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ABSTRACT

New efficient measures for estimating uncertainty of deep
neural network (DNN) classifiers are proposed and success-
fully applied to multistream-based unsupervised adaptation
of ASR systems to address uncertainty derived from noise.
The proposed measure is the error from associative memory
models trained on outputs of a DNN. In the present study,
an attempt is made to use autoencoders for remembering the
property of data. Another measure proposed is an exten-
sion of the M-measure, which computes the divergences of
probability estimates spaced at specific time intervals. The
extended measure results in an improved reliability by con-
sidering the latent information of phoneme duration. Experi-
mental comparisons carried out in a multistream-based ASR
paradigm demonstrates that the proposed measures yielded
improvements over the multistyle trained system and system
selected based on existing measures. Fusion of the proposed
measures achieved almost the same performance as the oracle
system selection.

Index Terms— Autoencoder, M-delta measure, uncer-
tainty estimation, deep neural networks, multistream ASR

1. INTRODUCTION

Deep neural network (DNN) based speech recognition sys-
tems have shown significant improvements over systems
based on Gaussian mixture models (GMMs) [1, 2]. The
reason for the improvement is attributed to DNNs ability
to model complex, non-linear manifolds that may be sepa-
rating features from different classes of speech sounds[2].
However, if the test data contains variability not seen in the
training data, even the best machine learning techniques may
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fail without much warning. This differentiates machines
from higher animals (including humans), who typically know
if they are certain about the decisions they are making [3, 4].
Emulating this ability in machines would be desirable.

Uncertainty of the estimates (usually posterior probability
estimates of speech classes) could be useful in a number of
applications [5, 6, 7, 8, 9]. It can be used in adaptive selection
of processing streams, in a multi-stream framework [6, 7].
Uncertainty estimation can also be useful in semi-supervised
training, for example in co-training, where reliable estimates
of one classifier are used as labels for another diverse clas-
sifier, and vice-versa [8, 9]. In this paper we propose two
techniques to measure uncertainty of DNN classifiers.

The first measure is based on the following premise: A
DNN is best performing and least uncertain about its esti-
mates on the training data. Therefore, uncertainty of a test
data can be measured by computing the deviation in probabil-
ity estimates derived from the test and the training data. We
propose to use autoencoders to model DNN outputs. Autoen-
coders are feed-forward neural networks, used for modeling
complex data distributions [10, 11, 12]. First we train autoen-
coders to reconstruct DNN outputs of training data. Then,
reconstruction error on test data is used as measure of DNN
uncertainty on the test data.

The second measure is an extension of the earlier pro-
posed M-measure [13]. The M-measure accumulates the di-
vergences of posterior probability vectors, which are spanned
in certain time intervals apart. For the short spans, the diver-
gences are small. They increase with increasing time span up
to the point where both compared probability vectors come
from different coarticulation patterns. Since distortion of a
signal could make the probability vectors coming from such
large spans more similar, the cumulative divergence curve in-
dicates the quality of probability estimates. The extension
of this measure, which was inspired by the segmentation al-
gorithm proposed in [14], compares the difference in diver-
gences coming from the same phoneme as well as different
phonemes.

The uncertainty measures proposed are applied for stream-
selection in a multi-stream probability estimation, in which
different DNNs are trained on specific noise conditions and
the DNN having the most acoustic similarity to a given test
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Fig. 1. Illustration of seven layered autoencoder with five
non-linear hidden and two linear visible layers.

utterance is selected. The present study demonstrates that
selecting the system trained on matched condition using the
proposed measures performs better than the conventional
multi-style training approach.

The reminder of the paper is organized as follows: Pre-
viously proposed uncertainty measures are described in sec-
tion 2. Section 3 describes the main principle involved in us-
ing autoencoders for uncertainty estimation. M-delta measure
is described in section 4. Experimental setups and results are
presented in section 5. Section 6 concludes the paper.

2. PAST UNCERTAINTY MEASURES

2.1. Entropy of softmax output

Okawa et. al. and Misra et. al. [6, 7] observed that as noise
in test data increases, the output posterior probability distri-
bution from a DNN, trained on clean data, converges to non-
informative, uniform distribution. This results in an increase
in the entropy of the posterior distribution. Based on this ob-
servation, entropy was proposed as a measure of uncertainty.

