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ABSTRACT

In this paper we propose the Structured Deep Neural Network
(structured DNN) as a structured and deep learning frame-
work. This approach can learn to find the best structured ob-
ject (such as a label sequence) given a structured input (such
as a vector sequence) by globally considering the mapping re-
lationships between the structures rather than item by item.
When automatic speech recognition is viewed as a special
case of such a structured learning problem, where we have
the acoustic vector sequence as the input and the phoneme
label sequence as the output, it becomes possible to compre-
hensively learn utterance by utterance as a whole, rather than
frame by frame. Structured Support Vector Machine (struc-
tured SVM) was proposed to perform ASR with structured
learning previously, but limited by the linear nature of SVM.
Here we propose structured DNN to use nonlinear transfor-
mations in multi-layers as a structured and deep learning ap-
proach. This approach was shown to beat structured SVM in
preliminary experiments on TIMIT.

Index Terms— structured learning, deep neural network

1. INTRODUCTION

With the maturity of machine learning, great efforts have
been made to try to integrate more machine learning con-
cepts into the Hidden Markov Model (HMM). Using Deep
Neural Networks (DNN) [1, 2] with HMM is a good exam-
ple [3–5]. In general, HMMs consider the phoneme structure
by states and the transitions among them, but trained primar-
ily on frame level regardless of being based on DNN [6, 7] or
Gaussian Mixture Model (or subspace GMM, SGMM [8]).
Under HMM framework [9], the hierarchical structure of
an utterance is taken care of by the HMM and their states,
the lexicon and the language model, which are respectively
learned separetely from disjoint sets of knowledge sources.
On the other hand, it is well known that there may exist some
underlying overall structures for the utterances behind the
signals which may be helpful to recognition. If we can learn
such structures comprehensively from the signals of the entire
utterance globally, the recognition scenario may be different.

On the contrary, structured learning has been substan-
tially investigated in machine learning, which tries to learn

the complicated structures exhibited by the data. Conditional
Random Fields (CRF) [10–15] and structured Support Vec-
tor Machine (SVM) [16–18] are good example approaches.
Recently, structured SVM has been used to perform initial
phoneme recognition by learning the relationships between
the acoustic vector sequence and the phoneme label sequence
of the whole utterance jointly rather than on the frame level
or from different sets of knowledge sources [19], utilizing the
nice properties of SVM [20] to classify the structured patterns
of utterances with maximized margin. However, both CRF
and structured SVM are linear, therefore limited in analyzing
speech signals.

In this paper, we extend the above structured SVM ap-
proach to phoneme recognition using a structured DNN in-
cluding nonlinear units in multi-layers, but similarly learning
the global mapping relationships from an acoustic vector se-
quence to a phoneme label sequence for a whole utterance. In
recent work, the front-end feature extraction DNN has been
integrated with SVM [21] and Weighted Finite-State Trans-
ducers (WFST) [22], but here we further integrate the front-
end DNN with structured DNN, which is completely different
from the previous work.

2. PROPOSED APPROACH – STRUCTURED DEEP
NEURAL NETWORK

The whole picture of the concept of the structured DNN for
phoneme recognition is in Fig. 1. Given an utterance with an
acoustic vector sequence x and a corresponding phoneme la-
bel sequence y, we can first obtain a structured feature vector
Ψ(x,y) representing x and y and the relationships between
them as in Fig. 1(a) (details of Ψ(x,y) are given in Section 3),
and then feed it into either an SVM as in Fig. 1(b) or a DNN as
in Fig. 1(c) to get a score by a scoring function F1(x,y; θ1)
or F2(x,y; θ2), where θ1 and θ2 are the parameter sets for
the SVM and DNN respectively. Here the acoustic vector se-
quence x can be raw acoustic features like filter bank outputs
or phoneme posteriorgram vectors generated from the DNN
in Fig. 1(a). Because both x and y represent the entire ut-
terance by a structure (sequence), and either SVM or DNN
learns to map the pair of (x,y) to a score on the utterance
level globally rather than on the frame level, this is structured
learning optimized on the utterance level.
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Fig. 1: The concept of Structured SVM and Structured Deep
Neural Network: (a) the structured feature vector Ψ(x,y) for
an utterance, (b) structured SVM and (c) structured DNN.

