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ABSTRACT

It has been demonstrated that system fusion can significantly

improve the performance of keyword search. In this paper, we

compare the performance of several widely-used arithmetic-

based fusion methods using different normalization pipeline

and try to find the best pipeline. A novel arithmetic-based

fusion method is proposed in this work. The method supplies

a more effective way to incorporate the number of systems

which have non-zero scores for a detection. When tested on

the development test dataset of the OpenKWS15 Evaluation,

the proposed method achieves the highest maximum term-

weighted value (MTWV) and actual term-weighted value

(ATWV) among all other arithmetic-based fusion methods.

Usually, discriminative fusion methods employing classifiers

can outperform arithmetic-based fusion methods. A DNN-

based fusion method is explored in this work. After word-

burst information is added, the DNN-based fusion method

outperforms all other methods. In addition, it is notable that

our arithmetic-based method achieves the same MTWV as

the DNN-based method.

Index Terms— system fusion, keyword search, score

normalization, DNN

1. INTRODUCTION

Keyword search (KWS) is to find all the occurrences of given

keywords in untranscribed speech. A typical KWS system

consists of two phases : indexing and searching. In the in-

dexing phase, every audio of speech is indexed after being

processed by a large vocabulary continuous speech recogni-

tion system. In the searching phase, keywords are searched

on the index to produce the final list of all detections. With

the rapid development of computer hardwares, it is possible

to build more than one KWS systems for the same KWS task.

By fusing KWS results from diverse systems, we can usually

get a much better KWS result.

This work is supported by National Natural Science Foundation of

China under Grant No. 61273268, No. 61370034, No. 61403224 and No.

61005017.

For fusing results of different systems, arithmetic-based

fusion methods such as CombSum [1, 2], CombMNZ [1, 2],

CombGMNZ [1], WCombMNZ [2] have been proved to be

quite effective. Pham et al. [3] proposed the system and key-

word dependent fusion method SKDWCombMNZ in 2014,

which ourperformed other arithmetic-based methods. Dis-

criminative system fusion methods employing classifiers have

been explored in [3, 4, 5]. With large number of features

from lattices and detection lists, discriminative fusion can of-

ten achieve inspiring performance.

In this paper, the actual term-weighted value (ATWV) [6]

and the maximum term-weighted value (MTWV) [6] are used

as the measures for KWS performance. For the two measures,

score normalization [2, 7, 8] has been proved to be essen-

tial. Keyword specific threshold (KST) normalization [9] and

sum-to-one (STO) normalization [2] are the two mainstream

score normalization methods. In our work, we compare the

performance of the two methods when they are applied both

before and after system fusion. We also explore the best nor-

malization pipeline when dealing with fusion of up to 11 sys-

tems and some quite different conclusions are presented. In

addition, we propose a novel arithmetic-based fusion method

which is similar to SKDWCombMNZ but more effective and

simpler. For discriminative fusion methods, we extend the

MLP-based classifier used in [3] to a DNN-based one and

some more effective features are extracted to get better per-

formance.

This paper is organized as below: Section 2 is the descrip-

tion of the keyword search task. Fusion methods and normal-

ization methods are introduced in Section 3. Experiments are

presented in Section 4. Section 5 contains conclusions.

2. TASK DESCRIPTION

The task of KWS defind by NIST for the OpenKWS15 Eval-

uation is to find all the exact matches of given queries in a

corpus of un-segmented speech data. A query, which can also

be called “keyword”, can be a sequence of one or more words.

The result of this task is a list of all the detections of keywords

found by KWS systems.
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To evaluate the performance, term-weighted value (TWV)

[6] is adopted:

TWV (θ) = 1− 1

K

K∑

w=1

(
#miss(w, θ)

#ref(w)
+ β

#fa(w, θ)

T −#ref(w)
)

(1)

where θ is the decision threshold and K is the number of key-

words. #miss(w, θ) is the number of true tokens of keyword

w that are missed at threshold θ. #fa(w, θ) is the number of

false detections of keyword w at threshold θ. #ref(w) is the

number of reference tokens of w. T is the total amount of the

evaluated speech. β is a constant. As we can see, TWV is a

function of the decision threshold θ. ATWV is the TWV at

a specific θ. MTWV is the maximum TWV over all possible

values of θ.