2.2. M-measure

The M-measure accumulates the divergences of probability
estimates spaced over several time-spans. It is defined as

M(∆t) =
1

T −∆t

T∑
t=∆t

D(pt−∆t,pt), (1)

where ∆t denotes the time interval between the phoneme pos-
terior probabilities at t−∆t and t, pt−∆t and pt, and D(p,q)
denotes the symmetric KL divergence between the posteriors,

D(p,q) =

K∑
k=0

p(k) log
p(k)

q(k)
+

K∑
k=0

q(k) log
q(k)

p(k)
, (2)
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Fig. 2. Illustration of property of autoencoder useful to dis-
tinguish matched data and mis-matched data.

where p(k) denotes the k-th element of a posterior vector p ∈
RK . It has been found that if an ASR system is developed
using clean speech, M-measure is higher for clean speech ut-
terances (i.e., known data) and lower for noisy speech utter-
ances (i.e., unknown data). In addition, as the SNR of noisy
speech decreases, the M-measure lowers [13]. This means
that the M-measure could be effective in determining whether
the output of the estimator represents good or bad estimates
of speech sounds in speech stream. In multi-stream ASR, the
stream (or system) with the highest M-measure can be se-
lected as the most reliable stream (or system) [15] for each
utterance.

The M-measures in Eq. (1) are averaged over several time
intervals ∆t and the result is used as the uncertainty measure,

M = mean
{∆t}

[M(∆t)], (3)

where {∆t} consists of 10, 15, 20, · · · , 80 frames (15 inter-
vals).

3. UNCERTAINTY BASED ON AUTOENCODERS

This section describes uncertanty estimation using autoen-
coders and the details on training of autoencoders.

An autoencoder is a multi-layered feed-forward neural
network, used in the context of unsupervised learning. During
the training process, parameters of the network are optimized
to minimize the squared error cost between an output vector
from the autoencoder and the corresponding target vector.
The targets used to train the network are inputs themselves.
The cost function used to optimize the network parameters
(W) is described as

min
W

E||x− x̂||22, (4)

where x is an input vector and x̂ is an output vector from
the network. Figure 1 shows the architecture of the autoen-
coder used. An autoencoder with more than one non-linear
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Figure 3: Comparison of spectrographic representations obtained from clean speech, noisy speech (babble noise at 10 dB) and rever-
berant speech (reverberation time of 300 ms for the mel-spectrogram and the proposed 2-D AR model spectrogram.

components are trained on the development data. The develop-
ment data set consists of a combination of audio from the NIST
2004 speaker recognition database, the Switchboard II Phase
3 corpora, the NIST 2006 speaker recognition database, and
the NIST08 interview development set. There are 4324 male
recordings and 5461 female recordings in development set.

Once the UBM is trained, the mixture component means
are MAP adapted and concatenated to form supervectors. We
use the i-vector based factor analysis technique [23] on these
supervectors in a gender dependent manner. For the factor anal-
ysis training, we use the development data from Switchboard II,
Phases 2 and 3; Switchboard Cellular, Parts 1 and 2, NIST04-
05 and extended NIST08 far-field data. There are 17130 male
recordings and 21320 female recordings in this sub-space train-
ing set. Gender specific i-vectors of 450 dimensions are ex-
tracted and these are used to train a PLDA system [24]. The
output scores are obtained using a 250 dimensional PLDA sub-
space for each gender.

For evaluating the robustness of these features in noisy con-
ditions, the test data for Cond-2 is corrupted using (a) babble
noise, (b) exhibition hall noise, and (c) restaurant noise from
the NOISEX-92 database, each resulting in speech at 5, 10,
15 and 20 dB SNR. These noises are added using the FaNT
tool [25]. For simulating reverberant recording conditions, we
also convolve the test data for Cond.-2 with three artificial room
responses [26] with reverberation time of 100, 300 and 600ms.
Cond-2 has interview microphone recordings with the highest
number of trials among NIST 2010 core conditions (2.8M) and
it contains 2402 enrollment recordings and 7201 test record-
ings. In our experiments, the enrollment data consists of “clean”
speech data present in NIST 2010 and the test data may be clean
speech data or noisy data. The voice-activity decisions provided
by NIST are used in these experiments. The GMM-UBM, i-
vector and the PLDA sub-spaces trained from the development
data are used without any modification.

