
LEARNING FACTORIZED FEATURE TRANSFORMS FOR SPEAKER NORMALIZATION

Lahiru Samarakoon, Khe Chai Sim

School of Computing, National University of Singapore, Singapore
lahiruts@comp.nus.edu.sg, simkc@comp.nus.edu.sg

ABSTRACT

This paper proposes an approach to improve automatic speech
recognition (ASR) by normalizing the speaker variability of a
well trained Deep Neural Network (DNN) acoustic model us-
ing i-vectors. Our approach learns a speaker dependent trans-
formation of the acoustic features combined with the standard
speaker dependent bias, to minimize the mismatch due to the
inter-speaker variability. Speaker normalization experiments
on the Aurora 4 task show 10.9% relative improvement over
the baseline. Moreover, the proposed approach reported 4.5%
relative improvement over the standard i-vector based method
where only a speaker dependent bias is used. Furthermore,
we report an analysis to compare our approach with the Con-
strained Maximum Likelihood Linear Regression (CMLLR)
method.

Index Terms— Automatic speech recognition, deep neu-
ral networks, speaker normalization.

1. INTRODUCTION

Recently, Deep Neural Network (DNN) based acoustic mod-
eling has achieved state-of-the-art performance in ASR sys-
tems in comparison to the conventional Gaussian Mixture
Model (GMM) based systems [1]. Increased computational
power and the utilization of the Graphical Processing Units
(GPUs) in computations have made the training of these
complex models affordable. Moreover, advances in machine
learning approaches in DNN training have contributed to
the increased performance. DNN-HMM systems surpass
the conventional GMM-HMM systems by using the superior
representation learning power of the DNNs to model senone
log-likelihoods, combined with the sequential modeling ca-
pability of HMMs to model speech signals.

DNNs, like all other machine learning techniques, are
susceptible to performance degradation due to mismatch
between the training and testing conditions. Adaptation tech-
niques change the model to match the testing condition or
change the inputs to match the model. In ASR, speaker
adaptation techniques are used to optimize the performance
by minimizing the training-testing mismatch introduced by
the speaker variability. The two most successful ways of
adapting a GMM-HMM model are to use the maximum a

posteriori (MAP) [2] and maximum likelihood linear regres-
sion (MLLR) [3] techniques. In MAP, instead of using max-
imum likelihood for parameter estimation, model parameters
are re-estimated by maximizing the posterior probability. In
MLLR, a linear transformation of the model parameters are
estimated to construct the adapted model. It is possible to
take advantage of GMM-HMM adaptation techniques with
tandem systems [4, 5] in which a DNN is trained to extract
bottleneck features for a GMM-HMM system.

The adaptation techniques developed for generative GMMs
cannot be directly utilized for discriminative DNNs. In addi-
tion, due to the large number of parameters in DNN-HMM
systems, techniques developed for artificial neural network
(ANN)-HMM hybrid systems [6] are prone to over-fitting
when only a small amount of adaptation data is available.
However, DNN adaptation is important as it reduces the er-
ror rates significantly [7–10]. A good adaptation technique
should prevent over-fitting to the adaptation data. This is
achieved by finding a compact representation of the model
parameters or using a regularization based method to perform
the adaptation conservatively. Moreover, it is desirable to per-
form adaptation in an unsupervised fashion, which is more
realistic.

In this paper, we propose a modified DNN structure which
is speaker adaptively trained using the i-vectors [11, 12]. The
i-vectors can be considered as low dimensional representa-
tions of the speaker characteristics. In our method, we are
creating a new subspace that learns a feature transformation
based on i-vectors. A DNN is capable of using this extra in-
formation about the speakers to perform implicit speaker nor-
malization.

The rest of the paper is organized as follows. In Section
2, a brief review of the DNN adaptation techniques is given.
Section 3 describes our approach based on learning feature
transformations. In Section 4, a comparison between our
method and the CMLLR estimation is given based on least
squares approximation. Experimental results are reported in
Section 5 and we conclude our work in Section 6.

