
RNNDROP: A NOVEL DROPOUT FOR RNNS IN ASR

Taesup Moon1,2, Heeyoul Choi2, Hoshik Lee2, and Inchul Song2

1Daegu Gyeongbuk Institute of Science and Technology (DGIST)
333 Techno Jungang-daero , Hyeonpung-myeon, Dalseong-gun, Daegu, 711-873, South Korea

2Samsung Advanced Institute of Technology, Samsung Electronics
130 Samsung-ro, Suwon, 443-803, South Korea

ABSTRACT

Recently, recurrent neural networks (RNN) have achieved
the state-of-the-art performance in several applications that
deal with temporal data, e.g., speech recognition,
handwriting recognition and machine translation. While the
ability of handling long-term dependency in data is the key
for the success of RNN, combating over-fitting in training
the models is a critical issue for achieving the cutting-edge
performance particularly when the depth and size of the
network increase. To that end, there have been some
attempts to apply the dropout, a popular regularization
scheme for the feed-forward neural networks, to RNNs, but
they do not perform as well as other regularization scheme
such as weight noise injection. In this paper, we propose
rnnDrop, a novel variant of the dropout tailored for RNNs.
Unlike the existing methods where dropout is applied only
to the non-recurrent connections, the proposed method
applies dropout to the recurrent connections as well in such
a way that RNNs generalize well. Our experiments show
that rnnDrop is a better regularization method than others
including weight noise injection. Namely, when deep
bidirectional long short-term memory (LSTM) RNNs were
trained with rnnDrop as acoustic models for phoneme and
speech recognition, they significantly outperformed the
current state-of-the-arts; we achieved the phoneme error rate
of 16.29% on the TIMIT core test set for phoneme
recognition and the word error rate of 5.53% on the Wall
Street Journal (WSJ) dataset, dev93, for speech recognition,
which are the best reported results on both of the datasets.

Index Terms— Recurrent neural networks, LSTM,
Dropout, rnnDrop

1. INTRODUCTION

Recurrent neural networks (RNNs) have been successfully
applied to many applications including speech recognition
[1], handwriting recognition [2] and language understanding
[3] for modeling temporal dependencies in data. Recently,
as RNNs, deep bidirectional long short-term memory
(DBLSTM) networks have been drawing much attention

because of their ability to model long-term dependencies
and shown state-of-the-art performances in several
applications such as image caption generation [4].

To train deep neural networks, regularization is crucial
and several methods including pretraining or weight noise
injection are typically used to improve generalization
performance. Among such regularization methods, dropout
was proposed to prevent co-adaptation among hidden nodes
of deep feed-forward neural networks by dropping out
randomly selected hidden nodes [5,6]. Deep feed-forward
neural networks trained with dropout have achieved the
state-of-the-art performances in several benchmark datasets
[7,8].

However, applying the original dropout scheme to RNNs
is not straightforward because of the difficulty in handling
recurrent connections. Although there are some attempts to
apply dropout to RNNs [9,10], they all apply dropout to
only non-recurrent connections since random dropout of
recurrent connections makes it hard for RNNs to learn
temporal dependencies. As shown in Section 4, a DBLSTM
RNN trained with their methods for phoneme recognition
did not perform as well as weight noise injection, which is a
well-known regularization technique.

In this paper, we propose a new dropout method, rnnDrop,
which drops out hidden nodes instead of some connections.
That is, rnnDrop drops both the non-recurrent and recurrent
connections that are connected to the dropped nodes. More
importantly, the dropout mask is randomly selected for each
input sequence and fixed throughout the sequence. The
proposed method is a better way of applying dropout to
RNNs, since it can learn temporal dependencies avoiding
co-adaptation, which leads to better performances. When we
trained DBLSTM RNN acoustic models for phoneme and
speech recognition, we obtained the state-of-the-art results:
the phoneme error rate (PER) of 16.29% on the TIMIT core
test set, and the word error rate (WER) of 5.53% on the
Wall Street Journal (WSJ) dataset, dev93.