Table 1: EER (%) clean and noisy version (babble at 5 dB SNR
for Cond.-2 of NIST 2010 SRE for baseline MFCC features and
2-D AR features for various choices of model order for temporal
ARmodel in terms of poles per sec (pps) and spectral ARmodel
in terms of poles per frame (ppf).

Feat. Clean Noisy
MFCC 3.0 12.5

2-D AR (10pps, 6ppf) 4.8 15.4
2-D AR (90pps, 6ppf) 3.7 14.4
2-D AR (10pps, 24ppf) 4.0 12.8
2-D AR (90pps, 24ppf) 2.7 10.5
2-D AR (30pps, 12ppf) 2.7 9.8
2-D AR (60pps, 12ppf) 2.8 9.7
2-D AR (15pps, 12ppf) 3.0 11.4
2-D AR (30pps, 18ppf) 2.6 10.2

The performance metric used is the EER (%) and the false-
alarm rate at a miss-rate of 10% (Miss10). The initial set of ex-
periments discuss the selection of model order using the clean
data for Cond.-2 as well as validation data from babble noise
at 5 dB SNR. This choice of validation data was not optimized
in any manner and the performance on other types of noise and
SNR levels relates to the generalization of the parameter selec-
tion process. The results for various choices of model order
(described in terms of number of peaks per second for tempo-
ral model or number peaks per frame across all bands for the
spectral AR model) is shown in Table. 1.

Based on the results provided in Table. 1, we select a model
order of 30 poles per sec (pps) for the temporal AR model and
an order of 12 poles per frame (ppf) for the spectral AR model.
The comparison of the performance for various noisy and rever-
berant conditions (average of three types of noise) for the base-
line features as well as the 2-D AR features is shown in Fig. 4.
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Fig. 3. Stream selection framework to evaluate various uncertainty measures. Each DNN is trained on a specific noise condition.

hidden layer is shown to capture complex, non-linear mani-
folds present in the training data [11, 17]. In order to avoid
a trivial identity mapping (the network weights equal to the
unit matrix), the number of nodes in the third hidden layer are
chosen to be fewer than the input (and output) layer.

Since the network is trained to minimize the reconstruc-
tion error, a vector sampled from the distribution of training
data will yield a low reconstruction error compared to vectors
drawn from a different distribution. This property is illus-
trated in Fig. 2, which shows distributions of l2 norm of re-
construction error vectors (||e||2), computed from the training
data (train), data similar to the training data (matched test),
and data that deviate from the training data (mis-match test).
Figure 2 illustrates that the reconstruction error is a good in-
dicator for measuring the mismatch between the training and
test data.

Mallidi et al. [18] first proposed to use the reconstruc-
tion errors from autoencoders to measure uncertainty of DNN
classifiers. Autoencoders used in [18] are five layered neural
networks with three hidden layers. The feature representation
used by [18] to train autoencoders is multi-class linear dis-
criminant analysis (LDA) transformed pre-softmax outputs.
Context dependent states were used as classes for estimation
of LDA transformation. The hidden layers consist of neurons
with tanh nonlinearity. Autoencoders are trained using a mean
squared error cost function (Eq. 4), starting with random ini-
tialization. We have observed that the architecture used in
[18] is not robust against the choice of the input dimensional-
ity and number of layers. We attempt to make autoencoders
robust against the choice of such hyper parameters by switch-
ing to sigmoidal nonlinearity, and initializing networks with
restricted Boltzmann machine (RBM) pretraining [22].

4. M-DELTA MEASURE

The original M-measure assumes that the distance between
probability estimates over several time-spans should be large
for known data. However, this is not always accurate. If two
posteriors are from the same phoneme class, the distance be-
tween them should be small, irrespective of the time intervals.
This means that the original M-measure ignores the effect of

the posterior pairs that are separated by large time intervals
but belong to the same phoneme class. It accumulates a sym-
metric KL divergence between the posteriors without consid-
ering this kind of phoneme dependency.

