the
traditional framework is actually a special case of the new general
one. In the extended general framework, when splitting the different
task branches at the last hidden layer and setting both Lce and Lmse
to 0, it is just the same structure as the traditional one in Figure 1. So
the new extended multi-task model is more general, and it could be
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Fig. 2. The extended general multi-task joint-learning.

flexibly adjusted with different configurations for the three parts to
get the most optimized performance for robust speech recognition.

No matter which architecture is utilized (the traditional one or
the new general one), once finishing the multi-task joint-learning, the
denoising-task dependent part is removed, and the remained recogni-
tion model could be used as a normal DNN in decoding without any
differences from the normal cases. This is also much more flexible
and convenient than the preprocessor approaches in [15, 17].

2.3. Subband based Noise-aware Training

The noise information of each utterance is not specifically utilized in
the multi-task joint-learning framework described above. To enable
this noise awareness, the DNN is fed with the noisy speech features
augmented with an estimate of the noise. In this way, the DNN can
use additional online noise information to better optimize the model
parameters. Also the estimated noise could be regarded as a special
noise code for one kind of adaptation. Accordingly in the noise-
aware training mode, the input vector of the proposed framework
will be changed with the noise estimation appended:

Vt = [Yt−τ , ...,Yt−1,Yt,Yt+1, ...,Yt+τ ,Nt] (3)

where Yt represents the feature vector (FBANK) of the current
noisy speech frame t, the context window size is 2 ∗ τ + 1, and Nt

is the appended noise code.
Different from the work in [10], we used the subband based

noise estimation as the noise code. This noise-estimated vector could
encode the noise information on each subband, which makes the
noise description much more delicate, and it could retain more useful
information for the model training. The subband based noise code
for each utterance was computed by averaging the first T frames and
fixed for the entire utterance. This is also the first attempt to use
the noise-aware training in the multi-task joint-learning DNN. The k
subband of noise frame t is:

Nk
t = log

(∑mk+1−1

j=mk

(F 2
j )

)
,mk =

⌊
NFFT
K

k

⌋
(4)

where NFFT is the FFT bins number in each frame, Fj is the jth

FFT value, and K represents the total subbands number.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup and baseline systems

To evaluate the proposed multi-task joint-learning framework, a se-
ries of experiments were performed on Aurora 4 [23]. Aurora 4 is a
medium vocabulary task based on the Wall Street Journal (WSJ0)
[24]. It contains 16 kHz speech data in the presence of additive
noises and linear convolutional distortions, which were introduced
synthetically to clean speech derived from the WSJ0 database. Two
training sets were designed for this task: one is a clean-condition
training set consisting of 7138 utterances from 83 speakers recorded
by the primary Sennheiser microphone, and the other one is the
multi-condition training set also comprising 7138 utterances, which
is time-synchronized with the clean-condition training set. One half
is recorded by the primary Sennheiser microphone and the others are
recorded by one of a number of different secondary microphones.
Both halves include a combination of clean speech and speech cor-
rupted by one of six different noises (street traffic, train station, car,
babble, restaurant, airport) at 10-20 dB SNR.

The evaluation set is derived from the WSJ0 5K-word closed
vocabulary test set which consists of 330 utterances from 8 speak-
ers. This test set was recorded by the primary microphone and a
secondary microphone. These two sets are then each corrupted by
the same six noises used in the training set 5-15 dB SNR, creating a
total of 14 test sets. Notice that the types of noise are common across
training and test sets but SNRs of the data are not. These 14 test sets
can then be grouped into 4 subsets: clean, noisy, clean with channel
distortion, noisy with channel distortion, which will be referred to as
A, B, C, and D.

The GMM-HMM system was firstly built to generate the align-
ments for the DNN-HMM training. This system consisted of
context-dependent HMMs with 3K states and 16 Gaussians per
state trained using maximum likelihood estimation. The input fea-
tures were 39-dimensional MFCC features (static plus ∆ and ∆∆
features) and cepstral mean normalization was performed. After the
GMM-HMM building, the forced-alignment was performed to get
the senone labels. Decoding was performed with the task-standard
WSJ0 bigram language model.

The normal DNN-HMM baseline is constructed for later com-
parison. It is trained using the 24-dimensional log mel filterbank
(FBANK) features with first and second-order derivation, and
utterance-level mean normalization was then performed. The in-
put layer was formed from a context window of 11 frames creating
an input layer of 792 units for the final DNN. The DNN had 7 hid-
den layers with 2048 Sigmoid units2 in each layer and the soft-max
output layer had 3K units, corresponding to the senones of the pre-
viously GMM-HMM system. The network was initialized using the
RBM pre-training [25] and then fine-tuned with a cross-entropy cri-
terion using stochastic gradient descent (SGD) based BP algorithm,
with minibatch=128.

