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ABSTRACT

We propose an organized sparse deep neural network ar-
chitecture for automatic speech recognition. The proposed
method is inspired by the tonotopic organization in the au-
ditory nerve/cortex. The approach consists of limiting the
neurons connections between the hidden layers, in a man-
ner that preserves frequency proximity, resulting in a diffuse
integration of the spectral information inside the neural net-
work. This method is put in perspective with related work on
sparser neural network architectures for speech recognition
(tonotopy, convolutional nets, dropout). The model is trained
and tested on the TIMIT database, showing encouraging re-
sults compared to the traditional fully connected architecture.

Index Terms— Automatic speech recognition, deep neu-
ral networks, sparse, TIMIT

1. INTRODUCTION

Deep neural networks (DNN) have proven to be a powerful
discriminative modeling tool for automatic speech recogni-
tion (ASR) [1]. Thanks to their many levels of non-linearities,
they are able to address complex classification tasks. As the
DNN features propagate deeper and deeper in the network
layers, they become increasingly invariant and discrimina-
tive [2]. Deep neural networks where initially inspired from
the mammal brain functioning, where the frequency-based in-
formation coming from the cochlea is transmitted to the au-
ditory cortex trough the auditory nerve [3]. In the classical
configuration of a DNN, the neurons from one layer to an-
other are all interconnected, which means that a neuron in the
lth layer will be activated depending of the information it re-
ceives from all neurons in the (l − 1)th layer.

In a real mammal brain, the structure is a slightly dif-
ferent. It follows a so-called tonotopic scheme [4, 5]. This
organization implies that a particular neuron in the auditory
cortex receives an electrical signal from a particular zone of
the cochlea, that is, a distinct frequency sub-band. Thus, this
neuron will fire depending of the information it receives from
a limited number of neurons situated in a peculiar narrow-
frequency area, and not from all possible frequencies.

Applying this observation to a classical fully connected
DNN leads to limiting the weights connections within the

neural network in an ordered manner. By doing this, the num-
ber of connections within the network will decrease and thus,
the DNN weight matrices will become sparser.

This paper is organized as follows. Section 2 describes
related work. In Section 3 we present the sparse neural net-
work architecture. Section 4 presents the experimental setup.
The obtained results are presented in Section 5. Finally, we
conclude and present future work ideas in Section 6.

2. RELATED WORK

In 1996, [6] proposes to process frequency band features inde-
pendently of each other, in effect resulting in a sparse connec-
tivity of the first layers of a DNN. [7] introduces for the first
time a tonotopic approach for speech recognition one year
later. The weights connectivity was limited by using expo-
nentially decaying connectivity probability function, depend-
ing of the distance between neurons weights. This method
showed interesting results but was tested only on a single-
layered MLP, due to hardware limitations.

Similarly to sparse DNN, Convolutional Neural Networks
(CNN) tend to limit the weights connectivity, as they parse
the spectral information localized-patch by localized-patch
into the network [8, 9]. The method we propose differs with
the CNN approach as the weights in a sparse DNN are kept
independently updated contrarily to CNN, where the same
weights are applied across the different patches. To a certain
extent, a sparse DNN can be seen as a particular case of CNN
with limited weight sharing (LWS) as in [10], where the LWS
is set to one connection.

Beside the biological inspiration outlined in the intro-
duction, another motivation to reduce the number of con-
nections is that fully connected neural networks tend to be
over-parametrized, leading to a non-negligible redundancy
for the model [11]. Several architectures investigates sparser
models to address this problem. For instance in [12], the fully
connected layer is replaced with global average pooling. An-
other method used to reduce the DNN complexity is network
pruning as in [13]. These methods differ with the sparse DNN
we present by their internal architecture.

A parallel between sparse DNN and dropout also exists.
Both mechanisms lead to thinned neural nets at training time,
with reduced number of connections between layers [14, 15].
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This comparison is limited though, as for a sparse DNN the
number of units is kept the same as in a fully connected DNN,
whereas part of these units are ignored during training time
with dropout. Another element of divergence concerns the
selection of the suppressed connections. For dropout, this
connections are selected randomly in order to decrease the
neurons co-adaptation, thus, preventing over-fitting. In our
case, we strengthen close frequency band connections, and
avoid units being influenced by too spatially-faraway units,
following the tonotopic scheme. Despite the divergence of
these approaches, some heuristic observations deriving from
dropout enabled us to improve sparse DNN (cf. Section 5.3).