2.1. Structured Learning Concept

In structured learning, both the desired outputs y and the input
objects x can be sequences, trees, lattices, or graphs, rather
than simply classes or real numbers. In the context of super-
vised learning for phoneme recognition for utterances, we are
given a set of training utterances, (x1,y1), ..., (xN ,yN ) ∈
X × Y, where xi is the acoustic vector sequence of the i-
th utterance, yi the corresponding reference phoneme label
sequence, and we wish to assign correct phoneme label se-
quences to unknown utterance.

We first define a function f(x; θ) = y : X → Y , map-
ping each acoustic vector sequence x to a phoneme label se-
quence y, where θ is the parameter set be learned. One way
to achieve this is to assign every possible phoneme label se-
quence y given an acoustic vector sequence x a score by a
scoring function F (x,y; θ) : X × Y → R, and take the
phoneme label sequence y giving the highest score as the out-
put of f(x; θ),

f(x; θ) = arg max
y∈Y

F (x,y; θ). (1)

F1(xi, yi; θ1)

scores
F1(x, y; θ1)

margin ≥ Δ(yi, yk)

F1(xi, yk; θ1)

F1(xi, ym; θ1) 

F1(xi, yn; θ1)

yk
ym

yn

yi

Fig. 2: We need to maximize the margin between the correct
label sequence (yi) and all the other incorrect label sequences
(in blue color).

2.2. Structured SVM

Based on the maximized margin concept of SVM, we wish
to maximize not only the score of the correct label sequence,
but the margin between the score of the correct label sequence
and those of the nearest incorrect label sequences as shown
in Figure 2. In Figure 2, yi is the correct label sequence,
and all the other incorrect label sequences are in blue. The
score of the correct label sequence F1(x,yi; θ1) is higher
than the highest score among the incorrect label sequences,
F1(x,yk; θ1), by ∆(yi,yk), which is the difference between
the scores of the two sequences yi and yk. All incorrect label
sequences have scores below that of the correct sequence by
at least ∆(yi,yk), or the margin. Maximizing this margin is
the learning target of structured SVM. The scoring function
used in structured SVM is as below, which is linear.

F1(x,y; θ1) = 〈θ1,Ψ(x,y)〉 , (2)

where Ψ(x,y) is the structured feature vector mentioned
above and shown in Figure 1, representing the structured
relationship between x and y, θ1 is in vector form, and 〈·, ·〉
represents inner product. We can then train the parameter
vector θ1 using training instances {(xi,yi), i = 1, 2, ...,N}
subject to the following formula,

min
θ1,ξi
‖θ1‖2 + C

N∑
i=1

ξi, ξi > 0, ∀y ∈ Y,

F1(xi,yi; θ1)− F1(xi,y; θ1) + ξi ≥ ∆(yi,y), (3)

where C is the cost balancing the model complexity (θ1) with
the inequality, and ξi is the slack variable for the inequality,
and ∆(·, ·) : Y × Y → R+ measures the distance between
two label sequences. Phone error rate is used as the distance
in this paper, but other evaluation metrics are also feasible.
Optimizing the function above is equivalent to maximizing
the margin separating the scores between the correct label se-
quence and all other label sequences for each training sample
xi. Formula (3) can be solved by quadratic programming and
the cutting-plane algorithm [23], and is equivalent to the fol-
lowing formula:

min
θ1
‖θ1‖2 + C

N∑
i=1

Li(θ1),

Li(θ1) = max
y

max(0, F1(xi,y; θ1) + ∆(yi,y)

− F1(xi,yi; θ1)), (4)
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In (4), Li(θ1) is the loss function for each example (xi,yi),
and max(0, ·) (the inner max operator) in Li(θ1) is a hinge
loss function, which penalizes the model if the inequality in
(3) does not hold. Formula (4) is helpful in understanding
the concept of the cost function for structured DNN in Sub-
section 2.3.2. With the scoring function F1(x,y; θ1) and the
trained parameter set θ1, we can find the label sequence y for
the acoustic vector sequence x of any input testing utterance
by the well known Viterbi algorithm [23].