2. DNN ADAPTATION

DNN adaptation techniques can be categorized into three
classes: linear transforms, regularization methods, and sub-

145978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

space methods.
Linear Transformation-based methods augment the orig-

inal DNN model with a linear layer. Usually, the linear layer
is initialized with an identity matrix and zero biases and is
updated with the back-propagation (BP) algorithm using the
adaptation data while keeping the weights of the original
DNN fixed. In linear input network (LIN) [13,14] and feature
discriminative linear regression (fDLR) [15], a linear layer
is inserted between the input layer and the first hidden layer.
The intuition is similar to fMLLR [3], where speaker de-
pendent (SD) features are linearly transformed to match the
speaker independent (SI) model. When the linear transforma-
tion is applied to the softmax layer, the adaptation technique
is known as linear output network (LON) [14]. The idea is
to transform the last hidden layer’s SD feature representation
to match the average speaker. Depending on the number
of output neurons, it is possible to apply the transformation
before or after the softmax layer weights. When the linear
transformation is applied to the hidden layers, it is known as
a linear hidden network (LHN) [16].

The adaptation of all the parameters is more powerful and
more effective than the linear transformations. However, this
may lead to over-fitting since the amount of adaptation data
is limited. Conservative training methods address this issue
by adding a regularization term to the adaptation criterion.
In [7], a KL divergence based method is used to force the dis-
tribution of the adapted model to be closer to that of the SI
model. The estimated distribution is a linear interpolation be-
tween the target distribution (derived using alignments) and
the distribution of the SI model. Another popular approach is
the L2 regularization [17], which aims to keep the parameters
of the adapted model closer to that of the SI model. However,
speaker personalization of all the parameters increases stor-
age costs, which necessitates the employment of techniques
that reduce the per-speaker footprint [18]. Therefore, some
approaches perform the adaptation on a subset of parameters,
including the last hidden layer [19], output layer biases [20],
or more active hidden units of the network [19]. Another ef-
fective model adaptation technique is known as learning hid-
den unit contributions (LHUC) [21,22], which learns speaker
dependent hidden unit contributions during adaptation.

It is also possible to find a speaker subspace and perform
the adaptation as a point in the subspace. In [23], principal
component analysis (PCA) is performed on a set of adaptation
matrices to get eigenvectors. Transformations for test speak-
ers can then be estimated as a linear combination of these
eigenvectors. Coefficients for each speaker are estimated us-
ing the BP procedure. This method can also be used with the
LIN, LHN and LON techniques [14]. In addition, recently,
cluster adaptive training (CAT) has been applied for speaker
normalization [24, 25]. In CAT DNN approaches, a set of
bases are estimated during training and followed by an inter-
polation vector estimation to combine the bases during test-
ing. Another popular subspace method is to feed the features

for speaker variability with acoustic features. These meth-
ods are discussed in Section 3 along with comparisons to the
techniques we propose in this paper.

3. PROPOSED METHOD

A DNN can be viewed as a model that learns a feature rep-
resentation as well as a classifier. Each hidden layer learns a
more abstract representation (hl) from the lower layer’s rep-
resentation (hl−1), which can be shown as:

hl = σ(Wlhl−1 + bl), (1)

where σ is the sigmoid activation function. Wl and bl are the
weight matrix and the bias vector for layer l, respectively.

In the proposed method, we incorporate speaker informa-
tion in addition to the standard acoustic features during train-
ing. This approach is known as speaker-aware training.

3.1. Speaker-aware Training (SaT)

The intuition behind SaT is that a DNN is capable of exploit-
ing the supplementary information about speakers to adjust
the model parameters for speaker normalization. The first step
in SaT is the speaker information estimation where techniques
like i-vectors [8, 9, 26] and bottleneck features [27] are com-
monly used. In this paper, i-vectors are used as the speaker in-
formation; however it is also possible to replace the i-vectors
with the bottleneck features.

The simplest approach in SaT is to concatenate the acous-
tic features with the i-vector of the speakers before DNN
training. In that case, speaker information can be considered
as a bias as given below.

hl = σ(Wlhl−1 + bs
l), (2)

where bs
l , the SD bias for layer l, is given by

bs
l = Ulv

(s) + bl, (3)

v(s) is the speaker representation (i-vector) and Ul is the
speaker representation transformation weight matrix for layer
l, respectively.

In our approach, in addition to the SD bias we propose to
learn a SD feature transformation based on i-vectors as given
below.

hl = σ(Wlhl−1 +U1D
(s)U2hl−1 + bs

l), (4)

where D(s) = diag(v(s)), and the U1 and U2 are weight
matrices for SD transformation.