3. SYSTEM FUSION

3.1. Arithmetic-based system fusion

As is mentioned above, several arithmetic-based system fu-

sion methods from document retrieval have been applied

successfully in KWS. Here we only introduce WCombSum,

WCombMNZ and WCombGMNZ. WCombSum is a quite

straightforward method:

s(h) =

N∑

i=1

wi · si (2)

where wi is proportional to MTWV achieved by system i [2]

and N is the number of fused systems. WCombMNZ incor-

porates the number of systems which have non-zero scores

for a detection into the fusion procedure, and we denote the

number as m(h):

s(h) = m(h)×
N∑

i=1

wi · si (3)

WCombGMNZ is a generalizaiton form of WCombMNZ and

its formula is:

s(h) = m(h)
γ ×

N∑

i=1

wi · si, (γ ≥ 0) (4)

When γ is set to 1, WCombGMNZ is equivalent to WCombMNZ.

When γ is set to 0, WCombGMNZ is equivalent to WComb-

Sum. SKDWCombMNZ is another extension of WCombMNZ:

s(h) = m(h) · (
N∑

i=1

wi · si)
1

γ+α·n(h) , (0 < γ ≤ 1, 0 ≤ α ≤ 1)

(5)

where n(h) is the number of systems which accept the detec-

tion h as a true one.

Compared with WCombSum, other three methods tend to

believe that detections found or accepted by more systems are

more reliable. The linear multiplication of m(h) makes big

gaps between detections with different m(h) and overempha-

sizes the importance of m(h). This may restrict the potential

improvement in the region of high scores where most detec-

tions are true. That is to say, for detections with relatively

high scores, we want to incorporate m(h) more smoothly.

Therefore, a new fusion method is proposed:

s(h) = (

N∑

i=1

wi · si)
1

m(h)γ , (γ ≥ 0) (6)

where γ is a parameter for adjusting the boost of different

m(h). We denote 1
m(h)γ as IDF (γ). IDF is short for “In-

verse Document Frequency” [10], which has been widely

used in document retrieval. Here we use IDF (γ) to measure

how much information is provided by the number of systems

that have non-zero scores for a detection. Then the method

can be rewritten as:

log(s(h)) =
1

m(h)γ
log(

N∑

i=1

wi · si)

= IDF (γ) · log(s(h)WCombSum)

(7)

where s(h)WCombSum is the fused score of the method

WCombSum. We denote the new proposed method as ID-

FWCombSum. Similarily, an IDFWCombMNZ method can

be written as:

log(s(h)) = IDF (γ) · log(s(h)WCombMNZ) (8)

As we can see, SKDWCombMNZ uses two paramaters

for adjusting the boost of different n(h), while IDFWComb-

Sum and IDFWCombMNZ only have one, which makes it

easier for our methods to optimize parameters. Furthermore,

IDFWCombSum discards the simple linear multiplication of

m(h) and is indeed a completely different method to incorpo-

rate m(h).

3.2. Score normalization before and after system fusion

For the TWV metrics, normalization has been proved to be

essential. KST normalization first computes a specific thresh-

old for every keyword. At the specific threshold, the expecta-

tion value of ATWV contributed by the keyword is zero. The

threshold is:

thr(w) =
Ntrue(w)

T/β + β−1
β Ntrue(w)

(9)

where Ntrue(w) is the number of reference tokens of key-

word w. T is the total amount of the evaluated speech. β is

a constant of 999.9. Ntrue(w) is unknown and is estimated

using the following formula:

Ntrue(w) =
∑

j

s(w)j (10)
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where s(w)j is the j-th detection’s posterior probability of

keyword w.

Then the specific threshold is mapped to a fixed value (e.g.

0.5). A non-linear function is utilized to map the origional

score to the normalized score. Here we adopt the function

from Kaldi [11]:

KST (s(w)) =
(1− thr(w)) · s(w)

(1− thr(w)) · s(w) + (1− s(w)) · thr(w)
(11)

STO normalization is rather simple:

STO(s(w)i) =
s(w)i∑
j s(w)j

(12)

It is very straightforward that normlization should be done

after system fusion, just as what has been demonstrated on

individual systems. Though it has been suggested that nor-

malization should be done before system fusion as well [8],

we are still very interested in what normalization should be

adopted and whether the normalization is indeed needed, es-

pecially when fusing many systems (e.g. more than 3).