3. SPARSE DEEP NEURAL NETWORK
ARCHITECTURE

As explained earlier, the sparsity of a network can be obtained
by different means. Our interest is in reducing the connec-
tions in a controlled manner, following the natural sparseness
of mammal brains.

3.1. Physiological approach

The tonotopic architecture is depicted in Figure 1. The vi-
brations in the air are transmitted through the tympanic mem-
brane to the base of the cochlea. Depending of the sound
frequency, a different region of the basilar membrane will
be excited. Lower frequencies will excite areas closer to the
cochlea base, whereas higher frequencies will be closer to the
apex. The basilar membrane stimulation information is then
passed throughout the cochlea nerves (a.k.a. auditory nerves)
to the neurons. This mechanism implies that only the neurons
connected to a specific zone of the basilar membrane will be
stimulated, depending of the initial sound frequencies.
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Fig. 1. Tonotopic scheme. The cochlea is represented un-
coiled for clarity.

3.2. Sparse DNN

Transposing this mechanism to classical fully connected lay-
ers deep neural networks leads to Figure 2. In this example
the connections of the first three hidden layers are limited in
such way that neurons in the lth layer will receive stimulation
information only from close neurons in the (l − 1)th layer.

The aim of sparse layers is to model spectral correlation
while reducing spectral variation as well as feature informa-
tion redundancy. After a few sparse layers, we keep some
classical fully connected layers, similarly to CNN training.
Keeping fully connected layers will ease accumulating and
transmitting the local information up to the softmax layer.
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Fig. 2. Example of sparse deep neural network. Here the
connections from the input features layer up to the 3rd hidden
layer are sparse.

Sparse DNN are also interesting in the manner feature in-
formation propagates though the network. In contrast to clas-
sical DNN or CNN, here the neurons from the first sparse lay-
ers will have access to a limited amount of the audio features.
The spectral information from these features will spread in
the network as the layers become deeper and deeper. In other
words, we can describe the data integration inside the neural
network as layer-wise diffusion. Suppressing large amounts
of weight connections in the sparse layers implies that we
will need to go to a deeper layer to see a neuron influenced
by all acoustic features. On the contrary, if we keep most of
the connections in the sparse layers, the information coming
from the initial features will influence neurons in earlier lay-
ers. For instance, if we suppress 40% of the weights, each
unit in the first layer will be updated by 60% of the features.
Following this logic, each neuron in the second hidden layer
will encounter 60% of the neurons from the first layer. Thus,
each single neuron in the second layer will be influenced by
all initial features. The lower the connection percent is, the
longer it takes for information from the different frequency
channels to diffuse and integrate through the sparse DNN.
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We will use the term connection percent to describe the
proportion of the connections that are kept in the sparse
weight matrices.

4. EXPERIMENTAL SETUP

In this section, we will describe the different components of
our setup : the database, the initial audio features and a de-
scription of our system.

4.1. Database

The proposed sparse DNN approach was investigated on a
phone recognition task using the TIMIT Acoustic-Phonetic
Continuous Speech Corpus [16].

The database is composed of 630 speakers, each of them
reading 10 sentences. Pre-training and training were per-
formed on the standard training set (consisting of 462 speak-
ers). Ten percent of the training data is randomly hold out
as part of the development set, first to fine-tune the hyper-
parameters, second to avoid over-fitting by performing an
early stopping procedure. The 24-speaker standard test set,
which is independent from the train end development sets, is
used for evaluation. The Phone Error Rate (PER) metric is
measured based on the phone label outputs and the supplied
phone transcription.

4.2. Input features

The audio features choice is crucial for sparse neural net-
works. Most speech recognition systems use Mel-Frequency
Cepstral Coefficients (MFCC) as input features. This type of
features have proven to be very efficient with Gaussian Mix-
ture Models - Hidden Markov Model (GMM - HMM) acous-
tic models. MFCC are easier to model using GMM as their
coefficients tend to be independent. [17] shows that deep net-
works do not require uncorrelated features. Thus, features as
the filter banks, that are strongly correlated, are worth con-
sidering. Results in [17] reveal better performances of filter
banks compared to MFCC on the TIMIT database.