Formulation of our approach is similar to that of the CM-
LLR [28] estimation for features (also known as fMLLR). In
fMLLR, SD transformation (A(s)) as well as a SD bias (b(s))
is estimated using Maximum Likihood criterion (equation 5).
In the next section, a comparison of the modeling capacity of

146

our approach to fMLLR is given using a least square approx-
imation.

x̂ = A(s)x+ b(s) (5)

3.2. Training Configuration

All the models with speaker features are trained using a
warm-start configuration to reduce the training time. In warm
start, the weights of the initial DNN are directly used and the
weights for the additional connections are randomly initial-
ized. Then, the newly added random weights are fine-tuned
while keeping the rest of the weights fixed.

4. COMPARISON WITH FMLLR

The fMLLR transformation is a speaker-specific linear trans-
form and DNNs are capable of modeling highly non-linear
functions. However, DNNs are not modeling speaker normal-
izing transformations that are similar to fMLLR during train-
ing. The significant differences between the performances of
DNNs trained on features before and after the fMLLR trans-
forms are evident for that. Furthermore, the standard i-vector
based technique with the SD bias is not as robust as the fM-
LLR technique for speaker normalization. Therefore, in this
section, we present a least square approximation method to
compare the fMLLR technique with our proposed method.

The features are normalized before feeding into the DNN
training. Therefore, in our analysis, the normalization is taken
into consideration. In our experiments, the fMLLR feature
transforms are estimated on top of the Linear Discriminant
Analysis (LDA) features. The normalized fMLLR and LDA
features are given in equations 6 and 7 respectively.

y1(t) = N1(A
(s)x(t) + b(s) + k1). (6)

y2(t) = N2(x(t) + k2). (7)

The difference between fMLLR and LDA features is
given by:

C(t)(s) = y2(t)− y1(t)

= (N2 −N1A
(s))x(t)

+N2k2 −N1(b
(s) + k1)

= P(s)x(t) + r(s). (8)

Using our model (4) to reduce this difference

e(t)(s) = C(t)(s) +U1D
(s)U2x(t) +U3v

(s). (9)

Then, the total error is calculated for all the speakers (s) and
for all the frames (t) of that speaker. The formula can be
calculated as given in equation 10.

Q =
∑
s,t

e(t)(s)>e(t)(s). (10)

In order to calculate this error, we need to estimate U1,
U2 and U3 parameters. We do these estimations iteratively.
First, initialize U1 = U2 = 0 and estimate U3. Then U2 is
estimated by assigning U1 = U3. Next, U1 is estimated.
After that parameters are estimated iteratively one by one.
Therefore, it is important to formulate the equation in a man-
ner where it is not necessary to go through the data at each
iteration. The statistics should be collected at speaker-level.
We have formulated estimation equations such that (

∑
t x(t))

and (
∑

t x(t)x(t)
>) statistics per speaker are sufficient. The

rest of this section details the estimation formulas for U1, U2

and U3.

4.1. Estimation of U1

The U1 that minimizes Q can be estimated as given below:

∂Q

∂U1
⇒

∑
s,t

e(t)(s)(D(s)U2x)
> = 0,

U1 = −K1G
−1
1 ,

where K1 = (
∑

s,t(C(t)(s) + U3v
(s))x>U>2 D

(s)) and
G1 = (

∑
s,t D

(s)U2xx
>U>2 D

(s)).

K1 and G1 can be simplified to:

K1 =
∑
s

(P(s)(
∑
t

xx>) + r(s)(
∑
t

x>)

+U3v
(s)(

∑
t

x>))U>2 D
(s).

G1 =
∑
s

D(s)U2(
∑
t

xx>)U>2 D
(s).

4.2. Estimation of U2

The U2 that minimizes Q can be estimated by taking ∂Q
∂U2

=
0:

∂Q

∂U2
⇒

∑
s,t

(x⊗D(s)U>1)e(t)
(s) = 0,

∑
s,t

EU1D
(s)U2x = −

∑
s,t

EF,

where ⊗ is the Kronecker product, E = x ⊗ D(s)U>1 and
F = C(t)(s) +U3v

(s).