The rest of this paper is organized as follows. In Section 2,
we discuss past research related to this work. In Sections 3
and 4, we describe our dropout method and experiment
results, respectively. Finally conclusions follow in Section 5.

65978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

2. RELATED WORK

2.1. Long Short-Term Memory (LSTM)

Consider an input sequence (utterance) of length T,
𝐱 = 𝑥!,… , 𝑥! , where each 𝑥! ∈ 𝑅! is a d-dimensional
vector. An ordinary RNN with m hidden nodes computes the
sequence of hidden node output vectors 𝐡 = ℎ!,… , ℎ! ,
ℎ! ∈ 𝑅! by the following equations throughout the
sequence from t=1 to T:

ℎ! = σ 𝑊!!𝑥! +𝑊!!ℎ!!! + 𝑏! , (1)

𝑦! = 𝑊!!ℎ! + 𝑏! , (2)

where 𝑊 denotes the weight matrices, b denotes the bias
vectors, and 𝑦 stands for the network output vector. The
function σ(∙) is a nonlinear activation function for hidden
nodes, which often takes the form of an element-wise
sigmoid function.

The long short-term memory (LSTM) architecture
attempts to resolve the exploding and vanishing gradient
problems of RNNs [11,12,13]. That is, in order to
effectively learn the memory range of the model from the
training data, LSTM explicitly designs a memory block
inside a hidden node that has the following ingredients: a
memory cell which stores information about the past and
input, output, and forget gates that control the flow of
information within and among the memory blocks. Fig. 1
shows the structure of a single LSTM memory block, which
replaces a simple hidden node used in ordinary RNNs.

Fig. 1. A long short-term memory block

An LSTM network recurrently applies the following

series of equations to obtain the sequence of hidden node
outputs, 𝐡 = ℎ!,… , ℎ! , ℎ! ∈ 𝑅!:

𝑖! = σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏!), (3)

𝑓! = σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏!), (4)

𝑐! = 𝑓!𝑐!!! + 𝑖!tanh (𝑊!"𝑥! +𝑊!!ℎ!!! + 𝑏!), (5)

𝑜! = σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐! + 𝑏!) , (6)

ℎ! = 𝑜! tanh 𝑐! , (7)

where the symbols i, f, o and c, respectively, stand for the
input gate, forget gate, output gate, and memory cell state
vectors. Note that for the gates, there are not only the
recurrent connections from the hidden node outputs from the
previous time stamp, but also the peephole connections from
the cell states. With explicitly designed cell and gate
structures as above, LSTM learns 𝑊 and 𝑏 from the training
data so that it can determine when to receive input signals to
the cell, output the hidden node activations from the
memory blocks, and reset the cell states to refresh the
memory.

The learning of LSTM parameters can still be done with
conventional backpropagation through time (BPTT)
algorithm as long as a differentiable loss function on the
output layer is used. Optimization with BPTT on such
network parameters can be conducted by the stochastic
gradient descent (SGD) method.

One can stack multiple LSTM layers to make the network
structure deep, and combine two separate LSTM networks
that run in forward and backward directions to implement
bidirectional architecture. For more detailed coverage on the
structure and learning LSTM networks, we refer the readers
to [14] and [15] and the references therein. The ability of
LSTM network to learn the sequential dependency patterns
from the data has led its empirical success in achieving
state-of-the-art performances for several sequence
recognition tasks such as speech recognition or handwriting
recognition [2].

2.2. Dropout

Dropout was first introduced in [5,6] as a training method
for preventing co-adaptation among hidden nodes of deep
feed-forward neural networks, e.g., DNNs. The method
randomly omits hidden nodes with probability p (usually
p=0.5) during each iteration of training process, and only the
model weights that are connected to surviving nodes are
updated by backpropagation. As a result, each hidden node
becomes more robust, and the co-adaptation among hidden
nodes is mitigated.