For fair comparison, the system in [15] is built, which uses the
regressive DNN to denoise the speech, but implemented just as a
Pre-processor on the log-power spectra, and then the acoustic model
is trained separately. The same configuration is used as in [15], with
257-dim log-power spectra features and 1799-2048-2048-2048-257
architecture (257*7=1799). After the DNN Pre-processor is trained,

2The Sigmoid activation function is used in all DNNs in this work
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the FBANK features are extracted on the denoised log-power spec-
tra, and normal DNN-HMM system is built as the baseline.

The performances of the baseline and the proposed system in
[15] are presented in the top part of Table 1. The DNN-HMM base-
line is better than that in [10] due to that the much smaller minibatch
128 is used in our training recipe. And the DNN-PP approach is only
slightly better than the baseline, which is consistent (the same 0.2%
absolutely better) to the reported results in [15].

Table 1. WER (%) comparisons of the DNN-HMM base-
line, the system proposed in [15] using the DNN as a Pre-
Processor, and the proposed multi-task joint-learning DNN
systems (the regressive denoising DNN models are using dif-
ferent types of target outputs).(Reg. Out means the output
type of the regressive DNN; Fbank Z denotes the normalized
static FBANK feature, +D A Z denotes the normalized static
FBANK feature with ∆ and ∆∆, and +11 Frms denotes the
FBANK D A Z feature with 11 context frames extension)

System A B C D AVG
DNN-HMM Baseline 4.6 8.2 8.8 18.5 12.4

DNN-PP in [1] 4.1 7.2 7.5 19.4 12.2
MT Joint-Learning A B C D AVG

Reg. Out
Fbank Z 3.9 7.6 7.5 19.1 12.3
+ D A Z 4.0 7.4 6.9 18.4 11.9

+ 11 Frms 3.9 7.3 6.6 17.3 11.2

3.2. Evaluation of the multi-task joint-learning

3.2.1. Evaluation of the basic multi-task joint-learning

Firstly the multi-task joint-learning is implemented as the traditional
structure in Figure 1. The 792-dim FBANK features are utilized as
the model input, which is the same as the baseline. There are to-
tally 7 shared hidden layers in the bottom (the same as the baseline)
and with the two parallel task outputs on the top. The multi-task
DNNs are initialized from the Deep RBMs (Restricted Boltzmann
Machines), and then trained as descriptions in Section 2.1. The
other training configuration is the same as the baseline: utilizing
the same forced-aligned senone labels and finetuning with the SGD
(minibatch=128) based BP algorithm.

As stated above, the predicted targets of the regressive DNN
could be chosen from several types, such as the static FBANK fea-
ture, the static feature with ∆ and ∆∆, and the feature with long
context extension. The results of multi-task joint-learning with dif-
ferent outputs in the denoising DNN are illustrated in the bottom
part of Table 1. It shows that the targets of the denoising task are
especially important in the proposed architecture. There is nearly
no improvement when only using the static feature as the prediction;
however the significant WER reduction is obtained when adding the
∆ and ∆∆ features in the predicted targets. Furthermore it gets
another very large improvement when utilizing the long context-
extension FBANK feature, i.e., 792 dim. These results demonstrate
that making the dynamic features (∆ features as well as the context
frames) as the prediction targets is particularly crucial in this multi-
task joint-learning framework.

3.2.2. Evaluation of the general multi-task joint-learning

Then we tried to investigate the extended more general multi-task
architecture shown as Figure 2. Accordingly various structure con-
figurations are applied to explore the better one for this multi-task
training in the robust speech recognition. The setting of Lshare, Lce
and Lmse are varied in the experiments, and related results are de-
scribed in Table 2 and 3.

The denoising task splitting position is firstly investigated. Fix-
ing the total hidden layer number still to 7, the denoising task split-
ting is pushed to the lower layer. The results are shown in Table 2,
and the first line is just the same traditional multi-task structure sys-
tem of the last line in Table 1. It shows that the system, splitting the
denoising task in the lower layer and partly sharing hidden layers
(Lshare = 3) in two tasks, is significantly better than the normal
fully shared multi-task joint-learning.