More formally, we introduce the idea of within-class and
across-class M-measures, Mwc and Mac, to represent the
accumulated KL-divergence computed from a data pair from
the same phoneme class and that from a data pair from differ-
ent classes, respectively. The new M-delta measure is defined
using these within- and across-class M-measures as

Mdelta =Mac −Mwc. (5)

We assume that the M-measure can be decomposed into

M(∆t) = pwc(∆t) · Mwc + pac(∆t) · Mac + ε∆t, (6)

whereM(∆t) denotes the original M-measure defined using
Eq. (1), which is determined for each utterance; pwc(∆t) and
pac(∆t) denote the probability of a pair of frames separated
by ∆t being instances from the same and different phonemes,
respectively; andMwc andMac, the within- and across-class
M-measures being estimated for each utterance. pwc(∆t) and
pac(∆t) are determined from the training data transcriptions.

The error term ε∆t is included because Eq. (6) is an
approximate representation of the M-measure. Although
pwc(∆t) and pac(∆t), which are computed from the train-
ing data, are reliably estimated, these probabilities actually
differ from those computed from the test utterances, because
the variety of phonemes in a test utterance is limited. The
redefined M-measure described using Eq. (6) can be written
redundantly with several ∆t values to minimize the overall
error of the within- and across-class M-measures. Assume
that y, A, x, and ε are given as

y =
[
M(∆t1) · · · M(∆tN )

]T ∈ RN (7)

A =

 pwc(∆t1) pac(∆t1)
· · · · · ·

pwc(∆tN ) pac(∆tN )

 ∈ RN×2 (8)

x =
[
Mwc Mac

]T ∈ R2 (9)

ε =
[
εt1 · · · εtN

]T ∈ RN (10)
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Then, Eq. (6) can be written as

y = Ax + ε. (11)

In this case, the within- and across-class M-measures can be
estimated as a least square solution:

x = (ATA)−1ATy. (12)

The experiments below used the values (∆t1,∆t2, · · · ,∆tN )
= (1, 2, 3, 4, 5, 10, 15, 20, · · · , 75, 80) and N = 20, which
were determined by conducting preliminary experiments.
Note that higher M-delta values indicate more reliable proba-
bility estimates.

5. PHONEME RECOGNITION EXPERIMENT

Experimental comparisons were made in a stream selection
framework on TIMIT and Aurora4 databases.

5.1. Stream selection framework

The stream selection framework used is shown in Fig. 3. This
framework contains several DNN-based classifiers in parallel.
Each DNN classifier is referred to as “stream.” A sequence
of posterior probability vectors is computed for each stream
by forward passing a given test utterance through the corre-
sponding DNN. Posteriors of the least uncertain stream are
selected, and provided as an input to a phoneme decoder.

In each stream, the DNN is trained on a specific noise
condition. This results in a multi-stream framework where
each stream is really good in a specific noise condition. For
a given test utterance, selecting posterior estimates from the
stream having the most similar acoustic property as the test
utterance, results in the lowest error rate. Therefore, we use
the phoneme error rates of the stream selection framework to
evaluate various uncertainty measures.

5.2. Stream selection experiments on TIMIT

5.2.1. Experimental setup

We used the TIMIT speech dataset for the stream selection
experiments [19]. The training set contains 3696 SI and SX
utterances from 462 speakers. This totals to 3.12 hours of
speech. These are clean, read speech sentences. We used the
core development set for the purpose of testing. Five versions
of original training set are created by corrupting the clean
training speech with four types of additive noise, at various
signal-to-noise ratios ranging from 0 dB to 20 dB. We used
car, babble, buccaneer1, and buccaneer2 noises from NOI-
SEX database [20]. The original clean training set and four
noisy training sets are combined to create a multi-condition
training set. The six versions (one clean + four noisy + one
multi-condition) of training sets are used to train six different
DNNs, where five of them are trained on a specific acoustic

condition, and one DNN is trained on multi-condition data.
We used a depth of six hidden layers, and each hidden layer
consist of 1024 sigmoidal units. Similar to previous stud-
ies [21], DNNs are trained on 40 dimensional Mel filter-bank
energy features. The DNNs are pre-trained using RBM [22]
and fine-tuned using the cross-entropy cost function. The
targets used for fine-tuning are context dependent triphone
states, generated using a GMM/HMM system trained on clean
MFCC features.