2.3. Structured Deep Neural Network (Structured DNN)

The assumption of the linear scoring function as in (2) makes
structured SVM limited. Instead, the proposed structured
DNN uses a series of nonlinear transforms to build the scor-
ing function F2(x,y; θ2) with L hidden layers to evaluate a
single output value F2(x,y; θ2) as in Fig. 1(c).

h1 = σ(W0 ·Ψ(x,y))

hl = σ(Wl−1 · hl−1), 2 ≤ l ≤ L

F2(x,y; θ2) = σ(WL · hL), (5)

whereWi is weight matrix (including the bias) of layer i, σ(·)
a nonlinear transform (sigmoid is used here), hi the output
vector of hidden layer i, and the set of all DNN parameters
(W0, W1, W2,..., WL) is θ2. Note that the last weight matrix
WL is a vector, because this DNN gives only a single value as
the output. Two different lost functions for learning structured
DNN are defined in this work and described respectively in
Subsections 2.3.1 and 2.3.2.

2.3.1. Approximating phoneme accuracy (Approx. Ph. Acc)

First, the label phoneme accuracy for a label sequence y is
defined as C(yi,y) = 1 −∆(yi,y), where yi is the correct
label sequence, and ∆(yi,y) is the phoneme error rate of y
given the correct label sequence yi. The parameter set θ2 of
structured DNN can be trained by minimizing the following
loss function,

L(θ2) =

N∑
i=1

∑
y∈Y

[
C(yi,y)− F2(xi,y; θ2)

]2
. (6)

By minimizing (6), the DNN learns to minimize the mean
square error between its output F2(xi,y; θ2) given xi and
y and the phoneme accuracy of y, C(yi,y), over all train-
ing utterances and for each utterance all possible phoneme
sequences y ∈ Y. In other words, the score function
F2(x,y; θ2) thus learned can be considered as an estimate
of the phoneme accuracy, so the correct label sequence would
tend to have the largest F2(x,y; θ2) among all possible se-
quences. In practice, considering all possible y is intractable,
so only a subset of Y is considered during training, which
will be described later in Subsection 2.5.

2.3.2. Maximizing the margin (Max. Margin)

Inspired by the maximum margin concept of structured SVM,
we replace the linear part of structured SVM by nonlinear
DNN to take advantage of both DNN and maximum margin.
The proposed structured DNN thus optimizes the following
formula:

min
θ2
‖θ2‖2 + C

N∑
i=1

L′i(θ2),

L′i(θ2) =
∑
y

max(0, F2(xi,y; θ2) + ∆(yi,y)

− F2(xi,yi; θ2)) (7)

L′i(θ2) in (7) is parallel to Li(θ1) in (4), except that θ1 and
F1(.) in (4) are replaced by θ2 and F2(.) in (7) respectively,
while the outer max operator in (4) is replaced by summa-
tion1. Because the loss function L′i(θ2) would be larger than
zero whenever F2(xi,y; θ2)+∆(yi,y)−F2(xi,yi; θ2) > 0,
the DNN model parameters θ2 are penalized if any of the in-
equalities below do not hold.

F2(xi,yi; θ2)− F2(xi,y; θ2) > ∆(yi,y),

i = 1, ...., N,∀y ∈ Y. (8)

Therefore, by (7), the scores between the correct label se-
quence and other label sequences would be separated by at
least a margin which is maximized as in structured SVM, but
here the scores are evaluated from a DNN with parameters
learned based on the DNN framework, rather than from SVM.
Note that all components in loss function L′i(θ2) in (7) are
piecewise differentiable which means we can use back prop-
agation to find the model parameters θ2 when optimizing (7).
According to (7), we need to traverse over all possible y for
an utterance which is intractable and need some approxima-
tion as described in Subsection 2.5.