Another effective feature extraction approach for neural
networks are LDA-MLLT features [18]. These features are
obtained by splicing successive MFCC vectors. The resulting
features are reduced by a LDA projection. Extracting features
in such manner would not be desirable for our sparse DNN
approach. Using LDA implies a projection of the features into
another subspace, meaning that the spectral proximity, similar
to the one resulting from the cochlea, will be lost. With sparse
DNN we try to boost features spectral closeness.

Here, we are using 23-dimensional filter banks spliced
over 11 frames with their associated first- and second-oder
temporal differences for a total of 759 dimensions.

4.3. System description

Training and testing are done on the free, open-source Kaldi
speech recognition toolkit [19].

4.3.1. Baseline

We use a hybrid DNN - HMM model, with the DNN estimat-
ing posterior probabilities of tied HMM states, and the HMM
modeling speech temporal nature. Our baseline system is a 6
hidden layers fully connected neural network with 2046 neu-
rons per layer.

The system is pre-trained using greedy unsupervised
layer-wise training of stacked restricted Boltzmann machines
(RBM) [20]. At training time, the network is trained to min-
imize the cross entropy error between the expected HMM
target states and the softmax output. For pre-training the
learning-rate is fixed at 0.4, it decreases to 0.008 during
training. We set the mini-batch size to 128.

During decoding, the network’s state probabilities are as-
sociated with a dictionary and language model to establish the
most likely transcription.

4.3.2. Proposed system

In order to introduce sparsity in the model, we are using
sparse filters. Each of the concerned weight matrices are
multiplied by a sparse filter before the propagation phase.
The backpropagation phase is not a problem as only the
non-null weights will be updated. As mentioned earlier, we
will use connection percent to describe the quantity of kept
connections. Finally in order to preserve the weights provid-
ing information of spectrally-close features, the sparse filter
matrix is diagonalized. Thus, depending of the percent of
suppressed connections the digonal width will variate. For
a higher connection percent, the diagonal of the sparse filter
will be thicker than for a lower connection percent.

The sparse neural network that will be investigated is very
similar to the one depicted in Figure 3. Each rectangle corre-
sponds to a weight matrix. The white ones are the initial fea-
tures or neuron vectors, the gray ones are the weight matrices.
In this example the network has 6 hidden layers, 3 of them
being sparse, and a connection percent of 20%. The diagonal
weight matrices can be clearly observed between the 1st and
3rd hidden layers. The weight matrix between the initial au-
dio features and the 1st layer is slightly more specific. Three
different diagonals are computed, corresponding to 23-bins
filter bank, the delta and the delta delta derivatives. Multiple
diagonals in the first weight matrix ensure that units in the
first hidden layer receive acoustic information from the same
spectral areas. This matrix is simplified in Figure 3 for clarity,
as in practice we also add splicing, leading to a total of 33 di-
agonals during training. After the 3rd hidden layer, all weight
matrices are fully connected from one layer to another.
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Fig. 3. Matrices of a sparse DNN are schematically repre-
sented for a connection percent of 20%. Gray rectangles rep-
resent weight matrices. White rectangles represent the initial
features or neuron vectors. For clarity, we display no splicing
in the initial filter banks (+ delta + delta delta).

The weight matrices are filtered during the RBM unsuper-
vised pre-training and the fine-tunning iterations. During de-
coding, the weight matrices obtained from training are tested,
without any sparse filtering.

5. RESULTS

We investigate sparse neural nets efficiency by varying differ-
ent parameters of the initial setup. The efficiency is measured
with the PER over both development and test sets. The first
step is to evaluate the impact of lowering the percent con-
nection of the weight matrices. Then, the number of sparse
layers is examined. We also explore some dropout heuristic
observation on sparse DNN.

5.1. Connection percent

In this section we are using the 6 hidden layer sparse DNN
with 3 layers of sparse connections between the filter bank
features and the 3rd hidden layer (as in in Figure 3). The con-
nection percent is varied from 10% to 100%, the fully con-
nected DNN baseline corresponding to 100%. The results are
presented in Table 1.

The baseline is fixed at 18.9% PER for the development
set and 20.5% for the test set. These PER are higher compared
to current existing results on TIMIT. One of the main reasons
is features. LDA-MLLT features outperform filter banks in
fully connected DNN. However, we have seen in Section 4.2

that LDA features are unadapted for the sparse structure we
are proposing.