We used the development set for testing the models. The
development set consists of 34 minutes of speech. Similar
to the training set, we corrupted the development set with
car, babble, buccaneer1, buccaneer2, destroyerops, exhibi-
tion hall, f16 and factory noises, at signal-to-noise ratios of
0, 5, 10, 15 and 20 dB. Four types of noise in this set are
seen acoustic variability and the other four noises are unseen
acoustic variability in the training set. The whole develop-
ment set (clean and noisy versions) is referred to as test set
from here on.

5.2.2. Experimental result

Table 1 shows the results of test set in various streams.
For the purpose of showing the upper limit of perfor-

mance, the oracle selection technique is defined as selecting
the stream which has the most similar acoustic condition of
given test data. In the present study, we used two types of
oracle stream selection techniques as follows:

• Utterance oracle: We select a stream with the lowest
error rate for each utterance.

• Matched condition: We select a stream trained on the
same noise for test utterance with seen noise. Whereas
for test utterance with unseen noise, we select a stream
trained with multi-condition data.

We can infer that error rates of the condition-level oracle
streams are always less than those of individual streams (i.e.,
clean, car, babble, buccaneer1, and buccaneer2). In addition,
the utterance-level oracle streams performs better than the
condition-level oracle streams.

Uncertainty measures used for stream selection are as fol-
lows:

• Entropy: Stream selection based on entropy minimiza-
tion

• M: Stream selection based on M value maximization

• M-delta: Stream selection based on M-delta maxi-
mization

• AE LDA: Stream selection based on minimization of
reconstruction errors from autoencoder
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Table 1. Comparison of various uncertainty measures using stream-selection results on TIMIT database.

seen noises unseen noises
Train \Test clean car babble bucc1. bucc2. destops. exhall f16 factory Avg. PER (%)
clean 20.9 34.2 58.3 65.4 65.0 59.2 56.8 62.6 61.6 53.8
car 23.8 22.8 58.1 65.2 64.6 56.1 54.6 62.7 60.6 52.1
babble 30.8 33.1 37.5 38.1 44.6 50.6 53.0 42.0 48.6 41.2
bucc1. 35.4 41.3 53.7 38.1 44.9 50.6 53.0 42.0 48.6 45.3
bucc2. 37.0 45.4 58.3 45.0 37.6 50.7 56.3 46.0 51.7 47.6
Multi-condition 22.2 24.9 39.4 42.0 43.0 39.7 38.4 39.6 40.8 36.7
Utterance Oracle 18.4 20.5 34.7 34.5 34.8 37.0 34.8 35.3 38.2 32.0
Matched condition 20.9 22.8 37.5 38.1 37.6 39.7 38.4 39.6 40.8 35.0
Entropy 22.0 24.8 40.9 43.2 48.5 44.3 39.7 40.5 42.6 38.5
M measure 22.1 24.8 40.8 38.7 41.2 40.8 39.6 39.2 41.8 36.6
M-delta measure 22.1 24.7 40.0 38.3 41.1 41.0 39.2 39.0 41.6 36.3
AE LDA 20.9 22.9 37.0 37.2 37.1 41.0 37.8 39.0 42.0 35.0
AE LDA+M-delta 20.9 22.9 36.8 36.6 36.8 39.8 37.2 39.0 41.0 34.6

• AE LDA + M-delta: Stream selection based on com-
bination of reconstruction error minimization and M-
delta maximization. Each measure is normalized across
streams and the sum of normalized measures is used for
stream selection.

It is evident from Table 1 that in seen noises, streams
trained on a matched noise condition, which corresponds to
the condition-level oracle stream, perform better than the
streams trained on multi-condition data. Whereas, in the case
of unseen noises, choosing the multi-condition stream per-
forms better, as it is more generalizable to unseen noises than
condition specific streams.

Table 1 shows that entropy of posterior probability, ob-
tained at the output of DNN can be erroneous. M measure
is performing better than entropy, which suggests rather than
looking at a single frame, measures which look at temporal
dynamics of posteriors are better. Further improvement to M
measure is obtained by using M-delta measure.

