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ABSTRACT

Prosody affects the naturalness and intelligibility of speech.
However, automatic prosody prediction from text for Chinese
speech synthesis is still a great challenge and the traditional
conditional random fields (CRF) based method always heavi-
ly relies on feature engineering. In this paper, we propose to
use neural networks to predict prosodic boundary labels di-
rectly from Chinese characters without any feature engineer-
ing. Experimental results show that stacking feed-forward
and bidirectional long short-term memory (BLSTM) recur-
rent network layers achieves superior performance over the
CRF-based method. The embedding features learned from
raw text further enhance the performance.

Index Terms— automatic prosody prediction, speech
synthesis, neural network, BLSTM, embedding features

1. INTRODUCTION

Prosody refers to the rhythm, stress and intonation of speech,
including variations in duration, loudness and pitch. It is well
known that speech prosody plays an important perceptual role
in human speech communication [1]. Specifically, percep-
tion of prosodic boundaries is essential for listeners. In Chi-
nese speech synthesis systems, typical prosody boundary la-
bels consist of prosodic word (PW), prosodic phrase (PPH)
and intonational phrase (IPH), which construct a three-layer
prosody structure tree [2], as shown in Fig. 1. The leaf n-
odes of tree structure are lexical words that can be derived
from a lexical-based word segmentation module. Whether the
prosody labels are properly predicted will directly affect the
naturalness and intelligibility of the synthesized speech.

Previous studies have investigated a great number of fea-
tures, their relevance to prosody generation in speech produc-
tion and various prosodic modeling methods. Some syntac-
tic cues like part-of-speech (POS), syllable identity, syllable
stress and their contextual counterparts are commonly used
for prosody boundary prediction [3, 4, 5]. Many statistical
methods have been investigated to model speech prosody, in-
cluding classification and regression tree [6], hidden Markov
model [7], maximum entropy model [8] and conditional ran-
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Fig. 1. Three-layer prosody structure tree in Chinese.

dom fields (CRF) [9]. To our knowledge, the best reported
results were achieved with CRF due to its ability of relaxing
strong model independence assumption and solving the label
bias problem [1, 10].

Despite years of research, it is still a great challenge to
predict correct prosodic labels from unrestricted text for a
text-to-speech (TTS) system. Obviously, there are two major
drawbacks of the CRF-based prosody prediction in Chinese
speech synthesis. First, it heavily relies on the performances
of Chinese word segmentation (CWS) and POS tagging [11].
Second, the particle size and the inevitable segmentation er-
rors in CWS have negative effects on the subsequent prosodic
boundary prediction task. Moreover, the choice of effective
features, from a broad set of feature templates, is critical to
the success of such systems [12]. Much of the effort goes in-
to feature engineering, which is notoriously labor-intensive,
mainly based on the experience of an annotator.

Recently, deep neural networks (DNN) have been increas-
ingly investigated in order to minimize the effort of feature
engineering in sequential labeling tasks. Zheng et al. [12] ap-
plied neural networks to CWS and POS tagging and proposed
a perceptron-style algorithm to speed up the training process
with negligible loss in performance. Pei et al. [13] proposed
a max-margin tensor neural network for CWS to model in-
teractions between tags and context characters by exploiting
tag embeddings and tensor-based transformation. These re-
searches have proved that DNN is able to achieve similar or
even superior performance over CRF-based method with min-
imal feature engineering in sequential labeling tasks. There-
fore, it is promising to apply DNN architectures to automatic
prosody prediction. However, we notice that the neural net-
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Fig. 2. The neural network architecture for prosodic boundary
prediction. In tag inference, B, NB and O denote boundary,
non-boundary and others (e.g., punctuation), respectively.

works used in previous researches are feed-forward structures
that keep the assumption of sample independence and provide
only limited context modeling ability by operating on a fixed-
size window of input samples. Instead, bidirectional recurrent
neural networks (BRNN) are able to incorporate contextual
information from both past and future inputs [14]. Specif-
ically, BRNN with long short-term memory (LSTM) cells,
namely BLSTM-RNN, has become a popular model [15].