Fig. 2. An example of applying the dropout method proposed
in [7] to DNNs. Note that input data for the time stamp t
typically includes several consecutive frames in speech
recognition.

Once the weights are learned with dropout training,
during test time, the weights of full model are rescaled by

66

multiplying (1- p) as a mean of effectively averaging the
different models learned with random omission during
training. In [5,6], it is shown that the neural networks
trained with dropout have excellent generalization
capabilities and achieve the state-of-the-art performances in
several benchmark datasets. Furthermore, dropout played an
indispensable role in the neural network systems that won
recent learning competitions such as ImageNet classification,
the Merck molecular activity challenge, and the Street View
House Numbers recognition [5,6,16].

 In the context of speech recognition, applying dropout for
training a DNN-based acoustic model can be depicted with a
simplified example in Fig. 2. Basically, the way to apply
dropout is the same as in image recognition, as long as the
same network structure is used. The figure shows a two-
layer neural network being trained with dropout for three
time stamps, t-1, t, and t+1. Circles stand for nodes in the
neural network and arrows are the model weights that
connect nodes. The black circles denote the randomly
omitted hidden nodes during dropout training, and the
weights connected to those omitted nodes are shown with
dotted arrows. From the figure, we can see that a different
dropout mask (a random omission pattern) is chosen for
each time stamp; hence, different sets of model weights, the
surviving ones, are updated at each time stamp.

Recently, there have been attempts to apply dropout to
recurrent neural networks [9,10]. They all keep the recurrent
connections among the hidden nodes and only randomly
drop the non-recurrent connections. Their methods have
been shown to improve performance in some applications
such as handwriting recognition. As presented in Section 4,
however, their dropout methods do not perform as well as a
well-known regularization method for deep neural networks,
called weight noise injection [14].

3. RNNDROP: DROPOUT FOR RNNS

We propose a new dropout method to train recurrent
neural networks motivated from the success of dropout for
deep feed-forward neural networks. When applying dropout
to RNNs, the difficulty arises in dealing with recurrent
connections. In contrast to previous work [9,10], we
consider dropping both the non-recurrent and recurrent
connections. If we apply different random omission patterns,
i.e., dropout masks, for different time stamps as in Fig. 2,
each hidden node would be omitted very frequently (every 2
time stamps on average if p=0.5 is used); hence the memory
on the past may be easily lost. This frequent memory reset
will hurt the main power of RNNs, and LSTM networks in
particular, which learns long-term dependencies in data
through memory cells. In fact, we observed that when we
trained a deep bidirectional LSTM network as just described,
the performance of the resulting network dramatically
deteriorated.

In order to resolve the above problem and still realize the
effectiveness of dropout, instead of applying different

dropout masks for different time stamps, our proposed
dropout method, rnnDrop, generates the dropout mask only
at the beginning of each training sequence and fixes it
through the sequence. A simple figure to explain the idea is
given in Fig. 3. The figure shows an RNN being trained
with rnnDrop for three frames (t-1, t, t+1) on two different
training sequences in the data (denoted as ‘sequence1’ and
‘sequence2’). The black circles denote the randomly omitted
hidden nodes during training, and the dotted arrows stand
for the model weights connected to those omitted nodes.
The recurrent connections to the omitted nodes are deleted
and not shown in the figure for clear presentation. The
difference from Fig. 2 is that a random omission pattern is
fixed throughout each training sequence.

Fig. 3. A new dropout method, rnnDrop, for RNNs. The
dropout mask is randomly selected for each sequence and fixed
throughout the sequence.

We can think of rnnDrop as applying dropout to hidden

nodes at the sequence level. We believe this is a more
appropriate way of doing dropout for RNNs, since nodes are
on or off once for a single training sequence, as they are in
DNNs for a single training image. In other words,
considering BPTT on unfolded recurrent layers, the network
connections remain consistent through time. Moreover, as
different random sets of hidden nodes are omitted for
different training sequences, rnnDrop still combats co-
adaptation among the hidden nodes as in the original
dropout.

