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ABSTRACT

We propose a variation to the commonly used Word Error
Rate (WER) metric for speech recognition evaluation which
incorporates the alignment of phonemes, in the absence of
time boundary information. After computing the Levenshtein
alignment on words in the reference and hypothesis tran-
scripts, spans of adjacent errors are converted into phonemes
with word and syllable boundaries and a phonetic Leven-
shtein alignment is performed. The phoneme alignment in-
formation is used to correct the word alignment labels in each
error region. We demonstrate that our Phonetically-Oriented
Word Error Rate (POWER) yields similar scores to WER
with the added advantages of better word alignments and the
ability to capture one-to-many alignments corresponding to
homophonic errors in speech recognition hypotheses. These
improved alignments allow us to better trace the impact of
Levenshtein error types in speech recognition on downstream
tasks such as speech translation.

Index Terms— automatic speech recognition, speech
translation, mixed-effects models, error analysis

1. INTRODUCTION

Spoken language translation (SLT) systems are comprised by,
at minimum, two components: an automatic speech recogni-
tion (ASR) system which provides audio transcripts of source
language utterances, and a machine translation (MT) system
that translates the transcripts. While there have been a number
of efforts to construct tightly-coupled ASR and MT systems
that are jointly trained and optimized, the majority of SLT
systems employ a cascading approach in which ASR systems
are trained and evaluated independently from the MT system
[1, 2, 3]. In such a training paradigm, it is not clear how the in-
troduction of ASR errors will affect translation quality. While
there is a high correlation between ASR errors and translation
quality, the impact of various ASR error types is still an open
research problem.

ASR performance is typically evaluated using the Word
Error Rate (WER) metric, which labels errors as word-level
substitutions, deletions, or insertions, based on the Leven-
shtein word alignment between a reference transcript and an
ASR hypothesis. Since the Levenshtein aligner often must de-
cide between several “optimal” labeling sequences according

to its objective function, it may select an alignment sequence
that does not adhere to phonetic or linguistic relationships
between the word types. Although some evaluation toolkits
use timestamp information to guide the alignment process,
the problem persists. For example, the mapping of a→doctor
in Fig. 1 has the side-effects of aligning Dr.→brahmin and
deleting Stanford, thereby misaligning three content words.
Additionally, WER is not capable of identifying homophonic
errors across word spans, such as anatomy→and that to me1.

These weaknesses in the word-level Levenshtein align-
ments used by WER inhibit the use of linguistically annotated
ASR errors in assessing the quality of downstream speech-
centric tasks, such as speech translation. In response, we in-
troduce an additional step in the alignment process, which
computes phonetically-oriented word alignments across ad-
jacent word errors that were predicted by WER. We employ
the text analysis component of a text-to-speech (TTS) engine,
which dictactes written text based on a pronunciation dictio-
nary, letter-to-sound rules, and context-dependent pronuncia-
tion rules for numbers, ordinals, and acronyms.

In this paper, we describe the application of phonetically-
oriented word alignment on spans of adjacent errors and show
that these corrected alignments significantly alter the distribu-
tion of ASR word error types. We demonstrate its utility in
text normalization as a pre-ASR evaluation step and addition-
ally apply the re-aligned error types to a SLT error analysis
experiment that measures the impact of speech recognition
errors on SLT quality.

2. PHONETICALLY-ORIENTED WORD
ALIGNMENT

The ambiguity in the word-level Levenshtein aligner is cen-
tered around the placement of substitution errors in an align-
ment sequence. As shown in Fig. 1, the error spans contain
at least one substitution error and a number of insertion or
deletion errors.