In this paper, we address the prosodic boundary prediction
problem using neural networks. There are three main contri-
butions. (1) We propose a neural network approach to predict
prosody labels directly from Chinese characters without any
feature engineering. (2) We show that superior performance
is achieved by stacking feed-forward and bidirectional long
short-term memory (BLSTM) recurrent layers. (3) We lever-
age a large raw text corpus to obtain useful character embed-
ding features. Both objective and subjective evaluations show
that the proposed architecture achieves superior performance
over the CRF-based method and the embedding features fur-
ther enhance the performance.

2. THE PROPOSED APPROACH

Just like CWS and POS tagging, automatic prosody predic-
tion can be treated as a sequential labeling task that assigns
boundary labels to characters of an input sentence. In order to
make the prediction models less dependent on the feature en-
gineering, we choose to use a variant of the neural network ar-
chitecture proposed by [16] for probabilistic language model.
This architecture was subsequently used for CWS and POS
tagging [12]. As shown in Fig. 2, the architecture takes raw
text as input and maps each Chinese character into a basic
feature vector. The following layers are two types of neural
networks, FFNN and BLSTM-RNN, used to discover mul-
tiple levels of feature representations from the basic feature
vectors. The output layer is a graph over which tag inference
is achieved by the Viterbi algorithm.

2.1. Feature Vectors

The characters fed into network are transformed into feature
vectors by a mapping operation. Typically, a character dic-
tionary D of size |D| is extracted from the training set and
unknown characters are mapped to a special symbol that is
not used elsewhere. Each Chinese character can be typical-
ly represented by a one-hot vector, the size of which is |D|,
and all dimensions are marked as 0 except the location of the
character in D, which is marked as 1. However, the one-hot
representation, with high dimensions, fails to model the se-
mantic similarity between the ideographic characters. In con-
trast, the distributed representation or embedding feature, in
form of a low dimensional continuous-valued vector learned
using neural networks from raw text in a fully unsupervised
way, is assumed to carry important syntactic and semantic in-
formation [18] [19]. Recently, Mansur et al. [20] have shown
superior performance in Chinese word segmentation by the
use of embedding features based on a neural language mod-
el [16]. Besides [16], Mikolov et al. [18] proposed a faster
skip-gram model called word2vec1. As our preliminary ex-
periments do not show much performance difference among
various embedding features, we simply choose word2vec in
this study because it can be trained much faster.

2.2. Network Structures and Training

Two types of neural networks are investigated in this pa-
per: FFNN and BLSTM-RNN. FFNN, trained with a back-
propagation learning algorithm [21], is widely used in many
practical applications. In a typical FFNN, every unit in a layer
is connected with all the units in the previous layer, which
takes in the output of the previous layer and computes a new
set of non-linear activations for next layer. However, the
assumption of sample independence brings in only limited
context modeling ability.

Researchers have proposed RNN to solve the limitation
of FFNN. However, conventional RNN is only able to make
use of previous context information. This is not accurate in
modeling speech prosody that is highly related with both past
and future contexts. Instead, bidirectional RNN can access
both the preceding and succeeding input contexts with two
separate hidden layers, which are then fed to the same output
layer. The activation functionH of RNN is usually a sigmoid
or hyperbolic tangent function, which often causes the gradi-
ent vanishing problem that prevents RNN from modeling the
long-span relations in sequence features. An LSTM architec-
ture, which uses purpose-built memory cells to store informa-
tion, can overcome this problem and model longer contexts.
Fig. 3 illustrates a single LSTM memory cell. For LSTM, H
is implemented by the following functions:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

1https://code.google.com/p/word2vec/
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Fig. 3. Long short-term memory cell.

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ottanh(ct)

where x = (x1, x2, ...xt..., xT ) is the input feature sequence,
σ is the logistic function, and i, f , o and c are the input gate,
forget gate, output gate and cell memory, respectively. W is
the weight matrix and the subscript indicates it is the matrix
between two different gates.