3.3. Discriminative system fusion

It has been demonstrated that discriminative system fusion

can achieve the best performance compared with arithmetic-

based fusion methods such as WCombMNZ, SKDWCombMNZ

[3]. The discriminative system fusion method in [3] employed

an MLP as the classifier. In our work, we replace the MLP

classifier with a DNN classifier. Features are extracted only

from detection lists of every system. Lattice-based features

such as ranking-score and relative-to-max [3, 12] are not used

because extracting these features from lattices can be very

time-consuming, especially for fusion of quite many systems.

Features from detection lists are as below:

1. Original scores of the detection from every system and

their mean value and variance.

2. STO scores of the detection from every system and

their mean value and variance.

3. The WCombSum score.

4. The distance in time of the detection relative to the start

time and the end time of the segment to which the detection

belongs.

5. The number of vowels and consonants of the keyword

[3].

6. The number of systems which have non-zeros scores

for the detection and the number of systems which accept the

detection [3].

7. The duration of the detection and the average duration

of every phoneme.

Besides, Richards et al. [13] introduced word-burst infor-

mation in KWS and consistent improvement was observed.

Similar word-burst features are extracted:

8.
score(wj)
dist(wi,wj)

,
STO(score(wj))

dist(wi,wj)
, where wj is the closest

detection of keyword w to the target detection wi in time.

dist(wi, wj) is the distance in time between detection wi and

wj .

9.
∑

j
score(wj)
dist(wi,wj)

,
∑

j
STO(score(wj))

dist(wi,wj)
.

10. The maximum, minimum, mean values of
score(wj)
dist(wi,wj)

and
STO(score(wj))

dist(wi,wj)
. Here wj is any repetition of keyword w

in the same audio of speech as the target detection wi.

4. EXPERIMENTS

4.1. Data

All the KWS experiments are conducted using the datasets

from the NIST OpenKWS15 Evaluation of Swahili. The

training data used for building KWS systems includes the

Very Limited Language Pack (VLLP) of the OpenKWS15

Evaluation (denoted as 202VLLP) , the full language packs of

6 languages under the Babel program (denoted as BP&204FullLP)

and the web data of the OpenKWS15 Evaluation (denoted as

202Web). 202VLLP consists of 3 hours’ transcribed speech

of Swahili, while BP&204FullLP consists of about 528 hours’

transcribed speech of Cantonese, Pashto, Turkish, Tagalog,

Vietnamese and Tamil. 202Web consists of plenty of raw web

text.

The acoustic model is trained using 202VLLP. The lan-

guage model is trained using 202VLLP and part of 202Web.

All the results are reported on the 10-hour development test

data of Swahili from the OpenKWS15 Evaluation datasets.

Parameters are tuned on the tuning set released by NIST for

the development of OpenKWS15.

The keyword list is the one for development from the “In-

dusDB” of the OpenKWS15 Evaluation. It consists of 2480

keywords.

4.2. KWS systems

For the fusion experiments, up to 11 diverse systems are built.

More than half of the systems utilize the multilingual bottle-

neck (MBN) features trained with BP&204FullLP.

The baseline system S1 uses convolutional maxout neural

network acoustic model [14, 15] with filter-bank features.

S2 uses RNN acoustic model with MBN features.

S3 uses DNN acoustic model with speaker adapted MBN

features.

S4 uses P-norm maxout neural network acoustic model

[16] with MBN features.

S5 uses DNN acoustic model with filter-bank plus pitch

features.

S6 uses DNN acoustic model with MBN features.

S7 uses DNN acoustic model with PLP plus pitch fea-

tures.

S8 uses convolutional recurrent neural network acoustic

model with filter-bank features.
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S9 uses LSTM RNN acoustic model [17] with sMBR se-

quence training and MBN features.

S10 uses subspace GMM acoustic model [18] with

speaker adapted MBN features.

S11 uses DNN acoustic model with speaker adapted MBN

features based on HTK.

Among them, S1-S10 are based on Kaldi, while S11

is based on HTK. The language model of S1-10 is a word

trigram language model, while S11 utilizes a feed-forward

neural network language model with variance regularizations

[19]. Besids, S11 employs our own decoder [19] while other

systems employ the Kaldi decoder. The TWV results of our

KWS systems after KST normalization are listed in Table 1.