2.4. Inference with Structured DNN

With the structured DNN trained as above, given the acoustic
vector sequence x of an unknown utterance, we need to find
the best phoneme label sequence y for it. For structured SVM
in Subsection 2.2, due to the linear assumption, the learned
model parameter θ1 contains enough information to execute
the Viterbi algorithm to find the best label sequence. This is
not true for structured DNN. From (1), in principle we need
to search over all possible phoneme label sequences (KM for
K phonemes and M acoustic vectors) for the given acoustic
vector sequence and pick the one giving the highest score,
which is computationally infeasible.

Instead of searching through all possible phoneme label
sequences, we first decode x using WFST to generate a lat-
tice, and then search through the phoneme label sequences in

1We replace the outer max operator in (4) of structured SVM with sum-
mation. In this way all the label sequences y are properly considered and this
makes the DNN training more efficient.
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the lattice which give the highest scores. Obviously, in this
way the performance is bounded by the quality of the lattice.

2.5. Training of Structured DNN

For each training utterance, again we haveKM possible label
sequences. It is also impossible to train over all these label
sequences for the training utterances. In structured SVM, due
to the linear property, we are able to find training examples
to produce the maximum margin. For structured DNN here,
how to find and choose effective training examples is impor-
tant. Besides the positive examples (reference phoneme la-
bel sequences for the training utterances), in this work neg-
ative examples (those other than reference label sequences)
are chosen both by random and from the lattice decoded from
WFST. For each training utterance with a lattice, the negative
examples have three sources: (a) N completely random se-
quences, (b) N random paths on the lattice, and (c) the N-best
paths on the lattice.

2.6. Full-scale structured DNN (FSDNN)

The acoustic feature sequence x here can be the output of
another DNN in the front-end (the DNN in Fig. 1(a)). For
example, it can be generated from a DNN whose input is the
filter bank output, and the output is the phoneme posterior-
gram vectors. In this case, during back propagation, we can
further propagate the errors of the structured DNN (the DNN
in Fig. 1(c)) all the way back into the front-end DNN. In this
way, we have Full-scale Structured DNN (FSDNN) in which
all parameters from filter bank up to the whole utterance score
are jointly learned.

The FSDNN we proposed can be considered as a spe-
cial case (or structured version) of Convolutional Neural Net-
work [24] [25] which works perfectly in computer vision and
speech recognition [26]. The power of CNN is mainly based
on shared kernel parameters which are able to discover front-
end feature filters. In FSDNN, we can view the front-end
DNN as the kernel in CNN because they all share the pa-
rameters in the front end. The difference between CNN and
FSDNN is that CNN uses max-pooling layer, while we use
Ψ(x,y) to forward the output of the front-end DNN.

3. STRUCTURED FEATURE VECTOR Ψ(X,Y) FOR
AN UTTERANCE

Take the filter bank outputs or phoneme posteriorgram vec-
tors as the acoustic vectors for an utterance of M frames,
x = {xj , j = 1, 2, ...M}, and the phoneme label for xj

is yj . So the task is to decode x into the label sequence
y = {yj , j = 1, 2, ...M}. Since the most successful and
well known solution to this problem is with HMM, we try
to encode what HMM has been doing into the feature vector
Ψ(x,y) to be used here. An HMM consists of a series of

states, and two most important sets of parameters – the tran-
sition probabilities between states, and the observation prob-
ability distribution for each state. Such a structure is slightly
complicated for the work here, so in the preliminary work we
use a simplified HMM with only one state for each phoneme.
With this simplification, these two sets of probabilistic pa-
rameters can be estimated for each utterance by adding up all
the counts of the transition between labels (or states) and also
adding up all the acoustic vectors for each label (phoneme or
state). This is shown in Fig. 3(a).