BLSTM-RNN is a combination of LSTM and BRNN.
Deep bidirectional LSTM-RNN can be established by stack-
ing multiple BLSTM-RNN hidden layers on top of each
other. The output sequence of one layer is used as the input
sequence of the next layer. The hidden state sequences, hn,
consist of forward and backward sequences

−→
h n and

←−
h n,

iteratively computed from n = 1 to N and t = 1 to T as
follows:
−→
h nt = H(W−→

h n−1
−→
h n

−→
h n−1t +W−→

h n
−→
h n

−→
h nt−1 + bn−→

h
),

←−
h nt = H(W←−

h n−1
←−
h n

←−
h n−1t +W←−

h n
←−
h n

←−
h nt−1 + bn←−

h
),

yt =W−→
hNy

−→
h Nt +W←−

hNy

←−
h Nt + by.

where y = (y1, y2, ...yt..., yT ) is the output prosodic bound-
ary sequence.

In our study, the feed-forward layers are trained with typi-
cal backpropagation (BP) algorithm and the back-propagation
through time (BPTT) method is used for training of BLSTM
layers. BPTT is applied to both forward and backward hidden
nodes and back-propagates layer by layer. The weight gradi-
ents are computed over the entire utterance [22]. The neural
networks can be trained effectively in a layer-wised training
manner, which makes it convenient to stack different types
of neural network layers on top of each other to form a deep
architecture. The deep architecture is able to build up progres-
sively higher level representations of the input data, which is
a crucial factor of the recent success of hybrid systems [17].

2.3. Tag Inference

To model the tag dependency and infer the tag sequence glob-
ally, given a set of tags G = {B,NB,O}, a transition score

Sab is introduced for jumping from tag a ∈ G to tag b ∈ G.
For the input character sequence of a sentence c[1:T ] with a
tag sequence tag[1:T ], a sentence-level score is then given by
the sum of transition and network scores [12, 23]:

l(c[1:T ], tag[1:T ], θ) =

T∑
t=1

(Stagt−1tagt + fθ(tagt|ct))

where fθ(tagt|ct)) indicates the score output for tagt at the
t-th character by the networks. Given a sentence c[1:T ], we
can find the best tag path tag∗[1:T ] by maximizing the sentence
score:

tag∗[1:T ] = arg max
∀l[1:T ]

l(c[1:T ], tag[1:T ], θ).

The Viterbi algorithm can be used for tag inference. The de-
scription above shows that it is easy to stack feature vectors,
neural networks and tag inference together. Thus, the pro-
posed architecture can be trained in a layer-wised fashion.

3. EXPERIMENTS

Totally 48210 sentences randomly selected from People’s
Daily were used in our experiments. Prosodic boundaries
(PW, PPH and IPH) were labelled by professional annotators
with corresponding speech and labeling consistency is en-
sured. Word segmentation and POS tagging were carried out
by a front-end preprocessing tool. The accuracy of word seg-
mentation is 97% and the accuracy of POS tagging is 96%.
The corpus was partitioned into three parts: a training set with
43390 utterances, a validation set with 2410 utterances for pa-
rameter tuning and a testing set with another 2410 utterances.
A character dictionary D of size 4030 was extracted from the
training set. A large set of raw texts was also collected from
People’s Daily for unsupervised embedding feature learning.
All texts were preprocessed with text normalization.

In the experiments, PW, PPH and IPH were predicted sep-
arately. That is to say, three separate neural network models
were trained independently for PW, PPH and IPH using the
CURRENNT toolkit [24]. Each character in a sentence was
assigned to one of the following three boundary tags: B for
a prosodic boundary, NB for a non-boundary, and O for oth-
er symbols such as punctuation. Precision (P), recall (R) and
F-score (F) were calculated as standard objective evaluation
criteria.

A CRF-based prosodic boundary prediction approach was
used as baseline and boundary prediction (B, NB and O) was
operated at word level. Atomic features in the CRF approach
include word identity, POS tags, the length of word and the
predicted tag from the previous boundary level. A linear sta-
tistical model was applied to optimize the feature templates.
Parameters grid search was adopted to achieve the best perfor-
mance of the CRF model. The CRF++ toolkit2 was used for
the CRF-based prosodic boundary prediction. The baseline
results are shown in Table 1.
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Boundary P (%) R (%) F (%)
PW 95.34 96.73 96.03
PPH 83.41 83.68 83.06
IPH 84.85 73.39 78.71

Table 1. The results of CRF-based prosody prediction.