Our phonetically-oriented word alignment algorithm is di-
vided into two stages. First, we capture error spans whose
error labels are likely to be ambiguous. The reference and hy-
pothesis words in each span are transcribed into phonemes by
a TTS analyzer. Each phoneme is treated as an independent

1We use the term “homophonic” to indicate groups of word sequences
that are phonetically similar, but not necessarily identical, to one another.
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Fig. 1: Error alignment differences between WER and POWER. POWER aligns homophonic errors such as anatomy →
and that to me, while WER rate only aligns single words (e.g. anatomy→me).

token and word and syllable boundary tokens are introduced.
The reference and hypothesis tokens are aligned using a vari-
ant of the Levenshtein alignment algorithm that introduces the
following constraints:

1. Boundary tokens may not be substituted.

2. Vowel phonemes can only be aligned to other vowels
(including r-colored vowels, but not semivowels).

3. Consonant phonemes can only be aligned to other con-
sonants (including semivowels).

The boundary tokens provide an implicit distance constraint,
penalizing adjacent phonemes within the same syllable when
they are aligned far from one another.

In the second stage, we recombine the phonetic align-
ments into word alignments by performing a left-to-right
scan of the alignment sequence. Substitution alignments are
identified by considering the words covered by the aligned
phonemes contained between two “correct”-aligned word
boundary markers in the reference and hypothesis. Single
word substitutions (S) are distinguished from substitution
spans (SS) containing multiple words in the reference or the
hypothesis. If a sequence of reference phonemes are termi-
nated with a word boundary, but no hypothesis words have
been scanned, the reference word is marked as a deletion (D).
Likewise, a hypothesis word with no aligned reference word
is marked as an insertion (I).

Returning to Fig. 1, the Levenshtein aligner used in WER
could have alternatively aligned the reference word anatomy
to any one of the hypothesis words currently marked as in-
sertion errors. However, anatomy is pronounced similarly to
the entire sequence of the four hypothesis words in the er-
ror span. The phonetically-oriented alignment in Fig. 2 cap-
tures this phenomenon by aligning the smallest word bound-
ary closure across the entire span of reference and hypoth-
esis words, thereby identifying anatomy→and that to me as
a substitution span and provides the alignment on the right-
hand side of Fig. 1. Likewise, while WER may have con-
sidered slightly better word alignments like Brown→brahmin
and Stanford→or, it is incapable of capturing relationships
such as Stanford→stamp or.
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Fig. 2: Phonetically-oriented alignment of anatomy to
and that to me, with word (‖) and syllable (#) boundaries.
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Fig. 3: POWER alignments for all at→or. The Levenshtein
backtrack matrix shows three alignments with the same edit
distance scores. The third and correct alignment (highlighted
in the backtrack matrix) compactly aligns all→or, while the
others greedily align or to multiple reference words.

2.1. Word alignment heuristics

While the phonetically-oriented alignments provide better
phonetically-grounded alignments, its underlying Leven-
shtein alignment algorithm must also decide between multi-
ple equally-weighted best paths.

In particular, for alignments with large differences in the
number of reference and hypothesis syllables, our implemen-
tation tends to align the first and last word boundaries close to
the beginning and end of the alignment sequence. For exam-
ple, Fig. 3 shows three candidate alignments for the error span
all at→or that minimize the edit distance. Two out of three
alignments attempt to align or to the entire two-syllable ref-
erence. However, only all should align to or as a substitution,
and at should be considered a deletion error. We resolve am-
biguities like these by finding the alignment that minimizes
the number of alignment gaps between the first and last word
boundaries in both the reference and hypothesis. In practice,
we do this by encoding the best paths in the Levenshtein back-
track matrix into an edge-weighted graph and use Dijkstra’s
algorithm to find the best path.

Since there still remains some noise in the phonetic align-
ments, we introduce a couple of heuristics to prevent the
aligner from overzealously marking single-syllable words as
members of a substitution span, when in reality they do not
have a phonetic correspondence on the other side. When an-
notating a substitution span, we keep a record of the number
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of reference and hypothesis syllables. If there is an extra
syllable in the reference or hypothesis, we check if it is the
first syllable of a new word. If so, we mark this word as a
deletion or insertion error, respectively.

2.2. Scoring

Our Phonetically-Oriented Word Error Rate (POWER) score
is defined nearly identically to WER as:

POWER =
S +D + I + SS

L
,

SS =
∑

span

max(|spanref | , |spanhyp|), (1)

where L is the length of the reference and S, D, and I are
the number of word-level substitution, deletion, and insertion
labels, respectively. SS is the count of substitution spans,
weighted by the maximum number of words in each span.
These one-to-many or many-to-many word alignments indi-
cate phonetic confusability as the cause of the error.