Assume K is the total number of different phonemes, we
first define a K dimensional vector Λ(yj) for yj with its k-th
component being 1 and all other components being 0 if yj is
the k-th phoneme. Tensor product ⊗ is helpful here, which is
defined as

⊗ : RP × RQ → RPQ, (a⊗ b)i+(j−1)P ≡ ai × bj , (9)

where a and b are two ordinary vectors with dimensions P
andQ respectively. The right half of (9) says a⊗b is a vector
of dimension PQ, whose [i+ (j − 1)P ]-th component is the
i-th component of a multiplied by the j-th component of b.
With this expression, the feature vector Ψ(x,y) in Fig. 1(a)
to be used for evaluating the scoring function F1(x,y; θ1) in
(2) or F2(x,y; θ2) in (5) can then be configured as the con-
catenation of two vectors,

Ψ(x,y) =

( ∑M
j=1 x

j ⊗ Λ(yj)∑M−1
j=1 Λ(yj)⊗ Λ(yj+1)

)
, (10)

where x = {x1,x2, ...,xM} and y = {y1, y2, ..., yM}. The
upper half of the right hand side of (10) is to accumulate
the distribution of all components of xj for each phoneme
in the acoustic vector sequence x, and then locate them at dif-
ferent sections of components of the feature vector Ψ(x,y)
(corresponding to the observation probability distribution for
each state or phoneme label estimated with the utterance).
The lower half of the right hand side of (10), on the other
hand, is to accumulate the transition counts between each
pair of labels (phonemes or states) in the label sequence y
(corresponding to state transition probabilities estimated for
the utterance). Then, Ψ(x,y) is the concatenation of the
two, so it keeps the primary statistical parameters of xj for
different phonemes yj for all xj in x, and the transitions
between states for all yj in y. With enough training utter-
ances (x,y) and the corresponding function Ψ(x,y), we can
then learn the scoring function F1(x,y; θ) or F2(x,y; θ2) by
training the parameters θ1 or θ2. The vector Ψ(x,y) in (10)
can be easily extended to higher order Markov assumptions
(transition to the next state depending on more than one pre-
vious states). For example, by replacing the upper half of
(10) with

∑N
n=1 x

n ⊗ Λ(yn)⊗ Λ(yn+1) and the lower half
of (10) with

∑N−1
n=1 Λ(yn)⊗ Λ(yn+1)⊗ Λ(yn+2) , we have

the second order Markov assumption.
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Consider a simplified example for K = 3 (only 3 al-
lowed phonemes A, B, C) and an utterance with length
M = 4 as shown in Fig. 3(b). It is then easy to find
that the upper half of Ψ(x,y) is

∑4
n=1 x

n ⊗ Λ(yn) =
(1.2, 2.6, 2.7, 2.3, 1.5, 2.5)

′, and the lower half of Ψ(x,y)

is
∑3
n=1 Λ(yn)⊗ Λ(yn+1) = (0, 0, 0, 1, 1, 0, 0, 1, 0)

′. We
therefore have Ψ(x,y) =
(1.2, 2.6, 2.7, 2.3, 1.5, 2.5, 0, 0, 0, 1, 1, 0, 0, 1, 0)

′.

A B B C
y (label sequence)

x (acoustic vector sequence)

Ψ(x,y)

(a) a simple example with
arbitrary acoustic vector

x2 x4x1 x3

A B B C
y1 y2 y3

1.2
2.6

2.3
0.7

0.4
1.6

1.5
2.5

y4

A→BB→B
1.2 2.6 2.7 2.3 1.5 2.5 0 0 0 1 1 0 0 1 0

B→C

A B C

(b) a demonstration of how Ψ(x,y) is
computed.

Fig. 3: A simplified example of feature sequence x =
(x1,x2,x3,x4) and label sequence y = (y1,y2,y3,y4) =
(A,B,B,C).

4. EXPERIMENTAL SETUP

Initial experiments were performed with TIMIT. We used the
training set without dialect sentences for training and the core
testing set (with 24 speakers and no dialect) for testing. The
models were trained with a set of 48 phonemes and tested
with a set of 39 phonemes, conformed to CMU/MIT standards
[27]. We used an online library [28] for structured SVM, and
modified the kaldi [29] code to implement structured DNN.