∑
s,t

Vec(EU1D
(s)U2x) = −

∑
s,t

EF,

∑
s,t

(x> ⊗EU1D
(s))Vec(U2) = −

∑
s,t

EF,

147

where Vec() is the vectorization operator. Then, the expres-
sion for U2 is formulated as below:

Vec(U2) = −(
∑
s,t

(x> ⊗EU1D
(s)))−1(

∑
s,t

EF),

Vec(U2) = −G−12 K2.

G2 can be estimated as below:

G2 =
∑
s,t

(x> ⊗ x⊗D(s)U>1)U1D
(s),

=
∑
s

(
∑
t

xx>)⊗D(s)U>1 U1D
(s).

K2 can be estimated as below:

K2 =
∑
s,t

(x⊗D(s)U>1)(P
(s)x+ r(s) +U3v

(s)),

=
∑
s

Vec(D(s)U>1 P
(s)

∑
t

xx>)

+
∑
s

(
∑
t

x)⊗ (D(s)U>1 r
(s))

+
∑
s

(
∑
t

x)⊗ (D(s)U>1 U3v
(s)).

4.3. Estimation of U3

The U3 that minimizes Q can be estimated as given below:

∂Q

∂U3
⇒

∑
s,t

e(t)(s)v(s)> = 0,

U3 = −K3G
−1
3 .

The formulation of K3 and G3 is shown below. α(s) is
the number of feature frames for speaker s.

K3 = C(t)(s) +U1D
(s)U2x)v

(s)>,

=
∑
s

P(s)(
∑
t

x)v(s)> + r(s)v(s)> ∗ α(s)

+U1D
(s)U2(

∑
t

x)v(s)>.

G3 =
∑
s

v(s)v(s)>α(s).

4.4. Re-estimation of v(s)

In our analysis, we use two approaches to approximate fM-
LLR error; in the first case, we only estimate U1,U2 and U3

parameters iteratively. In the second case, in addition to those
parameters, the i-vectors are re-estimated (v(s)).

∂Q

∂v(s)
⇒

∑
t

(U1D
(U2x) +U3)

>e(t)(s) = 0,

v(s) = −G−14 K4,

where G4 =
∑

t(U1D
(U2x) +U3)

>(U1D
(U2x) +U3) and

K4 =
∑

t(U1D
(U2x) +U3)

>C(t)(s).

For efficient implementation, G4 and K4 are formulated
as below:

G4 = U2(
∑
t

xx>)U>2 ?U
>
1 U1

+D(U2(
∑

t x))U>1 U3

+U>3 U1D
(U2(

∑
t x)) +U>3 U3α

(s),

K4 = diag(U2(
∑
t

xx>)P(s)>U1)

+D(U2(
∑

t x))U>1 r
(s)

+U>3 P
(s)(

∑
t

x) +U>3 r
(s)α(s),

where ? is the element-wise multiplication.

5. EXPERIMENTS

5.1. Experimental Setup

In this paper, all the experiments are performed on the Aurora
4 corpus. The multi-condition training set of 83 speakers is
used for training and the development set of 10 speakers is
used as the validation set. We report the results on the test set
of 8 speakers.

First, MFCC features are extracted from speech using a
25-ms window and a 10-ms frame-shift. Cepstral mean nor-
malization (CMN) per speaker is then applied to the MFCCs.
LDA features are obtained by first splicing 7 frames of 13-
dimensional MFCCs and then projecting downwards to 40
dimensions using LDA. A global semi-tied covariance (STC)
transformation [29] is applied on top of the LDA features.
The GMM-HMM system for generating the alignments for
DNN training is built on top of these 40 dimensional LDA
features. In addition, we apply a speaker specific feature-
space maximum likelihood linear regression (fMLLR) trans-
form on top of the LDA features to create speaker normalized
fMLLR features.

The initial DNN-HMM baseline is trained on the LDA
features that span a context of 11 neighboring frames. Before
being presented to the DNN, cepstral mean and variance nor-
malization (CMVN) is performed on the features globally. To
train the network, we used layer by layer-wise discriminative
pre-training. The initial DNN has 7 sigmoid hidden layers
with 2048 units per layer, and 2031 senones as the outputs.
All the DNNs are trained to optimize the cross-entropy crite-
rion with a mini-batch size of 256. CNTK [30] is used to train
the DNNs. The Kaldi toolkit [31] is used to build the GMM-
HMM systems and for the i-vector extraction. The i-vectors
are trained on top of the same 40 dimensional LDA features.
The UBM consist of 128 gaussians. We extracted i-vectors
that are of 100 dimensions. The estimation of the fMLLR

148

transforms and the i-vector extraction used all the test speaker
data in unsupervised fashion. In all our experiments, speaker-
level i-vectors are used. All the decodings are performed with
the WSJ0 bigram language model.

