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ABSTRACT

Many successful methods for training deep neural networks
(DNN) rely on an unsupervised pretraining algorithm. It is
particularly effective when the number of labeled training
samples is not large enough, because pretraining method
helps to initialize the parameter values in the appropriate
range near a local good minimum, for further discriminative
finetuning. However, while the improvement is impressive,
training DNN is difficult because the objective function of
DNN is highly non-convex function of the parameters. To
avoid placing the parameter that generalizes poorly, a robust
generative modelling is necessary. This paper explore an al-
ternative of generative modelling for pretraining DNN-based
acoustic modelling using Stochastic Gradient Variational
Bayes (SGVB) within autoencoder framework called Varia-
tional Bayes Autoencoder (VBAE). It performs an efficient
approximate inference and learning with directed proba-
bilistic graphical models. During fine-tuning, probabilistic
encoder parameters with latent variable components are then
used in discriminative training for acoustic model. Here, we
investigate the performances of DNN-based acoustic model
using the proposed pretrained VBAE in comparison with
widely used pretraining algorithms like Restricted Boltz-
mann Machine (RBM) and Stacked Denoising Autoencoder
(SDAE). The results reveal that VBAE pretraining with Gaus-
sian latent variables gave the best performance.

Index Terms— acoustic model, deep neural network,
variational bayes, autoencoder

1. INTRODUCTION

Automatic Speech Recognition (ASR) has changed dramat-
ically in recent years. Previously, the standard ASR frame-
work used Hidden Markov Model (HMM) to model the
speech state transition/sequence [1] and Gaussian Mixture
Model (GMM) to model each acoustic state on HMM from
speech features [2]. GMMs hold such advantages as being
easily fit into data using EM algorithms (especially with diag-
onal covariance matrix) and if they have enough parameters,
they can approximate any distribution very well. However,
GMMs also have disadvantages which is statistically ineffi-
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cient for modelling highly correlated data due to the indepen-
dent assumption of diagonal covariance. Furthermore, EM
algorithms for GMM often suffer from overfitting when the
component number is not adequate with the data amount.

Various state-of-the-art performances produced by deep
learning have revitalized the use of various kinds of neural
network architecture in ASR. A Deep Neural Network (DNN)
based ASR has gained popularity in recent years, driven by
bigger performance improvements than such to the previous
common methods like GMM/HMM [3]. As DNNs are less
sensitive to data correlation and the increase in the input di-
mensionality than GMMs, they allow us to exploit complex
data features [4]. Many successful methods for training DNN
rely on an unsupervised pretraining algorithm. It is particu-
larly effective when the number of labeled training samples is
not large enough, because pretraining method helps to initial-
ize the parameter values in the appropriate range near a local
good minimum, for further discriminative finetuning.

Therefore, the resurgence of deep learning also made
generative modelling for pretraining deep neural network ar-
chitecture become interesting topic to be explored. The major
motivations behind generative pretraining is that if we have
the good representation for modelling our data, then those
representation should also be good for modelling probabil-
ity class given those data [5]. There are several generative
model which based on neural network and can be extended
for deep neural network architecture. For example, Restricted
Boltzmann Machine (RBM) [6] is an undirected graphical
model with a form of Markov Random Field (MRF). Later,
Deep Boltzmann Machine (DBM) [7] was invented with
deeper model compared standard RBM and resulting better
performance. But the main disadvantages from undirected
graphical model such as RBM and DBM still exists where
the exact parameter estimation is intractable and need to be
approximate. Another approach for pretraining use autoen-
coder architecture called Stacked Denoising Autoencoder
(SDAE) [8] trained by injecting some noise into input layer
and minimize the reconstruction error against the clean in-
put to help the model give better performance and robust
under the corruption of input and unseen data. However,
using reconstruction error is not enough for learning useful
representation [9].
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This paper explore an alternative of generative mod-
elling for pretraining DNN-based acoustic modelling using
Stochastic Gradient Variational Bayes (SGVB) [10] within
autoencoder framework called Variational Bayes Autoen-
coder (VBAE). It perform an efficient approximate infer-
ence and learning with directed probabilistic models. VBAE
objectives contained a regularization term, therefore regu-
larization hyper-parameter from autoencoder model such as
denoising and sparsity is not necessary anymore. During
fine-tuning, probabilistic encoder parameters with latent vari-
able components are then used in discriminative training for
acoustic model. We compare the results with other widely
used unsupervised pretraining algorithms for DNN, such as
RBM and SDAE and purely supervised DNN-ReLU with
dropout regularization.