Table 2. WER (%) comparisons of the proposed general
multi-task joint-learning in different structure configurations,
fixing Lshare +Lce = 7, and Lmse = 0: splitting the denois-
ing task in different positions.

Lshare Lce Lmse A B C D AVG
7 0 0 3.9 7.3 6.6 17.3 11.2
5 2

0
4.0 7.0 6.9 17.1 11.0

3 4 3.9 7.0 6.6 16.6 10.8
1 6 3.8 7.4 7.2 17.1 11.2

According to the best setting in Table 2 then we fixed the shared
hidden layer Lshare = 3 and CE-dependent hidden layer Lce = 4 ,
the denoising task dependent hidden layer number is increased from
0 to 3. The results in the top part of Table 3 show that using more
non-shared hidden layers (Lmse) in the denoising task gets no extra
improvement.

Table 3. WER (%) comparisons of the proposed general
multi-task joint learning in different structure configurations,
fixing Lshare = 3: varying the depth of the task-dependent
hidden layer.

Lshare Lce Lmse A B C D AVG

3 4

0 3.9 7.0 6.6 16.6 10.8
1 3.8 7.1 6.9 16.6 10.9
2 4.0 6.9 7.1 16.9 11.0
3 4.0 7.2 6.6 16.9 11.1

3 7 0 3.9 6.7 6.3 15.4 10.2

Finally, fixing the Lshare = 3 and Lmse = 0, the depth of
the discriminative DNN task (Lce) is increased, and the related re-
sults are shown in the last line of Table 3. It shows that more CE-
dependent hidden layers are helpful and there is another large im-
provement when increasing Lce from 4 to 7.

With this structure exploration, it shows that making hidden lay-
ers partly shared between tasks and using different task-dependent
hidden layers may be helpful in the multi-task joint-learning. The
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final new general multi-task architecture obtains more than 2% ab-
solute WER reduction compared to the baseline and also another 1%
absolute gain compared to the traditional multi-task structure.

Considering that in the proposed multi-task joint-learning, the
model training actually utilized both the multi-condition and clean-
condition training set (the clean-condition training set is used as the
output targets of the denoising task), and the final best model is rel-
atively larger than the baseline (total 10 hidden layers in the general
multi-task DNN (Lshare = 3 & Lce = 7 in Table 3) vs. 7 hidden
layers in the baseline DNN). For better and fair comparison, several
other baselines using more training data and deeper hidden layer are
built, and the results are shown in Table 4. The results show that
simply increasing the training data and the model depth in the base-
line only get a very slight improvement, and this adjustment is not
very useful on the normal DNN structure for the noise-robust speech
recognition. Compared to the proposed model, the WER decline us-
ing the new multi-task joint-learning is significant and very large,
which again demonstrates the effectiveness of the proposed new ar-
chitecture.

Table 4. WER (%) comparisons of the proposed multi-task
joint-learning, and the baseline systems using different train-
ing data and hidden layer numbers. M denotes the multi-
condition training set, C denotes the clean-condition training
set. Depth indicates the hidden layer number in the DNN.

Model Data Depth A B C D AVG

Baseline
M 7L 4.6 8.2 8.8 18.5 12.4

M+C 7L 4.4 8.1 8.4 18.5 12.3
M+C 10L 4.3 8.2 7.3 18.3 12.2

Proposed M+C 10L 3.9 6.7 6.3 15.4 10.2

3.2.3. Evaluation of the enhanced multi-task joint-learning

Finally the subband based noise-aware training, denoted as NAT, is
applied on the multi-task joint-learning as described in Section 2.3,
and the system comparison is presented in Table 5. It shows that the
noise-aware assisted multi-task joint-learning utilizes the informa-
tion from the environment, which makes the model more robust, and
still gets a significant gain in a so strongly improved system.

Table 5. WER (%) comparisons of the proposed multi-task
joint-learning with/without NAT.

System A B C D AVG
Baseline 4.6 8.2 8.8 18.5 12.4

MT Joint Learning 3.9 6.7 6.3 15.4 10.2
+ NAT 3.8 6.5 6.0 14.5 9.7

To explore the deeper reasons for this refinement, the final av-
erage values of the mean squared error (MSE) about the regressive
denoising models are plotted for the systems with/without NAT in-
dividually3. The average MSE values on the Training and CV sets

3The average MSE is calculated as Emse in equation (1) and averaged
by the total time T , and it is accumulated on all 792 feature dimensions

are shown in Figure 3 for the two multi-task systems in Table 5 re-
spectively. It shows that compared to the normal denoising struc-
ture, the noise-aware training gets the better average MSE value in
the denoising task of the multi-task model, which will finally do the
contribution to the other task of discriminative recognition model.
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Fig. 3. The average mean squared error (MSE) values of the
denoising DNN branch with/without NAT.