4.3. Results of score normalization before and after sys-
tem fusion

In this section, fusion experiments from 2 systems to 11 sys-

tems using WCombSum and WCombMNZ are conducted.

We want to explore the performance of system fusion on

different number of systems using different fusion pipeline.

KST normalization, STO normalization and no normalization

are done before fusion separately. After fusion, normalization

is usually essential. Therefore, KST normalization and STO

normalization are chosen after fusion. From experiments

in this section, we try to find out whether normalization is

needed before fusion and what kind of normalization can

lead to a better result. The results of pipelines using different

normalization methods are shown in Figure 1.

Fusion of different number of systems is incrementally

done from S1 to S11, in the decreasing order of MTWV. From

the results, we can obviously see that KST normalization after

fusion outperforms that of STO normalization. The best per-

formance is achieved by either KST normalization or no nor-

malization before fusion. KST normalization before fusion

performs best for fusing a few systems, while no normaliza-

tion before fusion performs best when fusing more systems.

Table 1. TWV results of our baseline KWS systems after

KST normalization
System ATWV MTWV

S1: CMNN, fbank, CE 0.4785 0.4829
S2: RNN, MBN, sMBR 0.4741 0.4778

S3: DNN, SAT, sMBR 0.4667 0.4712

S4: pnorm, MBN, CE 0.4666 0.4712

S5: DNN, fbank+pitch, sMBR 0.4586 0.4675

S6: DNN, MBN, sMBR 0.4620 0.4666

S7: DNN, PLP+pitch, sMBR 0.4347 0.4562

S8: CRNN, fbank, sMBR 0.4482 0.4419

S9: LSTM, MBN, sMBR 0.4261 0.4333

S10: SGMM, MBN, BMMI 0.4263 0.4331

S11: DNN, SAT, CE, NNLM 0.4302 0.4308
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Fig. 1. MTWV results using different normalization methods

before and after system fusion.

This can be explained by the central limit theorem. Normal-

ization before fusion tries to get rid of the impact of system-

specific biases. Given more scores (posterior probabilities)

from different systems, the expectation of the total bias intro-

duced by each system tends to be zero and therefore has little

impact on the final result.

Besides, we compare the performance of the two widely-

used arithmetic-based methods WCombSum and WCombMNZ,

using the best normalization pipeline demonstrated above.

The results are shown in Figure 2.

For the MTWV metric, WCombSum with KST normal-

ization both before and after fusion performs best almost for

all the count that is less than 8, while WCombMNZ with

KST normalization after fusion performs best when the sys-

tem count is greater than 8. Though the best pipeline for the

MTWV metric is not consistent, WCombMNZ with KST nor-
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Fig. 2. MTWV results of WCombMNZ and WCombSum us-

ing the best normalization pipeline.

malization after fusion outperforms other methods on all con-

ditions for the ATWV metric. For the final fusion of all the 11

systems, WCombMNZ with KST normalization after fusion

achieves the best MTWV and ATWV.

4.4. Comparison of arithmetic-based system fusion meth-
ods

In Section 4.3, we have found that for fusing different

number of systems, different normalization pipeline should

be adopted. Here we conduct experiments using more

arithmetic-based methods to fuse all the 11 systems, including

WCombGMNZ, SKDWCombMNZ, IDFWCombMNZ and

IDFWCombSum. The normalization pipeline adopted here is

KST normalization after fusion, which has been demonstrated

best above for fusing 11 systems. Results are presented in

Table 2.

Table 2. Results of different arithmetic-based methods on

system fusion of 11 systems

Methods ATWV MTWV

WCombMNZ+KST 0.5711 0.5714

WCombGMNZ+KST 0.5711 0.5720

(γ = 0.4)

SKDWCombMNZ+KST 0.5703 0.5712

(γ = 1.0, α = 0.1)

IDFWCombMNZ+KST 0.5696 0.5722

(γ = 0.2)

IDFWCombSum+KST 0.5747 0.5759
(γ = 0.2)

We can see that WCombGMNZ achieves slightly better

MTWV than WCombMNZ. SKDWCombMNZ doesn’t show

improvement in our experiments, maybe due to the severe

VLLP condition. Our methods IDFWCombMNZ and IDFW-

CombSum both achieve better MTWV than WCombMNZ.