2. RELATED WORKS

Using a Bayesian framework, we involve the prior distribu-
tion over the parameters of the component distributions. By
conditioning on the observed data, the posterior distribution
over the component parameters will find the best general-
ization over all possible values. However, true posterior
distribution is intractable and we need an efficient approach
for approximate the true posterior. As an alternative, the Vari-
ational Bayesian (VB) method for training GMMs acoustic
model [11] and incorporated for model selection [12, 13]
was explored for speech recognition. Compared with classic
EMs for training GMMs, VB estimation provides information
about the model quality during training and is less affected
by overfitting because of the regularization from integrating
priors.

Variational inference was first considered for neural net-
work by Alex Graves [14] as an optimization of the Mini-
mum Description Length (MDL) [15] loss function to opti-
mize the prediction accuracy and the model complexity at the
same time. This study perform Bayesian inference on neural
network which estimates directly the posterior distribution of
the network weights given the observed data. Therefore, the
weights from neural networks have a prior probability which
acts as regularization from a variational perspective.

Recently, SGVB was proposed to learn generative model
with latent variables using neural network [10]. It combine
both concepts of variational inference and neural network into
a single framework. Since it consists of probabilistic encoder
and decoder for approximate the latent variable distribution,
this model was known as VBAE. It has been explored for
modelling image transformation, in which SGVB was applied
to CNN architecture, and the model learns an interpretable
representation of images with respect to rotation and lighting
variations [16]. In addition to a generative model, SGVB can
also be used for semi-supervised learning [17] using the vari-
ational autoencoder to generate latent variables as features for
a classifier or by jointly modelling datasets with class and la-
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tent variables as a generative model.

To the best of our knowledge, SGVB-VBAE has not been
explored for ASR tasks. In this preliminary study, however,
instead of applying VBAE directly as feature generator, we
attempt to utilize it for pretraining DNN-based acoustic mod-
elling. This way we could learn a good representation for
modelling our data and those representation can be integrated
for discriminative task in ASR.

3. VARIATIONAL BAYES AUTOENCODER FOR
GENERATIVE MODEL

Variational Bayes Autoencoder (VBAE) is an alternative for
performing efficient approximate inference and learning with
directed probabilistic models [10]. With Stochastic Gra-
dient Variational Bayes (SGVB) algorithm, the parameters
for approximate posterior was effectively learned end-to-end
without using such an expensive sampling method as Markov
Chain Monte Carlo (MCMC). Typically, we have dataset
X = {x(i)}?[:1 with N samples where x* € RP, which
are observable variables. We assume the data are generated
under some random process involving by a latent continuous
random variable z. Value z(*) which corresponds to data
x(, is generated from prior distribution py-(z), and value
x( is generated from conditional distribution pg- (x|z). To
simplify the problem, we assume prior pg-(z) and likelihood
po~(x|z) come from the parametric families of distribution
po(z) and py(x|z) whose PDFs can be optimised w.r.t. both
parameter 6 and variable z. However, true parameters 6*
and latent variables z(") need to be approximated. Sev-
eral limitations such as the intractability of the integral of
the marginal likelihood towards all possible latent z values
po(x) = [ po(x|2)pe(z)dz and sampling based solutions like
Monte Carlo would be too slow for large datasets.

To overcome these limitation, we used approximate distri-
bution ¢(z|x) for modelling true posterior py(z|x). In VBAE,
neural network was used for approximate distribution ¢(z|x)
and called as a probabilistic encoder. In a similar term as
probabilistic encoder, the value z would be used for recon-
struct input with conditional distribution pg(x|z) as a prob-
abilistic decoder. Using same approach as probabilistic en-
coder above, py(x|z) computed from z by using a neural net-
work.

The marginal likelihood from individual datapoints can be
represented by the sum of the log marginal likelihood:

N
Ingg(X(1)7 cey X(N)) = Z logpa(x(i)),
=1

)

and the marginal likelihood for each datapoint x(*) can be



simplified into two terms:

log g (xV) =
Dici(ao(zix®)Ipo(zlx?)) + £ (6, 6:x7) . @)

where the left term is written as the KL-divergence between
the approximate and true posterior distributions and is non-
negative and the right term denotes the variational lower
bound to the marginal likelihood, which can be expanded

log po(x) > £(6, ¢; x)
=Ey, (21x) [~ l0g ¢4(2z|x) + log py(x, z)]
(z))
+Eq, z1x) [logpa(x(i)|z) .

— D1 (g5(z/x %) Ipg ®)

By maximizing lower bound £(f,$;x(*)) w.r.t parameters
0 and ¢, we can build good approximation for our dataset
log p(x()). In VBAE, the approximate posterior (probabilis-
tic encoder) g4(z|x) represented by a DNN. For example, if
we are using approximate Gaussian with diagonal covariance
q9(z|xD) = N(z; u@, 0>DT), mean p@ and s.d. @ are
outputs from DNN.