Topology
B, BB, BBB, BBBB

FFB, FBF, BFF, FBB, BFB, BBF
Num of nodes 32, 64, 128, 256

Table 2. Different network configurations in the experiments.

We investigated the performance of neural network ar-
chitecture with different topologies, as described in Table 2,
where F and B denote a feed-forward layer and a BLSTM
layer, respectively. The number of the nodes were kept the
same for all hidden layers in every tested network architec-
ture. Specifically, the network input is an M -dimensional
feature vector, where M=4030 for the PW prediction and
M=4031 for the PPH and IPH prediction 3. The network out-
put corresponds to the three boundary tags (B, NB and O).
All networks were trained with a momentum of 0.9, a learn-
ing rate of 1e-3 for PW and 1e-4 for PPH and IPH. BPTT was
performed using stochastic gradient descent (SGD) with 32
parallel sentences. The training stops if no lower error on the
validation set can be achieved within the last 10 epochs. The
best performances for different prosodic boundary levels are
shown in Table 3. We interestingly discover that the best per-
formances at different levels are all obtained with a topology
of FBB. When we compare Table 3 with the CRF-baseline
Table 1, we find that the proposed neural network approach
achieves competitive performance at the PW level and signif-
icant improvements at the PPH and IPH levels.

We also studied the effectiveness of the character embed-
ding features. Different sizes of unsupervised training data
(400M, 800M, 1200M, 1600M and 2000M text) and embed-
ding feature sizes (100, 200, 300 and 400) were tested. The
best network architectures, as shown in Table 3, were used
in the experiments. Please note that the dimension of feature
vector is greatly reduced as compared with the one-hot rep-
resentation. The results shown in Table 4 indicate that the
embedding features can further improve the performance of
automatic prosodic boundary prediction.

We further conducted an A/B preference test on the natu-
ralness of the synthesized speech. A set of 100 sentences were
randomly selected from the test set and the prosodic boundary
labels were achieved by:

(1) CRF-based model in Table 1;

(2) NN with one-hot representation in Table 3;

(3) NN with embedding features in Table 4.

2http://taku910.github.io/crfpp/
3The predicted tag from the previous level was used as a feature.

Boundary P (%) R (%) F (%) TP / Num of nodes
PW 96.02 96.69 96.35 FBB / 32
PPH 82.50 86.75 84.57 FBB / 128
IPH 84.06 79.33 81.63 FBB / 64

Table 3. The best performance of each level and the corre-
sponding network topology (TP).

Boundary P (%) R (%) F (%) Embedding feature size
PW 96.27 96.91 96.59 300
PPH 82.89 87.13 84.96 400
IPH 84.81 79.88 82.27 100

Table 4. The results of neural network architecture with em-
bedding features and the corresponding feature size.

We carried out two sessions of comparative evaluation-
s: (1) vs (2) and (2) vs (3). A set of 20 sentence pairs of
each session was randomly selected from the 100 pairs with
different prosody prediction results and speech was generat-
ed through a typical HMM-based TTS system. A group of
10 subjects were asked to choose which one was better in
terms of the naturalness of synthesis speech. The percentage
preference is shown in Figure 4. We can clearly see that the
NN architecture with one-hot representation can achieve bet-
ter naturalness of synthesized speech as compared with CRF,
while the use of embedding features further improves the na-
trualness.

One-hot representation

31.5%

Neutral

22.9%

Embedding features

45.6%

NN with one-hot representation

58.2%

Neutral

17.3%

CRF

24.5%

Fig. 4. The percentage preference of A/B test.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose to use neural network architectures
to predict prosodic boundary labels directly from Chinese
characters without feature engineering. We show that supe-
rior performance is achieved by stacking feed-forward and
bidirectional long short-term memory (BLSTM) recurrent
layers. We obtain useful character embedding features from
raw text. Both objective and subjective evaluations show
that the proposed neural network approch achieves superi-
or performance over the CRF-based approach and the use
of embedding features can further boost the performance.
For future work, it is promising to predict PW, PPH and
IPH labels in a unified neural network and n-gram character
embedding features can be further investigated.
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