IDFWCombSum outperforms all other methods and gains the

maximum improvement of 0.45% for the MTWV metric over

the baseline WCombMNZ.

We also test the performance of IDFWCombSum for fus-

ing different number of systems and the MTWV results are

shown in Table 3.

Table 3. Results of IDFWCombSum for fusing different

number of systems

System Pipeline MTWV

Count

2
KST+WCombMNZ+KST 0.5306

IDFWCombSum+KST(γ = 0.9) 0.5271

3
KST+WCombSum+KST 0.5383

IDFWCombSum+KST(γ = 0.7) 0.5420

4
KST+WCombSum+KST 0.5439

IDFWCombSum+KST(γ = 0.4) 0.5453

5
KST+WCombSum+KST 0.5524

IDFWCombSum+KST(γ = 0.3) 0.5576

6
KST+WCombSum+KST 0.5554

IDFWCombSum+KST(γ = 0.4) 0.5610

7
KST+WCombSum+KST 0.5595

IDFWCombSum+KST(γ = 0.3) 0.5643

8
WCombMNZ+KST 0.5626

IDFWCombSum+KST(γ = 0.3) 0.5680

9
WCombMNZ+KST 0.5656

IDFWCombSum+KST(γ = 0.2) 0.5709

10
WCombMNZ+KST 0.5661

IDFWCombSum+KST(γ = 0.2) 0.5724

11
WCombMNZ+KST 0.5714

IDFWCombSum+KST(γ = 0.2) 0.5759

For every system count in Table 3, the upper line is

the best pipeline of system fusion using WCombSum and

WCombMNZ, while the lower line is the performance of ID-

FWCombSum. For the MTWV metric, consistent improve-

ment has been observed when fusing more than 2 systems. In

addition, we can see that the pipeline with KST normalization

after IDFWCombSum is a consistent one and can provide us

an easier way to obtain the best result.

4.5. Results of discriminative system fusion

For discriminative system fusion, a DNN classifier for binary

classification is built. Our DNN classifier consists of 3 hid-

den layers that have 64, 64, 8 nodes separately. Training data

for the DNN classifier is obtained from the tuning dataset,

using an augmented keyword list of up to 12,000 keywords.

Large number of features including word-burst features are
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extracted only from detection lists. We denote the DNN ex-

periment using word-burst information as DNN-wordBurst,

and the experiment without word-burst information as DNN-

baseline. For comparison, KST normalization is done after

the DNN-based fusion. The discriminative system fusion re-

sults of fusing 11 systems are presented in Table 4.

Table 4. Results of DNN-based fusion of 11 systems

Methods ATWV MTWV

WCombMNZ+KST 0.5711 0.5714

IDFWCombSum+KST 0.5747 0.5759
(γ = 0.2)

DNN-baseline+KST 0.5703 0.5712

DNN-wordBurst+KST 0.5749 0.5759

The DNN-baseline achieves very similar performance to

WCombMNZ, while DNN-wordBurst achieves the highest

MTWV and ATWV among all the methods. By adding some

more features from lattices, the performance of DNN-based

fusion may be better. However, our method only extracts fea-

tures from detection lists and achieves the best performance,

which makes it much easier for us to build a state-of-the-art

fusion system, especially for fusing a lot of systems. Be-

sides, it is worthwhile to note that our arithmetic-based fu-

sion method IDFWCombSum gets the same MTWV as DNN-

wordBurst.

5. CONCLUSIONS

In this paper, we compare the performance of two widely-

used fusion methods WCombSum and WCombMNZ using

different normalization pipeline for keyword search. We

find that normalization after fusion is always essential, while

normalization before fusion is only needed for fusing not

so many systems. WCombMNZ outperforms WCombSum

when fusing a lot of systems, while WCombSum performs

better for fusing fewer systems.

A novel arithmetic-based fusion method IDFWCombSum

is proposed in this work and achieves state-of-the-art per-

formance. For discriminative system fusion, we explore a

DNN-based fusion method employing features only from de-

tection lists. When combined with word-burst information,

the DNN-based fusion method achieves the hightest MTWV

and ATWV.
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