4. UTILIZING VBAE FOR ACOUSTIC MODELS

Standard dataset D = {x® y®}N = consists of a pair of
context window of consecutive feature vectors and acous-
tic labels/states. First, we do unsupervised training for the
VBAE to maximize marginal likelihood log pg(x). The fea-
ture vectors are usually represented by the transformed speech
signals by standard feature extraction for acoustic features
like MFCC, Fourier-based filterbank and fMLLR. Those fea-
ture extractions output real values. In this case, we must
reparametrize our probabilistic decoder to output Gaussian
parameters such as vector of mean p,,,. and diagonal s.d

T dec-

logp(x|z) = IOgN(X; Hdec> o%ec]:) (4)
Hiec = flinear(wud,ech2 + budec)
10g Odec = flinear(W(rde(,h2 + badec)

hy = ftanh(wh2Z + bh2)'

With same approach as the probabilistic decoder, the proba-
bilistic encoder parameters can be computed by DNN from z!.
We use Gaussian distribution to approximate posterior distri-
bution g4 (z|x), so we need to reparameterize the probabilistic
encoder to output Gaussian parameters ft,,,. and o cy.:

Z=lepe+ Ocnc @€ where e~ N(0,I) (5)
Hene = flinear(wuenchl + bﬂanc)
flinear(wacnchl + bcfcnc)

hl == ftanh(whlx + bhl)

log Oenc
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Fig. 1 show the architecture of Gaussian VBAE probabilistic
encoder and decoder.

After determining which approximate distribution that we
will use to model latent variable z (in this case Gaussian dis-
tribution), we can rewrite Eq. 3:

L0, ¢;x) =
1 (i) \2 (i) 2 (1) 2
5 Z(l + log((aencj) ) - (/J’encj) - (Uencj) )
j=1
L (0 _ b))
1 (1) (X “dec)
il —1 Dyfogy o )
+ L ; og <adec ﬂ—) 20-(i’l)2

dec

(6)

To optimize Eq. 6 w.r.t. probabilistic encoder and decoder
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Fig. 1. For generative modelling acoustic features, VBAE
uses a Gaussian probabilistic encoder and decoder because
the speech features represented by continuous real number. In
a probabilistic encoder, we conditionally sample z ~ g4(z|x)
from Gaussian distribution with g, and & c,.. The z value
passed through probabilistic decoder, and we conditionally
sample X ~ py(x|z) from Gaussian distribution with fe,,,
and o 4.

parameters, we can use a stochastic gradient method, such
as SGD, Adagrad [18] and Adadelta [19]. In practice, our
experiment use Adagrad for optimizing the VBAE parame-
ters. After several iterations and when marginal log likeli-
hood log p(x) has converged or stabilized, we can use either



the latent variable z from ¢(z|x) which conditionally sampled
from p,,,. and o, as features for a classifier or integrating
the entire probabilistic encoder with pretrained parameter and
add another DNN with softmax layer on the top of p.,,. and
Oene. Fig. 2 illustrates how we constructed a discriminative
DNN using VBAE’s pretrained probabilistic encoder for ex-
tracting latent variable and end-to-end fine-tuning from the
negative log-likelihood loss function from the softmax layer.
This stage which is usually called as discriminative finetun-
ing, is generally done for classification tasks by several un-
supervised pretraining algorithms such as RBM and SDAE.

P(y|x)

T Randomly
Ry initialized

a discriminative

: layer
hs

.uenc O—BT.'.C \
Pretrained

Iy > layer

X S

Fig. 2. We constructed discriminative DNN to output acoustic
state probability by removing the probabilistic decoder from
VBAE and put randomly initialized hidden and softmax lay-
ers. W, and o, are connected into randomly initialized
hidden layer with softmax layer on the top of the neural net-
work and optimized for acoustic modelling task

5. EXPERIMENTAL SETUP

5.1. Dataset

All the phoneme recognition experiments were performed on
the TIMIT corpus dataset '. All the SA records were removed
from the experiment. The training set contains 3696 sentences
from 462 speakers. Development set was taken from another
50 sets of speakers. Evaluation was done by evaluating our
model into core test set that consisted of 192 sentences from
24 different speakers.