5.2. Results

Table 1 presents the results of various DNN models trained
on top of the LDA features. It can be clearly seen that adding
speaker information consistently improves the performance.
A relative improvement 9.2% is reported over the baseline
when both the bias and the transform (+U1D

(s)U2x +
U3v

(s)) is used, which is also a 3.6% relative improvement
over the standard i-vector baseline (+U3v

(s)). The best
performance (10.6%) is reported when three i-vector based
feature transforms are estimated at the three lowest hidden
layers. Therefore, speaker normalization of the bias and
transform methods complement each other.

Table 1. Word Error Rate (WER %) of various DNN mod-
els on the test set. Relative improvement over the baseline is
given in brackets.

Model Test Set

LDA Baseline 11.9

LDA +U3v
(s) 11.2 (5.9)

LDA +U1D
(s)U2x 11.1 (6.7)

LDA +U1D
(s)U2x+U3v

(s) 10.8 (9.2)

LDA model with 3 layers of SD transforms 10.6 (10.9)

Figure 1 shows the WER (%) for various models with dif-
ferent numbers of i-vector based feature transforms, which
include learning them on top of hidden layer representations.
Moreover, these i-vector based feature transforms are added
from the bottom (input layer) of the network. For instance,
the model with two layers of SD transforms contains another
i-vector based feature transform for the first hidden layer rep-
resentations, in addition to the i-vector based transform in
the input layer. Furthermore, all the models in this figure
have a SD bias connected to the first hidden layer. It can be
clearly seen that to reach the best performance, three layers
of i-vector based transforms are sufficient. This suggests that
lower layers are more important in speaker normalization.

Table 2 presents the results of various DNN models
trained on top of the fMLLR features. A GMM-HMM sys-
tem on top of fMLLR features is trained to obtain the training
alignments for these models. Furthermore, i-vectors used
in this experiment are trained using fMLLR features. The
standard i-vector baseline (+U3v

(s)) and the model with the
additional SD transform (+U1D

(s)U2x +U3v
(s)) reported

the same result (9.0). This is because fMLLR features are
already transformed (using A(s)) per speaker . The best
performance (8.8%) is reported when three i-vector based

Fig. 1. WER (%) for various models against the number of
layers with SD transform. Layer 8 is the output layer.

Table 2. WER (%) of various DNN models trained on fM-
LLR features. Relative improvement over the baseline is
given in brackets.

Model Test Set

fMLLR Baseline 9.5

fMLLR +U3v
(s) 9.0 (5.3)

fMLLR +U1D
(s)U2x+U3v

(s) 9.0 (5.3)

fMLLR model with 3 layers of SD transforms 8.8 (7.4)

feature transforms are estimated at lower layers, which is a
7.4% relative improvement over the baseline. However, the
improvement over the standard i-vector based system is rel-
atively smaller compared to that of DNNs trained on LDA
features. This is simply because fMLLR features are already
normalized using a speaker dependent transform to reduce
the mismatch due to speaker variability.

5.2.1. Least Squares Analysis

First, we used the least squares based analysis to compare
the standard i-vector technique (+U3v

(s)) with the fMLLR
method.

As shown in the first row of Table 3, the relative reduction
of the error when compared with the full fMLLR transform
is only 0.68%. In addition, the i-vector based bias method
is not capable of approximating the error introduced by the
transform A(s) as shown in the second row. As predicted,
it is capable of approximating the effect of the fMLLR bias
(b(s)) as shown in the last row. However, generally, i-vectors
provide a better bias shift than that of the b(s) for speaker
normalization.

Figure 2 shows the behavior of the average error (Q) by
the number of iterations. As can be clearly seen, the error

149

Fig. 2. The error (Q) for the least square approximation. Q is
calculated per-frame. i-vector dimension is 100.