3. EXPERIMENTS

Following the experimental framework of [4], we perform our
experiments on an intersection of the ASR and MT results
of the IWSLT 2013 evaluation campaign [5], which focused
on the translation of TED talks. These 580 utterances map a
subset of the ASR hypotheses provided by 8 ASR systems to
the corresponding MT inputs in the English-French MT track.
The unpunctuated MT input serves as the ASR reference data.
Eight French human post-edited references serve as the MT
references in the SLT analysis.

In order to minimize the effects of formatting issues on
our experimental results, the ASR hypotheses are evaluated,
normalized, recased, and punctuated according to the MT in-
put and are translated by a baseline English-French Moses
SMT system, corresponding to the WIT3 data from 2014 [6].
Since we desire to keep the ASR reference intact, we ap-
ply oracle-based text normalization and punctuation insertion
techniques similar to that of [4], instead of applying a general
.glm normalization file to the both the ASR reference and hy-
pothesis. We use POWER to align and normalize hypothesis
words with respect to the reference. POWER uses the Festival
TTS system with the CMU English pronunciation dictionary
[7] to convert words into phonemes. Prior to other normaliza-
tion steps, we use the VARCON tool from SCOWL2 to convert
British English words in the ASR hypotheses to American
English. We also use libraries from NLTK [8] to annotate
ASR errors with part-of-speech and word class information,
as well as lemmatization for morphological analysis.

We conduct two sets of experiments. First, we analyze the
ASR error annotations given by the WER and POWER align-
ments to measure the effects of Levenshtein alignment heuris-
tics on the reported results. In the second set of experiments,

2https://github.com/kevina/wordlist

Data set ASR WER ↓ SLT
System tokens open closed ratio orig norm BLEU ↑ TER ↓
fbk 10095 5581 4514 1.24 21.3 16.5 51.9 38.5
kit 10141 5571 4570 1.22 15.1 10.1 55.4 35.2
mitll 10147 5594 4553 1.23 16.3 11.4 55.0 35.8
naist 10076 5571 4505 1.24 15.6 10.5 55.1 35.3
nict 10165 5595 4570 1.22 14.4 9.2 56.5 34.3
prke 10106 5545 4561 1.22 21.2 16.5 52.1 38.4
rwth 10160 5563 4597 1.21 16.4 11.6 54.3 36.2
uedin 10151 5592 4559 1.23 17.1 12.3 54.6 36.1

gold 10158 5614 4544 1.24 0.0 0.0 62.9 29.1

Table 1: Statistics for each ASR system on the ratio of open
to closed class words by ASR system; ASR WER scores be-
fore and after text normalization; and English-French transla-
tion scores for normalized and punctuated ASR hypotheses,
compared to the ASR reference (gold).
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Fig. 4: Distribution of error types for WER (left) and POWER
(right) for each IWSLT 2013 ASR evaluation participant.

we construct several mixed-effects models [9] that measure
the contribution of various ASR error types on MT errors. Ta-
ble 1 provides summary statistics on the words in each ASR
hypothesis, the WER scores before and after text normaliza-
tion for each ASR output, and scores from two translation
metrics. In particular, the POWER-driven text normalization
reduces each system’s WER scores by 5%.

4. ASR ERROR ANALYSIS

In this set of experiments, we observe the contribution of par-
ticular error types to the global WER and POWER scores for
each ASR system. We outline the shortcomings of WER’s
statistics due to the erratic behavior of Levenshtein aligners.