Uhttp://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC93S 1
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5.2. Front-End

In this experiment, we used speaker adapted fMLLR fea-
tures to represent speech signals, which were obtained using
a GMM-HMM model built by Kaldi [20] s5 TIMIT recipe
for tri3 scenario. Every acoustic frame was represented by
40 features. We used five context windows expanded to the
left and right. We combined 11 consecutive acoustic frames
combined 440 features per time frame. With the tri3 scenario,
the acoustic model states consisted of 1946 tied triphone
states, and for decoding we used the phoneme bigram lan-
guage model, which was estimated from the training set for
decoding purposes.

5.3. Baseline Systems
5.3.1. RBM

Our RBM experiments were done using the KaldiPDNN
toolkit [21, 22]. For a baseline RBM experiment, we used
a Gaussian-Bernoulli RBM to model our continuous data
features from the input layer. Then we stacked multiple
Bernoulli-Bernoulli RBM on top of the previous hidden layer
and pretrained the layers one by one from the bottom to the
top. We used four hidden layers, each of which contains 1024
hidden units. In the end, we put a softmax layer with 1946
units to represent class probability and fine-tuned it using
negative log-likelihood cost function.

5.3.2. SDAE

Our SDAE experiments were done using the KaldiPDNN
toolkit. For our baseline SDAE experiment, we use tanh
nonlinearity to reconstruct input from the hidden layer. We
use four hidden layers, each of which contains 1024 hidden
units, which is same as the baseline RBM number of hidden
layers and unit size. In the end, we put a softmax layer with
1946 units represent class probability and fine-tuned it using
negative log-likelihood cost function.

5.3.3. DNN-ReLU + Dropout

In this baseline experiment, we used supervised DNN with
rectifier linear activation function and dropout regularization
[23]. Indentical as before, we also constructed four hidden
layers with rectifier linear activation function with 1024 units
for each layer. We tried several dropout probabilities for each
layer between 0.2 and 0.5 and selected the best model from
development set for the baseline DNN-ReL.U+Dropout.

5.4. VBAE-DNN Experiment

For the VBAE experiment, we first built two layers of 1024
hidden units for modelling our probabilistic encoder and 2
layer of 1024 hidden unit for modelling our probabilistic de-
coder. In this experiment, we tried several different numbers



of latent variables within 64, 128, and 256 with L = 1 for
each datapoint.

After the generative model training was finished, we used
the pretrained probabilistic encoder parameter and projected
the unit mean and unit diagonal covariance into one hidden
layer and put softmax layer on the top. In the end, we have
four hidden layers with 1024-1024-[128,256,512]-1024 units
for VBAE-DNN. We also compared two different scenarios,
(1) without using dropout, (2) use dropout only at last hidden
layer layer before softmax layer. For the second scenario, we
used dropout probability 0.25 for the last hidden layer.

6. EXPERIMENT RESULTS

Table 1 compares the performances from various models in
terms of phoneme error rates (PER (%)) on the TIMIT core
test set. First, the RBM baseline result was 21.1% PER and
the SDAE baseline result was 21.6% PER. We also experi-
mented on standard DNN ReL.U + dropout and trained it with-
out unsupervised pretraining and the result was 20.4% PER.
Next we performed an experiment described in section
4 and varied the number of latent variables. The best per-
formance for VBAE without dropout regularization was ob-
tained both by 64 and 128 latent variables with 20.6% PER.
For the second scenario, by using dropout on the last hidden
layer, we improved the recognition performance for both the
VBAE with 64 and 128 latent variables to 19.8% PER.

Table 1. Comparison of all experiments in terms of phoneme
error rates (PER) on TIMIT core test set

Model Test PER (%)
RBM 21.1
SDAE 21.6
DNN-ReLU+DO 20.4
VBAE (256-latent) 20.9
VBAE (128-latent) 20.6
VBAE (64-latent) 20.6
VBAE+DO (256-1atent) 20.0
VBAE+DO (128-latent) 19.8
VBAE+DO (64-latent) 19.8

7. CONCLUSION

This paper explored the use of VBAE trained by SGVB al-
gorithm for generative pretraining deep neural networks. Our
results reveal that pretrained parameters from a probabilistic
encoder of VBAE can produce a better results in comparison
with another generative pretraining algorithms with similar
neural network configurations. The best accuracy was ob-
tained by 64 and 128 Gaussian latent variable VBAE models
with 20.6% PER, and we achieved 19.8 % PER with dropout
regularization.
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In the future, we will further investigate the use of SGVB
in various different NN architecture such as Convolutional
Neural Network (CNN) and Recurrent Neural Network
(RNN) to improve ASR performance. The possibility to
utilize SGVB as a feature generator for GMM acoustic model
will also be explored. Furthermore, we would be interested to
investigate the robustness of this approach for low resources
problems in speech recognition.
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