Mathematically, the proposed rnnDrop can be simply
described by adding following one update formula between
Eqs. (5) and (6):

𝑐! ← 𝑚!⨀𝑐!, (8)

where 𝑚! stands for the dropout mask vector with each
element drawn independently from Bernoulli(p). The
symbol ⨀ stands for element-wise multiplication. Note from

67

the subscript u that the dropout mask is generated once for
each training example (e.g., utterance) and does not depend
on t. The BPTT algorithm for the model update can be also
done by setting the gradients of the weights connecting to
the omitted nodes to zero. After training, analogously as in
the original dropout, we rescale the learned weights by 1-p
so that the model averaging can be done effectively during
test time.

In our experiments, we used deep bidirectional LSTM
(DBLSTM) networks to build acoustic models for phoneme
and speech recognition. DBLSTM networks not only take
the past, but also the future for making a prediction at the
current time. The rnnDrop method can be easily applied to
DBLSTM networks by generating independent dropout
mask vectors for each direction.

4. EXPERIMENTS

In experiments on benchmark datasets, we evaluated the
effectiveness of rnnDrop compared to other regularization
methods by training DBLSTM-based acoustic models using
rnnDrop for TIMIT phoneme recognition [17] and Wall
Street Journal (WSJ) large vocabulary continuous speech
recognition [18]. We implemented our proposed method on
a GPU using NVIDIA CUDA. To speed up the training of
large DBLSTM networks, we implemented a data-parallel
training algorithm similarly as in [19]. On each iteration of
the training process, the SGD method is done separately
with randomized disjoint subsets of the training data on
different GPUs, which can be in different machines. After
that, we average the parameters of the resulting models and
redistribute the result to the GPUs. We repeat this process
for a specified number of epochs or until convergence.

4.1 TIMIT experiments

We followed the data preparation procedure outlined in [1].
The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers with 300 utterances was used for early stopping.
The results are for the 24-speaker core test set with 192
utterances. We used the Fourier-transform-based log
filterbank with 40 coefficients (plus energy) distributed on
mel-scale, together with their first and second derivatives.
Thus, the input vector size for each frame was 123. The data
were normalized so that every element of the input vectors
had zero mean and unit variance over the training set. All 61
phoneme labels were used for training and decoding and
then mapped to 39 classes for scoring.

We used exactly the same model configuration as in [1] in
order to demonstrate the effect of rnnDrop compared to the
regularization method used in [1], i.e., weight noise
injection. In weight noise injection, zero mean Gaussian
noise is added to the weights when computing the gradient.
The DBLSTM networks we used had 5 layers, each of
which contains 250 LSTM memory blocks for each

direction. We used three sub-phone states for each of 61
phonemes; hence the dimension of target states was 183. A
simple GMM-HMM system was used to generate a forced
alignment for cross-entropy training. The posterior state
probabilities provided by the networks were not divided by
the state occupancy priors as in [1]. We constructed a bi-
phone language model from the training data and used it for
decoding. See [1] for more details on the training procedure
such as learning rates, momentum and initialization of
weights.

Table 1. Phoneme error rate (PER) results on the TIMIT core
test set.

Acoustic Model Test PER
GMM (2011) [20] 25.6%
DNN (2012) [20] 20.7%
CNN (2012) [20] 20.0%
HP-CNN-DNN [21] 18.7%
DBLSTM + weight noise [1] 18.0%
DBLSTM + dropout as in [9] 18.2%

We first summarize the recent progresses made on the

TIMIT core test set in terms of PER in Table 1. The first
row in the table shows the PER of a conventional GMM-
HMM based system, and the next three the PERs obtained
by DNN-HMM based systems. DBLSTM networks trained
with weight noise injection performed the best as shown in
the fifth row. The last row shows the PER obtained when we
applied the dropout method proposed in [9] to DBLSTM
networks. Their dropout method was not as effective as
weight noise injection in phoneme recognition.