4.1. Basic Levenshtein error types

We begin by looking at the basic ASR error types (S, D, I,
and SS), which implicitly contain no linguistic information.
Fig. 4 shows the contribution of the basic Levenshtein error
types toward the error rate score for each ASR system. Ac-
cording to WER, substitutions intuitively make up the major-
ity of error types (62.3% ± 0.7%). Across all ASR systems,
WER suggests that the number of deletions are slightly lower
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SysID SS.ref SS.hyp SS: ref>1 SS: hyp>1 SS: ref>1 & hyp>1

fbk 0.036 0.040 0.450 0.615 0.065
kit 0.017 0.025 0.254 0.800 0.054
mitll 0.019 0.026 0.321 0.714 0.036
naist 0.019 0.026 0.336 0.715 0.051
nict 0.018 0.025 0.305 0.763 0.069
prke 0.039 0.042 0.488 0.585 0.073
rwth 0.023 0.032 0.310 0.737 0.047
uedin 0.025 0.032 0.317 0.700 0.017

Table 2: Left: Percentage of reference/hypothesis words ap-
pearing in a substitution span. Right: Percentage of substitu-
tion spans containing multiple reference words, multiple hy-
pothesis words, or both.

than the number of insertion errors (17.9% ± 0.7% deletions
and 19.8%± 0.5% insertions).

However, POWER suggests that roughly half of these
alleged insertion errors (10.0%±0.3%) are instances where a
larger reference word is being hypothesized as a homophonic
sequence of shorter words. Likewise, a portion of “deletion”
errors are instances where multiple reference words were
hypothesized as a longer homophonic word (4.1% ± 0.5%).
Since these substitution span errors are typically cases of
one-to-many alignments, the number of reported word-level
substitution errors are reduced. As such, POWER claims that
30.0%(±0.7%) of the errors are substitution spans involving
homophony, leaving 13.8%(±0.8%) of the remaining er-
rors as deletions and only 9.8%(±0.3%) as insertions whose
pronunciations do not align to any words – both measures
are substantially lower than those reported by WER. The
remaining 46.4%(±0.5%) are word-level substitutions.

We can corroborate this by observing in Table 2 that,
across all ASR systems, 70.4%(±2.5%) of the substitu-
tion spans involve multiple hypothesis words, while only
34.8%(±2.8%) contain multiple reference words. The first
figure may be explained by the presence of out-of-vocabulary
words in the ASR reference, as well as the effects of domain
variation in the evaluation data. The alignment of multiple
reference words to a single hypothesis word may be indicative
of mispronunciations and/or underarticulation by the speaker.
These hypotheses should be explored in future work.

4.2. Word classes and morphology

Given the inconsistent error labeling in WER, which types of
errors are actually being skewed by false alignments? To an-
swer this question, we annotate the reference and hypothesis
words by their word class and observe their alignment statis-
tics. We additionally apply lemmatization to distinguish mor-
phological errors from other substitution types. According
to the word statistics in Table 1, the ratio of open to closed
class words remains the same across each ASR hypothesis
and the reference (gold). The proportion of errors associated
with each ASR error type is shown in Table 3.

Word-level substitution errors. Both WER and POWER
report that the majority of substitution errors are within the
same word class. While the proportion of closed-closed class
substitutions remain the same, POWER reports 8% fewer

ErrorType WER POWER WER Rank POWER Rank

S.open open 0.299 0.219 1 1
SS.open span 0.186 2
S.closed closed 0.148 0.140 2 3
D.closed 0.112 0.097 4 4
S.open closed 0.107 0.069 4 6
SS.span open 0.069 6
I.closed 0.101 0.065 6 7
D.open 0.067 0.041 8 8
S.closed open 0.069 0.036 8 8
I.open 0.096 0.033 6 10
SS.span closed 0.019 12
SS.span span 0.016 12
SS.closed span 0.010 13

Table 3: Proportion of ASR error types by word class, av-
eraged across all ASR systems and ranked by importance.
Substitution labels (S, SS) show the alignment from reference
class to hypothesis class. Substitution spans (SS) contain a
span of words aligned either to a single word or another span.

open-open class substitution errors, which are often instances
of substitution error spans containing a word-level substitu-
tion error and one or more short function words (e.g. Brown
in→brahmin from Fig. 3). Of the open-open class substitu-
tion errors, 5.4% are morphological errors. POWER likewise
reports 7% fewer cross-class substitution errors, many of
which are attributed to the correction of misalignments.