Compared to the strong DNN-HMM baseline, the final enhanced
multi-task joint-learning DNN framework with NAT gets more than
2.5% absolute (>20% relative) reduction on WER.

3.2.4. Generalization investigation on the proposed framework

To investigate the generalization of the proposed multi-task joint-
learning, a more realistic scenario is set up with many unseen noise
types other than the noise types in the Aurora 4, which is more sim-
ilar to the real-world application. The new noisy speech data were
synthesized manually by using clean and clean with channel distor-
tion test sets in Aurora 4, which are indicated as SEN and 2ND,
and 100 noise types [26] were randomly selected and added to the
clean speech at different random SNRs from 5 to 15 dB. Finally 2000
utterances were obtained, with 1000 for each channel. The decod-
ing is performed on this new unseen data using several models, and
the results are illustrated in Table 6. It shows that the novel multi-
task joint-learning DNNs, trained on specific noise types, are still
effective when applied in a totally unseen noisy environment. How-
ever as stated in the work in [15], only simply using the regressive
DNN independently as the pre-processor leads to the deterioration
on system performance when applied in the unseen noise types. The
new method still gets about 15% improvement relatively on WER,
which demonstrates the good generalization of the proposed multi-
task joint-learning architecture for robust ASR.

Table 6. WER (%) comparisons of the baseline and the pro-
posed framework in a more realistic unseen noisy scenario.

System SEN 2ND AVG
DNN-HMM Baseline 15.5 24.9 20.2

MT Joint Learning 13.8 21.9 17.8
+ NAT 13.3 20.9 17.1
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Table 7. WER (%) comparisons of various systems in the literature to the proposed method on Aurora 4.

System A B C D AVG
Best GMM-HMM [9] 5.6 11.0 8.8 17.8 13.4

DNN NAT DP [10] 5.4 8.3 7.6 18.5 12.4
DNN PP [15] 4.5 7.5 7.4 19.3 12.3

Spectral Mask [27] 4.5 7.9 7.5 17.7 11.4
JNAT [14] 4.5 7.4 8.1 16.5 11.1

TVWR Adap [6] 4.4 7.5 7.1 15.6 10.7
Joint FE BE [18] 4.4 6.8 6.4 15.4 10.3

AD OSN LRF [19] 4.0 7.2 6.4 14.5 10.0
MT Joint-learning 3.8 6.5 6.0 14.5 9.7

3.3. The system comparison on Aurora 4

Finally, the results obtained using the proposed approach are com-
pared with several other systems in the literature in Table 7. These
systems are representative of the state of the art in acoustic model-
ing for noise robustness and to the authors’ knowledge, are the best
published results on Aurora 4. The first system is the best one in the
GMM-HMM framework using the VTS and MLLR for environment
and speaker adaptations [9], and the systems in the middle block are
all the DNN-based systems using various technologies.

As the table shows, the new proposed general multi-task joint-
learning DNN with noise-aware training consistently outperforms
other works. It achieves a performance below 10% WER without
using adaptation or sequence training, and is also much better than
the single system in the recent work also using the feature denoising
idea but a different framework [18].

4. CONCLUSION AND FUTURE WORK

This paper proposed a novel multi-task joint learning DNN frame-
work for noise robust speech recognition. Different from the previ-
ous work of only training the denoising model as a pre-processor or
optimizing the parameters independently in a specific order, the new
framework unifies the regressive denoising DNN and the discrimina-
tive recognition DNN into an integrated and more general multi-task
architecture. The new framework can optimize the entire parameter
set using two criteria simultaneously from the model training begin-
ning. In addition, the noise-aware training is applied on the subband
level and first investigated in the multi-task joint-learning to make
use of more environment-related knowledge. With this highly ad-
vanced novel structure, the new approach gets more than 2.5% ab-
solute (>20% relative) reduction on WER compared to the strong
DNN-HMM baseline on Aurora 4 task. Furthermore, the promising
system performance on the unseen noisy scenario also demonstrates
the good generalization of the proposed multi-task joint-learning ar-
chitecture.

In the future, we plan to implement the sequence training [28]
on this architecture and also try the other neural function [19] in the
multi-task joint-learning model.
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