Table 3. Least square approximation with the standard i-
vector technique.

Scenario Relative Reduction
Full transform (A(s)x+ b(s)) 0.68%

Linear Transform (A(s)x) 0.02%
Bias shift (b(s)) 99.9%

reduction is better when the i-vectors are re-estimated. For
instance, the relative error reduction is 38.7% when i-vectors
are not re-estimated. However, relative error reduction is
88.1% when i-vectors are re-estimated.

Next, we used the re-estimated i-vectors in DNN training.
This slightly improved the performance of both the i-vector
baseline and our approach. These results are given in Table
4. To estimate the new i-vectors for the test and development
sets, we used the parameter values of U1 , U2 and U3 esti-
mated from the training data.

Table 4. WER (%) of models trained with re-estimated 100
dimensional i-vectors (v̂(s), D̂(s) = diag(v̂(s))).

Model Test Set

Baseline 11.9

+U3v̂
(s) 11.1 (6.7)

+U1D̂
(s)U2x+U3v̂

(s) 10.7 (10.1)

Figure 3 shows the relationship between the average error
and the dimensionality of the i-vector. The error decreases
gradually as the i-vector dimension is increased. This behav-
ior can be explained by the fact that fMLLR transforms have
1640 parameters (i.e., 40*41, since the feature size is 40),
and therefore increasing the number of SD parameters aids
approximation. That said, simply increasing the dimensional-
ity of the i-vectors in DNN training may not always improve

Fig. 3. Average error variation with the dimensionality of i-
vectors.

performance, because this can degrade the quality of the esti-
mated i-vectors. In addition, the DNN models may be more
prone to over-fitting due to the increased number of parame-
ters.

In future work, we will use the derivations presented in
this paper to investigate more suitable speaker representations
for our approach. One of our aims is to find low dimen-
sional speaker representations that can approximate the fM-
LLR transforms better than the i-vectors.

6. CONCLUSIONS

In this paper, we proposed a technique that incorporates
speaker information to normalize the inter-speaker variabil-
ity of the DNN based acoustic models. Our method relies
on learning a separate subspace of feature transformations
based on i-vectors. The speaker normalization experiments
on the Aurora 4 task show relative improvements of 10.9%
and 7.4% on top of the baseline system trained using the
LDA and fMLLR features, respectively. We also compared
our method with the fMLLR technique using a least square
approximation. As future work, we will use the derivations
presented in Section 4 to investigate more suitable represen-
tations for Speaker-aware Training (SaT) approaches. We
believe it is important to find a low dimensional representa-
tion per speaker that can approximate the effect of fMLLR
transforms more accurately than speaker-level i-vectors.

7. ACKNOWLEDGMENTS

This research was partially supported by the Google Faculty
Research Award.

150

8. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N.
Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Process-
ing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] J. Gauvain and C.H. Lee, “Maximum a posteriori es-
timation for multivariate gaussian mixture observations
of markov chains,” IEEE Transactions on Speech and
Audio Processing, vol. 2, no. 2, pp. 291–298, 1994.

[3] C. J. Leggetter and P. C. Woodland, “Maximum likeli-
hood linear regression for speaker adaptation of contin-
uous density hidden markov models,” Computer Speech
and Language, vol. 9, no. 2, pp. 171–186, 1995.

[4] H. Hermansky, D.P.W. Ellis, and S. Sharma, “Tandem
connectionist feature extraction for conventional HMM
systems,” in Proc. ICASSP, 2000, pp. 1635–1638.

[5] P. Bell, P. Swietojanski, and S. Renals, “Multi-level
adaptive networks in tandem and hybrid ASR systems,”
in Proc. ICASSP, 2013, pp. 6975–6979.

[6] N. Morgan and H. Bourlard, “Continuous speech recog-
nition using multilayer perceptrons with hidden markov
models,” in Proc. ICASSP, 1990, pp. 413–416.

[7] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-
divergence regularized deep neural network adaptation
for improved large vocabulary speech recognition,” in
Proc. ICASSP, 2013, pp. 7893–7897.

[8] V. Gupta, P. Kenny, P. Ouellet, and T. Stafylakis, “I-
vector-based speaker adaptation of deep neural networks
for french broadcast audio transcription,” in Proc.
ICASSP, 2014, pp. 6334–6338.