Our experiment was based on Vesely’s recipe in kaldi,
called as baseline, which used LDA-MLLT-fMLLR features
obtained from auxiliary GMM models, RBM pre-training,
frame cross-entropy training and sMBR. The structured DNN
was performed on top of the lattices obtained by Vesely’s
recipe. We used two sets of acoustic vectors, (a)LDA-MLLT-
fMLLR feature (40 dimensions), or input to DNN in Vesely’s
recipe; (b)phoneme posterior probabilities (48 dimensions)
obtained from the 1943 DNN output (state posterior) from
Vesely’s recipe. Because 1943-dimension feature was too
large for Ψ(x,y), we reduced the dimension to 48(mono-
phone size) by adding an extra layer(1943 × 48) to Vesely’s
DNN, and used one-hot mono-phone as training target to
train this extra layer.

Unless specified, we used the following parameters: 2
hidden layers, 900 neurons per layer, random initial weights
for structured DNN, Vesely’s DNN as initial weight for front-
end DNN in FSDNN, phone error rate as ∆(·, ·), mini-batch
used, momentum = 0.9, learning rate = 4 × 10−6, halving
learning rate if the improvements of loss function was too
small. Due to computation time, we only used N=1 when

choosing the negative examples, that was 1 totally random
path, 1-best lattice path and 1 random lattice path were used
to train. Test was on 10×N (10-best) lattice paths.

5. EXPERIMENTAL RESULTS

The results are listed in Table 1. Rows (1) and (2) are for dif-
ferent acoustic features, where row (1) is actually the acoustic
features used by Vesel’s recipe. Column (A) are the results of
structured SVM. Columns (B) and (C) are for the proposed
structured DNN, respectively for the lost function of approx-
imating the phoneme accuracy in subsection 2.3.1 in column
(B) and maximizing the margin in subsection 2.3.2 in column
(C). Column (D) is for the extension of column (C) to the Full-
scale structured DNN (FSDNN) described in Subsection 2.6,
in which the front-end DNN and structured DNN were jointly
trained. Column (E) is the baseline.

It is clear that the phoneme posterior in row (2) is bet-
ter than the feature vectors used in the Vesel’s recipe in row
(1), accounting for the powerful feature transform achieved
by DNN. The structured DNN outperformed the structured
SVM on both acoustic features (columns (B), (C) v.s. (A) on
both rows (1) (2)). This is not surprising because the struc-
tured SVM learned only the linear transform; while structured
DNN, learned much more complex nonlinearity. Although
the results of structured DNN were obtained by rescoring the
lattices of Vesel’s results which is 18.90% on Phoneme Er-
ror Rate (PER), structured DNN was better than baseline in
most cases with both sets of acoustic vectors (columns (B),
(C) v.s. (E)). These results showed that the proposed struc-
tured DNN did learn some substantial information beyond the
normal frame-level DNN.

Comparing the results in columns (B) and (C) of Table 1,
we see the selection of the loss function is critical. Margin
performed much better than approximating the phoneme ac-
curacy (columns (C) v.s. (B)). A possible reason is as follows.
The loss function of approximating the phoneme accuracy
may be inevitably dominated by negative examples, since we
used much more negative examples than positive examples in
training, and the positive and negative examples were equally
weighted. The loss function of maximizing the margin, on
the other hand, focused on the score difference between each
pair of positive and negative examples, and as a result, the
positive and negative examples were weighted equally even if
very different numbers.

When we compare the structured DNN with the full-
scale structured DNN (FSDNN) using the same loss function
(columns (D) v.s. (C)), we see that propagating the errors all
the way back into the front-end layer did offer good improve-
ment, and the best result we got here is 17.78%, which beat
baseline 18.90% by an 5.5% relative improvements (columns
(D) v.s. (E) in row (1)). Note that the full potential of
structured DNN was not well explored yey, for example, as
explained in Section 3, we simply assume a single state for
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Phoneme Error Rate(%) (A) structured SVM (B) structured DNN (C) structured DNN (D) FSDNN (E) baseline
Loss function x Approx. Ph. Acc max. Margin max. Margin x
(1) LDA-MLLT-fMLLR 38.62 19.98 18.03 17.78 18.90
(2) phoneme posterior 24.32 18.77 17.95 x x