A slight decrease of the number of connections (90% and
80% connections) seems to lower the PER on both sets (up
to 1.6% relative improvement on dev set and 2.9% on test
set). The word error rate increases around the baseline val-
ues between 70% and 50% connections. The best results are
obtained for a connection percent of 40%. The relative im-
provement for dev set is 3.2% and 3.4% for the test set. Then,
the recognition decreases. These results are encouraging and
show that improvement can be brought by this approach.

Table 1. Varying the number of connections within the first
three weight matrices.

Connection percent dev PER test PER

fully connected 18.9 20.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90 18.6 20.4
80 18.8 19.9
70 18.9 20.6
60 18.9 20.7
50 18.9 20.4
40 18.3 19.8
30 18.6 20.4
20 19 20.3
10 19 20.7

5.2. Number of sparse layers

Starting with the best performing setup from the previous sec-
tion (40% connections in the weight matrices), we try here to
evaluate the influence of the number of sparse layers on sys-
tem performance. Thus, the number of sparse layers ranged
from 1 sparse layer to 5, starting by the weight matrix be-
tween the filter banks features and the 1st hidden layer. The
results in Table 2 demonstrate that the lower PER is obtained
for 3 sparse layers, our initial choice.

Table 2. Varying the number of consecutive sparse layers,
starting from the weight matrix between the input features
and the 1st layer. The connection percent is fixed at 40%.

Sparse layer(s) dev PER test PER
5 19.1 20.7
4 18.6 20.3
3 18.3 19.8
2 18.4 20.6
1 18.8 20.6
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Fig. 4. Improvement of fixing the 1st sparse layer at 90% connection percent on TIMIT dev set, when the connectivity of the
2nd and 3rd sparse layer varies.

5.3. Dropout inspired improvement

We have seen in Section 2 that a parallel between sparse DNN
and dropout exists. [15] shows that the optimal solution for
dropout training on TIMIT consists of using different dropout
probabilities of retention depending of the layer. More specif-
ically, [15] suggests that the first layer should have a higher
dropout probability of retention than the other layers, mean-
ing to keep more neurons in the 1st hidden layer. We have
adapted this observation to sparse DNN by fixing the con-
nection percent of the 1st weight matrix at 90%, the 2nd and
3rd weight matrices varying between 90% and 10%. Table 3
presents the results.

Table 3. Varying the number of connections of the 2nd and
3rd weight matrices of the sparse DNN, when the 1st layer
connection percent is fixed at 90%.

Connection percent dev PER test PER

fully connected 18.9 20.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90 18.6 20.4
80 18.6 20.2
70 18.5 20.5
60 18.3 20.1
50 18.3 20.1
40 18.2 20
30 18.4 19.7
20 18.7 20.2
10 18.5 19.9

The obtained relative improvements, using this method,
reach 3.7% on the dev set for 40% connections and 3.9% on

the test set for 30% connections, in comparison with a fully
connected neural network.

Results on the development set from Table 1 and Table 3
are gathered in Figure 4. We can see the beneficial effect of
a less-sparse first layer. Indeed, the PER is reduced when the
first weight matrix is fixed at 90% connections, independently
of the connection percent of the other sparse weight matrices.

6. CONCLUSIONS

In this paper, we presented a frequency-organized sparse
method for deep neural networks architecture. This model
is inspired by the biological tonotopic configuration. We
discussed the importance of features for this kind of setup,
showing why filter banks are the most relevant ones. By
diagonalizing the weight matrices we were able to keep close
frequency information, while reducing the number of con-
nections in the hidden layers weight matrices. Encouraging
results were obtained with the proposed sparse design in
comparison to classical fully connected networks. Follow-
ing recent observation on the best strategies for dropout, we
further improved these results by fixing a high connection
percent for the first weight matrix.

Future work involves testing this approach on bigger and
noisy databases as Aurora 4. We will also investigated how
the proposed sparse DNN could reduce training and testing
time. We have studied in this paper the frequency-domain in-
fluence. Furthermore, we are interested in the time-domain
effect on recognition. This can be tested by varying the num-
ber of spliced frames.
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Burget, Ondřej Glembek, Nagendra Goel, Mirko Han-
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