Table 2 shows the PERs of our DBLSTM acoustic
models trained with rnnDrop. We have run five experiments,
each with different random weight initialization. For each
experiment, we picked the model that minimized the PER
on the development set and tested it on the core test set. We
indicated the mean and standard deviation of PERs obtained
from those five experiments.

Table 2. PER results of our DBLSTM-HMM systems with the
same complexity as in [1] trained with rnnDrop on the TIMIT
validation set and core test set.

Acoustic Model Dev PER Test PER

DBLSTM
+ rnnDrop 15.93±0.14% 16.92±0.19%

Our DBLSTM acoustic models trained with rnnDrop

achieved the test PER of 16.92%, which is a 6% relative
improvement over the state-of-the-art. We also have trained
a larger 5-layer DBLSTM network with 500 LSTM memory
blocks in each direction using rnnDrop and obtained an even
lower PER of 16.29%, which is a 10% relative PER
reduction compared to the state-of-the-art. Due to time and

68

resource constraints, we were not able to conduct repeated
experiments as before. We believe that, by enlarging the
model size and applying rnnDrop, we can further lower the
PER.

4.2 Wall Street Journal (WSJ) experiments

We conducted large vocabulary automatic speech
recognition experiments using WSJ corpus (available as
LDC corpus, LDC93S6B and LDC94S13B). We followed
the standard Kaldi recipe s5 [18,22] for preparing speech
data.

We used 5-layer DBLSTM networks, in which each
direction has 1000 memory blocks. For training, we
followed the standard approach. That is, we first trained a
baseline GMM-HMM system on the full 81 hours training
set by Kaldi recipe tri4b. With the baseline GMM-HMM
system, we generated a forced alignment, in which there
were 3469 triphone states. It is used for training DBLSTM
networks with cross entropy loss. After that, we switched to
sequence training. Among many variations of sequence
training criteria, we used state-level minimum Bayes risk
[23]. We applied rnnDrop to both cross entropy training and
sequence training. DBLSTM networks were trained in a
data-parallel fashion on 8 GPUs as described above. A
pruned trigram language model was used in decoding. We
compared the performance of our DBLSTM acoustic
models to the state-of-the-art result from Kaldi open source
toolkit [18], which used a DNN-based acoustic model.

Table 3. Test results on the WSJ eval92 and dev93 datasets.
The relative WER reductions are indicated inside parentheses.

 Acoustic Model eval92 WER dev93 WER

DNN [18] 3.56% 6.15%

DBLSTM + rnnDrop 3.53%
(0.8%)

5.53%
(10.1%)

Table 3 summarizes the word error rate (WER) results on

the eval92 and dev93 datasets. We can see that our
DBLSTM acoustic models outperformed DNN-based ones
used in the Kaldi recipe. Particularly, for the dev93 dataset,
which is a harder test set, we achieved 10.1% relative WER
reduction compared to the state-of-the-art. Furthermore,
when rnnDrop was not used, the performance of DBLSTM
acoustic model was worse than that of the DNN-based ones,
which shows the critical importance of applying rnnDrop for
attaining our results.

5. CONCLUSIONS

In this paper, we have proposed a novel dropout method
called rnnDrop for RNNs. Compared to other dropout
methods, rnnDrop is a better way of applying dropout to
RNNs, fixing the random dropout mask for each sequence.

With experiment results on benchmark datasets, we showed
that DBLSTM acoustic models trained with rnnDrop
outperformed the current state-of-the-arts for both phoneme
recognition and large vocabulary automatic speech
recognition. Obviously, the rnnDrop technique can play a
significant role in other applications beyond speech
recognition, as long as RNNs are adopted in the application.