Table 1: Phoneme Error Rate(%). Rows (1) and (2) are for two different acoustic vector sequence inputs. Column (A) are the
results of structured SVM, while columns (B) and (C) are for structured DNN respectively with the lost function to approximate
phoneme accuracy(Approx. Ph. Acc) in Subsection 2.3.1 and maximizing margin(max. Margin) in Subsection 2.3.2. Column
(D) is for the extension of column (C) into the Full-scale structued DNN (FSDNN) described in Subsection 2.6. Column (E) is
the baseline (Vesel’s recipe).

a phoneme in (10), which is certainly over-simplified. Also,
as mentioned in Sections 2.5, 2.4, both the inference and
training were simplified for reduced computation and lack of
time.

In order to see why FSDNN in column (D) can do better
than baseline in column (E), we took a deeper look at the data,
and the results of a selected example utterance was shown in
Figure 4. In this figure, the phoneme accuracy (vertical scale)
for the 10-best paths of the example utterance was plotted as
a function of the scores obtained in the recognizer (horizon-
tal scale), i.e., FSDNN and baseline in columns (D)(E) and
row (1). There are 10 dots in each figure, each for a path
among the best 10. The same color was used to mark the
same path. Note that the phoneme accuracy is discrete here
for a single utterance of the integer number for the phoneme
errors. In Figure 4(a), the FSDNN gave the highest score to
the path with the highest phoneme accuracy (the upper right
blue point). In Figure 4(b), however, this blue point received
only relatively low score from kaldi (top of the figure), while a
path with lower phoneme accuracy had the highest score from
kaldi (the right most brown point). This resulted in a lower
phoneme accuracy by baseline for this utterance. When we
evaluated the regression line for those figures, we found FS-
DNN score and phoneme accuracy are positively correlated
in Figure 4(a), but the kaldi score and phoneme accuracy are
negatively correlated. Although this is for just a selected ex-
ample, it is easy to find many such examples with similar situ-
ation. Noting that FSDNN here was trained on the large mar-
gin criteria not considering the phoneme accuracy, but what
was learned was positively correlated with the phonme accu-
racy.

The next experiment is to analyze the PER for different
choices of the key hyper-parameters for the full-scale struc-
tured DNN (FSDNN), number of hidden layers L and number
of neurons M in each hidden layer. Figure 5 is the result, a
visualized PER map for FSDNN using acoustic vectors (1).
The horizontal axis is M where M = 100, 200, ...1000, and
the vertical axis is L where L = 1, 2, ...5. Therefore, the
figure consists of 5×10 = 50 data points. The overall perfor-
mance is approximately between 17% and 19%, more or less
comparable to baseline. For this task, N = 1 for training,
N = 10 for inferencing. Better PER seemed to be located
at several disjoint regions (4 valleys in the figure). The best

(a) (b)

Fig. 4: The phoneme accuracy (vertical scale) evaluate for
the 10-best paths for a selected example utterance plotted as
a function of the scores obtained in the recognizer (horizon-
tal scale): (a) FSDNN score in FSDNN and (b) kaldi score.
There are 10 dots in each figure, each for a path among the
best 10. The same color was used to mark the same path in
(a) and (b).

result is on (L,M) = (4, 800), which was the case in Table
1. The disjoint valleys may come from the relatively poor
learning due to lack of training data and poor initialization.
The loss function in (7) is ReLU like, which may result in a
similar behavior of ReLU training (highly dependent on the
initialization).

Fig. 5: Phoneme Error Rate(%) map for the proposed full-
scale structured DNN (FSDNN) for different values of L
(number of hidden layers) and M (number of neurons per
layer).

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a new structured learning architec-
ture, structured DNN, for phoneme recognition which jointly
considers the structures of acoustic vector sequences and
phoneme label sequences globally. Preliminary test results
show that the structured DNN outperformed the previously
proposed structured SVM and beat the state-of-the-art kaldi
results. We will work on multiple states per phoneme in the
future, and explore more possibilities of this approach.
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