Similar to [18], in each stream, we used LDA transformed
pre-softmax outputs of the DNN to train an autoencoder cor-
responding to that stream. Stream selection based on the au-
toencoders is referred as AE LDA. From Table 1, it is ev-
ident that AE LDA is performing better than all the other
measures. Also, the performance of AE LDA is matching
with the condition-level oracle stream. This shows that, in
seen noisy cases, AE LDA is successfully selecting condi-
tion specific streams and in unseen noisy cases, it is selecting
the multi-condition stream. The reason for the better perfor-
mance could be the ability of autoencoders to model distribu-
tions lying on a complex non-linear manifolds [11]. In addi-
tion, combination of AE LDA and M-delta seems to improve
over the condition-level oracle stream. This implies that the
AE LDA+M-delta is able to select a stream, not just based on
similarity with the stream’s training data, but also based on
the stream’s performance.

5.3. Stream selection experiment on Aurora4

We present stream selection experiments performed using
Aurora4 database. In this experiment, we attmpt to demon-
strate that the effectiveness of the proposed measures on
TIMIT is generalizable. The Aurora4 task is a small scale (14
hour), medium vocabulary speech recognition task, aimed
at improving noise and channel robustness [23]. Aurora4
database is based on the DARPA Wall Street Journal (WSJ0)
corpus which consists of clean recordings of read speech,
with 5000 word vocabulary size. The training set consists
of 14 hours of clean speech, from 83 speakers, sampled at
16 kHz. The original Aurora4 test set contains simultaneous
recordings in 14 different acoustic conditions, but for this
study we used only clean subset of it. The clean subset of
Aurora4 test set is referred to as test set. Similar to the stream
selection setups in TIMIT database, we created five versions
of training and test set. We used car, babble, buccaneer1,
and buccaneer2 noises from NOISEX database [20]. Table 2
shows the stream selection results on the Aurora4 database.
From this table, we can conclude that the proposed measures
provide significant improvements over the conventional mea-
sures. These results also indicate that the proposed measures
are generalizable to other databases.

6. CONCLUSION

Two new measures for uncertainty estimation in DNN-based
classifiers were proposed. Experimental comparisons carried
out in a multi-stream phoneme recognition paradigm demon-
strated the effectiveness of the proposed measures. The
proposed measures yielded improvements over the existing
measures, and achieved almost the same performance as the
oracle performance. In addition, the stream selection frame-
work with proposed uncertainty estimation performed more
robust against noise than the conventional multi-condition
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Table 2. Comparison of various uncertainty measures using stream-selection results on Aurora4 database.

seen noises unseen noises
Train \Test clean car babble bucc1. bucc2. destops. exhall f16 factory Avg. WER (%)
clean 6.5 18.8 76.0 76.1 79.7 59.6 68.6 62.5 73.8 58.0
car 7.7 7.0 65.4 66.9 74.2 51.3 58.8 57.3 69.2 50.9
babble 14.6 24.3 22.2 49.5 60.8 38.1 24.5 32.3 35.8 33.6
bucc1. 19.8 38.1 64.2 24.0 37.3 45.0 58.6 26.3 44.9 39.8
bucc2. 18.5 45.5 76.5 34.6 22.4 42.1 65.5 32.6 51.6 43.3
Multi-condition 8.7 12.5 32.7 43.3 50.0 37.7 32.1 33.3 40.7 32.4
Utterance Oracle 4.3 5.3 20.4 21.1 20.5 27.4 21.6 19.7 30.1 18.9
Matched condition 6.5 7.0 22.2 24.0 22.4 37.7 32.1 33.3 40.7 25.1
Entropy 8.2 12.0 36.3 41.3 48.1 39.7 34.5 33.6 43.0 33.0
M measure 6.7 8.9 38.2 30.2 34.2 41.8 35.8 30.2 46.8 30.3
M-delta measure 6.7 8.3 30.5 26.4 30.4 40.5 31.2 28.4 44.8 27.5
AE LDA 6.7 7.0 22.5 23.9 23.5 37.3 24.8 25.1 39.9 23.4

training approach. The measures were shown to general-
ize well to multi-stream LVCSR system developed on AU-
RORA4 database.
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