Deletions and Insertions. According to WER, deletion
and insertion errors account for 37.7%(±0.7%) of all er-
rors. WER marks nearly as many open class insertions as
closed class insertions, but suggests that closed class dele-
tions are more prominent than open class ones (6.7%± 0.4%
open versus 11.2% ± 0.5% closed class deletions). How-
ever, with POWER, deletion and insertion errors only ac-
count for 23.6%(±0.8%) of all errors, with the majority of
the reduction attributed to fewer open class insertion errors
(3.3%± 0.1%). An example of a corrected open class “dele-
tion” is Stanford→stamp or from Fig. 3.

Substitution spans. The majority of substitution spans
have a single open class reference word (18.6% ± 0.7%),
such as anatomy→and that to me in Fig. 3; these represent
the second most common POWER error type. Likewise, the
presence of a substitution span in the ASR reference indi-
cates that the hypothesis word is likely to be a content word
(6.9% ± 0.8%). Closed class function words are unlikely to
be aligned to substitution spans (2.9% ± 0.3%), since most
have few syllables that cannot easily be mistaken for multiple
words. Instead, as shown in Table 3, closed class words are
more likely to be deletion or insertion errors.

Table 4 provides confusion pair examples from FBK’s
ASR system output that demonstrate the utility of POWER.
Word confusion pairs such as a→today are likely errors in-
duced by an ASR language model that biases the acoustic
model to artificially recognize non-existant phonemes. Like-
wise, POWER is able to provide insight that crude→crudely
is not a morphological error, but rather another language
model-induced bias that considers leaf an unlikely successor
to crude. Other confusion pairs include word normalizations,
affix errors, and phonetic confusions.
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WER POWER
Reference Hypothesis Reference Hypothesis

a today a day today
ascending and ascending and sending
anesthetize and anesthetize and decent size
butchering the butchering maturing
centigrade cents centigrade cents a great
crude crudely crude leaf crudely
cyclones soy cyclones soy clones
face-to-face face face-to-face face to face
of obama of anatomic obama panic

Table 4: Confusion pair examples using WER and POWER.

5. SLT ERROR ANALYSIS

Given that POWER yields a significantly different distribu-
tion of error types, how can it be leveraged to understand
the impact of ASR errors on downstream natural language
processing tasks? We turn our attention to the translation of
TED talks from English to French. Similar to [4], we mea-
sure the impact of utterance-level ASR errors on their asso-
ciated translation score by measuring the increase in transla-
tion error rate (ΔTER) [10] against a gold standard translation
which contains no ASR errors. We use linear mixed-effects
regression models to measure the importance of each ASR er-
ror type, taking into consideration random effects caused by
an ASR system and the particular features of each ASR ut-
terance. We use the R [11] implementation of mixed-effects
models in the lme4 library [12]. All of our models are fit us-
ing maximum likelihood and incorporate random intercepts
for each ASR utterance (labeled as UttID) and ASR system
(labeled as SysID), as well as a random slope by the WER
score. We use the repeated observations of our 580 speech
utterances by eight ASR systems, yielding a total of 4,640
observations. As fixed effects, we normalize the counts of
each ASR error type by the length of the ASR reference for
each utterance in order to consider its contribution toward the
utterance-level WER score. In each model, SysID was not
significant, with a standard deviation near zero.

5.1. WER versus POWER features

Our first experiments consider the ASR error labels provided
by WER and POWER. Our baseline considers a single er-
ror feature, corresponding to the WER score for each utter-
ance. We compare it to two mixed-effects models and re-
port their coefficients in Table 5. WER.basic is trained with
WER’s basic substitution (WER.S), deletion (WER.D), and
insertion (WER.I) labels; POWER.basic is trained addition-
ally with POWER’s substitution span labels (WER.SS). Both
sets of features are normalized by the reference length in or-
der to be a decomposition of the WER metric.