[9] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny,
“Speaker adaptation of neural network acoustic models
using i-vectors,” in Proc. ASRU, 2013, pp. 55–59.

[10] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation
of hybrid NN/HMM model for speech recognition based
on discriminative learning of speaker code,” in Proc.
ICASSP, 2013, pp. 7942–7946.

[11] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and
P. Ouellet, “Front end factor analysis for speaker verifi-
cation,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, 2010.

[12] O. Glembek, L. Burget, P. Matejka, M. Karafiat, and
P. Kenny, “Simplification and optimization of i-vector
extraction,” in Proc. ICASSP, 2011, pp. 4516–4519.

[13] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Con-
nectionist speaker normalization and adaptation,” in
Proc. Eurospeech, 1995, pp. 2183–2186.

[14] B. Li and K. C. Sim, “Comparison of discriminative
input and output transformation for speaker adaptation
in the hybrid nn/hmm systems,” in Proc. Interspeech,
2010, pp. 526–529.

[15] F. Seide, Gang Li, Xie Chen, and Dong Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in Proc. ASRU,
2011, pp. 24–29.

[16] R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. D.
Mori, “Adaptation of hybrid ANN/HMM models us-
ing linear hidden transformations and conservative train-
ing,” in Proc. ICASSP, 2006, pp. 1189–1192.

[17] X. Li and J. Bilmes, “Regularized adaptation of discrim-
inative classifiers,” in Proc. ICASSP, 2006, vol. 1, pp.
I–I.

[18] J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular
value decomposition based low-footprint speaker adap-
tation and personalization for deep neural network,” in
Proc. ICASSP, 2014, pp. 6359–6363.

[19] J. Stadermann and G. Rigoll, “Two-stage speaker adap-
tation of hybrid tied-posterior acoustic models,” in Proc.
ICASSP, 2005, pp. 977–980.

[20] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong,
“Adaptation of context-dependent deep neural networks
for automatic speech recognition,” in Proc. SLT, 2012,
pp. 366–369.

[21] P. Swietojanski and S. Renals, “Learning hidden unit
contributions for unsupervised speaker adaptation of
neural network acoustic models,” in Proc. SLT, 2014,
pp. 171–176.

[22] P. Swietojanski and S. Renals, “Differentiable pooling
for unsupervised speaker adaptation,” in Proc. ICASSP,
2015, pp. 4305–4309.

[23] S. Dupont and L. Cheboub, “Fast speaker adaptation of
artificial neural networks for automatic speech recogni-
tion,” in Proc. ICASSP, 2000, pp. 1795–1798.

[24] T. Tian, Q. Yanmin, Y. Maofan, Z. Yimeng, and K. Yu,
“Cluster adaptive training for deep neural network,” in
Proc. ICASSP, 2015, pp. 4325–4329.

[25] C. Wu and M. J. F. Gales, “Multi-basis adaptive neural
network for rapid adaptation in speech recognition,” in
Proc. ICASSP, 2015, pp. 4315–4319.

151

[26] A. Senior and I. Lopez-Moreno, “Improving dnn
speaker independence with i-vector inputs,” in Proc.
ICASSP, 2014, pp. 225–229.

[27] H. Huang and K. C. Sim, “An investigation of augment-
ing speaker representations to improve speaker normal-
ization for DNN-based speech recognition,” in Proc.
ICASSP, 2015, pp. 4610–4613.

[28] M.J.F. Gales, “Maximum likelihood linear transforma-
tions for hmm-based speech recognition,” Computer
speech & language, vol. 12, no. 2, pp. 75–98, 1998.

[29] M.J.F. Gales, “Semi-tied covariance matrices for hid-
den markov models,” IEEE Transactions on Speech and
Audio Processing, vol. 7, no. 3, pp. 272–281, 1999.

[30] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang,
B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wang,
et al., “An introduction to computational net-
works and the computational network toolkit,” Tech.
Rep., Tech. Rep. MSR, Microsoft Research, 2014,
http://codebox/cntk, 2014.

[31] D. Povey, A. Ghoshal, G. Boulianne, N. Goel, M. Han-
nemann, Y. Qian, P. Schwarz, and G. Stemmer, “The
kaldi speech recognition toolkit,” in Proc. ASRU, 2011.

152