Although DBLSTM networks trained with rnnDrop
showed superior performances, it took much longer to train
them. As future work, we plan to devise a fast rnnDrop
method similarly as in [24].

6. REFERENCES

[1] A. Graves, N. Jaitly, and A. Mohamed, Hybrid speech

recognition with deep bidirectional LSTM, ASRU (2013)

[2] A. Grave, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke,

and J. Schmidhuber, A novel connectionist system for
unconstrained handwriting recognition. IEEE Trans. on
Pattern Recognition and Machine Intelligence, 31(5):855-
868 (2009)

[3] Tomas Mikolov, Martin Karafiat, Jan Cernocky, and Sanjeev

Khudanpur, Recurrent neural network based language model,
Interspeech (2010)

[4] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R.

Salakhutdinov, R. Zemel, and Y. Bengio, Show, attend and
tell: Neural image caption generation with visual attention,
arXiv:1502.03044v2 (2015)

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, Improving neural networks by preventing
co-adaptation of feature detectors, Technical Report,
arXiv:1207.0580 (2012)

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, Dropout: a simple way to prevent neural
networks from overfitting, Journal of Machine Learning
Research, 15:1929-1959 (2014)

[7] G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep

neural networks for LVCSR using rectified linear units and
dropout, ICASSP (2013)

[8] T. N. Sainath, B. Kingsbury, A. Mohamed, G. E. Dahl, G.

Saon, H. Soltau, T. Beran, A. Y. Aravkin, and B.
Ramabhadran, Improvements to deep convolutional neural
networks for LVCSR, ASRU (2013)

[9] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour,

Dropout improves recurrent neural networks for handwriting
recognition, ICFHR (2014)

[10] W. Zaremba, I. Sutskever, and O. Vinyals, Recurrent Neural

Network Regularization, http://arxiv.org/abs/1409.2329v5

[11] Y. Bengio, P. Simard, and P. Frasconi, Learning long-term
dependencies with gradient descent is difficult. IEEE Trans.
on Neural Networks, 5(2):157-166 (1994)

69

[12] S. Hochreiter and J. Schmidhuber, Long short-term memory,

Neural Computation, 9(8):1735-1780 (1997)

[13] F. A. Gers, N. Schraudolph, and J. Schmidhuber, Learning

precise timing with LSTM recurrent networks, Journal of
Machine Learning Research, 3:115-143 (2003)

[14] A. Graves, A. Mohamed, and G. Hinton, Speech recognition

with deep recurrent neural networks, INTERSPEECH (2013)

[15] A. Graves, Supervised sequence labeling with recurrent

neural networks, Studies in Computational Intelligence,
Springer (2012)

[16] J. Schmidhuber, Deep learning in neural networks: An

overview. Neural Networks, vol. 61, pp. 85-117 (2015)

[17] C. Lopes and F. Perdigao, Phoneme recognition on the

TIMIT database, Speech Technologies, pp.285-302 (2011)

[18] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J.
Silovsky, G. Stemmer, and K. Vesely, The kaldi speech
recognition toolkit, IEEE Workshop on Automatic Speech
Recognition and Understanding (2011)

[19] D. Povey, X. Zhang, and S. Khudanpur, Parallel training of

DNNs with natural gradient and parameter averaging, ICLR,
(2015)

[20] G. E. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbur, Deep neural networks for acoustic
modeling in speech recognition, IEEE Signal Processing
Magazine, 29(6):82-97, (2012)

[21] L. Deng, O. Abdel-Hamid, and D. Yu, A deep convolutional

neural network using heterogeneous pooling for trading
acoustic invariance with phonetic confusion, ICASSP (2013)

[22] Kaldi open-source toolkit, http://kaldi.sf.net/

[23] B. Kingsbury, Lattice-based optimization of sequence

classification criteria for neural-network acoustic modeling,
ICASSP (2012)

[24] S. I. Wang and C. D. Manning, Fast dropout training, ICML,

(2013)

70