As in [4], we observe a significant difference between
WER.basic and the baseline, rejecting the null hypothesis that
each basic ASR error type contibutes equally to translation
quality, in terms of ΔTER (χ2(2) = 16.922, p < 2.12 ×
10−4). We additionally observe a significant difference be-
tween the standard WER-aligned error types (WER.basic) and
the POWER-aligned error types (POWER.basic) that include

Table 5: Fixed effects coefficients and 95% confidence inter-
vals for the first three mixed-effects models, which measure
the effect of ASR error types on ΔTER for English-French
SLT. The baseline encapsulates all error types in a single
WER measure, while the subsequent models use WER and
POWER-aligned error types.

WER WER.basic POWER.basic

(1) (2) (3)

WER 0.630∗∗∗
(0.586,0.674)

WER.D 0.564∗∗∗ 0.615∗∗∗
(0.506,0.622) (0.556,0.674)

WER.I 0.707∗∗∗ 0.829∗∗∗
(0.642,0.772) (0.753,0.906)

WER.S 0.624∗∗∗ 0.649∗∗∗
(0.578,0.671) (0.601,0.696)

WER.SS 0.535∗∗∗
(0.487,0.584)

Constant 0.001 0.001 −0.0001
(-0.003,0.004) (-0.002,0.004) (-0.003,0.003)

Observations 4,640 4,640 4,640
Log Likelihood 6,172.170 6,180.631 6,194.288
Akaike Inf. Crit. -12,330.340 -12,343.260 -12,368.580
Bayesian Inf. Crit. -12,285.240 -12,285.280 -12,304.150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

substitution spans (χ2(1) = 27.314, p = 1.73 × 10−7), in-
dicating that substitution spans are a significant predictor of
translation quality. As shown in Table 5, while the impact of
substitution errors remains in principle the same, the impact
of insertions increase sharply, both due to the higher quality of
the error labels and their lower frequency. POWER.basic indi-
cates that an utterance with a WER (or equivalently, POWER)
score of 10% as insertion errors would expect an increase
in TER by 0.1 × 0.829 − 0.0001 = 8.3%, while 10% in
substitution errors would correspond to a TER increase of
0.1× 0.649− 0.0001 = 6.49%.

5.2. Frequency-weighted ASR errors

While the coefficients in Table 5 show the expected increase
in TER for each percentage of WER associated with a par-
ticular error type, an error type with a high coefficient but a
low frequency may not be important from an error correction
standpoint. Ideally, we wish to measure which ASR errors are
particularly problematic for a given SLT task.

We construct an additional mixed-effects model using the
word class-annotated error types from Section 4.2. We com-
pute frequency-weighted scores for each error type, based on
the observations in our data set. Considering the fixed and
random effect scores on each utterance, we measure the av-
erage weighted contribution of each ASR error type toward
the ΔTER measure. In other words, if we observe one ASR
error of a particular type, how much is it expected to degrade
the translation quality? By doing so, we seek to rank the im-
portance of each error type. Table 6 reports the mean and
standard error for each weighted error type, using the word
class-annotated error types provided by POWER. We observe
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ErrorType coef weight-mean weight-se SLT Rank

WER.S.open open 0.687 0.0175 0.0006 1
WER.S.closed closed 0.585 0.0132 0.0005 2
WER.SS.open span 0.723 0.0123 0.0006 3
WER.D.closed 0.451 0.0069 0.0004 4
WER.I.closed 0.548 0.0059 0.0004 6
WER.S.open closed 0.663 0.0057 0.0003 6
WER.D.open 0.546 0.0048 0.0005 7
WER.I.open 0.553 0.0044 0.0004 9
WER.S.closed open 0.590 0.0036 0.0002 9
WER.SS.span open 0.802 0.0038 0.0003 9
WER.SS.span closed 0.757 0.0016 0.0002 12
WER.SS.span span 1.036 0.0015 0.0003 12
WER.SS.closed span 0.713 0.0011 0.0002 13
(Intercept) 0.000 0.0002 0.0003 14

Table 6: Mixed-effects coefficients (coef) for POWER ASR
error types with word class annotations, and their mean
frequency-weighted contributions toward translation ΔTER
(weight-mean).

that, similar to the ASR-only experiments, within-class sub-
stitution errors have the highest frequency-weighted contribu-
tion toward ΔTER. While substitution spans containing open
class reference words have a high weighted score, substitution
spans with open class hypothesis words have a substantially
lower weighted score.

6. DISCUSSION

Based on the error statistics provided above and recorded in
Table 3, we identify the following error types as interesting
to focus on when constructing models to cope with ASR er-
rors. 16.2%(±0.6%) of the ASR errors are either insertions or
deletions on closed class words. These types are also ranked
highly in our SLT experiments. While a recovery model to
insert or delete hypothesis words is non-trivial, we consider
closed class words to be low-hanging fruit, since the number
of alternative words are small and a language model would
likely have statistics that support their inclusion or removal.
While closed class words can be under-articulated, they re-
ceive the majority of their support from the language model
due to the large amount of observations. The advantage of us-
ing POWER to model errors is that we have more confidence
that the words we mark as deletions or insertions during train-
ing/development are really unaligned words.

Likewise, it is useful to consider the effects of substitution
spans, as they are among the most frequent errors caused by
ASR systems. By identifying substitution error spans, we are
able to capture a consecutive string of words that can signif-
icantly alter the meaning of a sentence. However, oftentimes
they are due to homophonic errors where an ASR system may
have reasonable confidence in the phonemes detected, but due
to the interaction between the acoustic and language models,
a shorter sequence of similar-sounding words was selected. It
would be worthwhile to identify common phonetic error pat-
terns to either rescore ASR hypotheses or carry forward the
ambiguity of a span of words in the hypothesis to allow the
downstream process to decide which similar-sounding alter-
native makes the most sense.

7. RELATED WORK

Mixed-effects models were first used in ASR error analysis in
[13] to analyze the effects of lexical, prosodic, contextual, and
disfluency features of individual words on WER. They show
that of the various disfluency types, word fragments, non-final
repetitions, and words preceding fragments have a significant
impact on WER. Our work proposes a phonetically-oriented
word alignment process that is more successful in aligning
words of the same word class. Such an alignment process
would alter the individual WER measure proposed in [13],
which could provide more reliable results.

A related area of work is ASR confidence estimation,
which seeks to label erroneous words in an ASR hypothesis.
[14] uses the comparison of phones in a strong ASR sys-
tem and a weak ASR system without a language model as
features for error detection. Regions where the difference is
large indicate a higher likelihood of errors. Other approaches
include using ASR consnsus votes as well as recurrent neural
networks to capture longer contexts [15].

On downstream tasks such as speech translation, [16, 17]
propose ASR channel modeling techniques that rely on
the concept of phonetic confusability to convert error-free
source language phrases into ASR-like outputs in order to
model ASR errors during machine translation model training.
Phonetically-oriented alignments could be used in either ap-
proach to identify error regions during training to focus the
channel model on confusable words. Our use of a TTS ana-
lyzer to generate pronunciation sequences on ASR references
and hypotheses is based on [17].

8. CONCLUSION

We have developed a phonetically-oriented word alignment
pipeline as an extension to Word Error Rate’s Levenshtein
aligner. Spans of adjacent Levenshtein errors containing min-
imally one substitution error are converted into phonemes
with word and syllable boundaries. A second Levenshtein
alignment process on phonemes is carried out and the align-
ment information is used to guide the word alignment pro-
cess. We demonstrate that our phonetically-oriented word
alignments generate virtually the same error rate score as
WER, with the added benefit of more reliable substitution
error tags, and a reduction of erroneous deletion and inser-
tion error labels on open class words. We demonstrate that
the use of phonetically-oriented error labels significantly
alters the statistics gathered from error analyses on ASR
outputs. Additionally, for speech translation error analysis
tasks, we demonstrate that our phonetically-oriented word
error alignments result in better error models in mixed-
effects modeling. We demonstrate that homophonic error
spans comprise a significant portion of ASR errors with
a large impact on speech translation quality and deserve
to be considered as an additional substitution error type
in error recovery efforts. Our POWER software is avail-
able as open source software for the research community at
https://github.com/NickRuiz/power-asr.
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