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ABSTRACT 

 
Recently, recurrent neural networks (RNN) have achieved 
the state-of-the-art performance in several applications that 
deal with temporal data, e.g., speech recognition, 
handwriting recognition and machine translation. While the 
ability of handling long-term dependency in data is the key 
for the success of RNN, combating over-fitting in training 
the models is a critical issue for achieving the cutting-edge 
performance particularly when the depth and size of the 
network increase. To that end, there have been some 
attempts to apply the dropout, a popular regularization 
scheme for the feed-forward neural networks, to RNNs, but 
they do not perform as well as other regularization scheme 
such as weight noise injection. In this paper, we propose 
rnnDrop, a novel variant of the dropout tailored for RNNs. 
Unlike the existing methods where dropout is applied only 
to the non-recurrent connections, the proposed method 
applies dropout to the recurrent connections as well in such 
a way that RNNs generalize well. Our experiments show 
that rnnDrop is a better regularization method than others 
including weight noise injection. Namely, when deep 
bidirectional long short-term memory (LSTM) RNNs were 
trained with rnnDrop as acoustic models for phoneme and 
speech recognition, they significantly outperformed the 
current state-of-the-arts; we achieved the phoneme error rate 
of 16.29% on the TIMIT core test set for phoneme 
recognition and the word error rate of 5.53% on the Wall 
Street Journal (WSJ) dataset, dev93, for speech recognition, 
which are the best reported results on both of the datasets. 
 

Index Terms— Recurrent neural networks, LSTM, 
Dropout, rnnDrop 
 

1. INTRODUCTION 
 
Recurrent neural networks (RNNs) have been successfully 
applied to many applications including speech recognition 
[1], handwriting recognition [2] and language understanding 
[3] for modeling temporal dependencies in data. Recently, 
as RNNs, deep bidirectional long short-term memory 
(DBLSTM) networks have been drawing much attention 

because of their ability to model long-term dependencies 
and shown state-of-the-art performances in several 
applications such as image caption generation [4].  

To train deep neural networks, regularization is crucial 
and several methods including pretraining or weight noise 
injection are typically used to improve generalization 
performance. Among such regularization methods, dropout 
was proposed to prevent co-adaptation among hidden nodes 
of deep feed-forward neural networks by dropping out 
randomly selected hidden nodes [5,6]. Deep feed-forward 
neural networks trained with dropout have achieved the 
state-of-the-art performances in several benchmark datasets 
[7,8].  

However, applying the original dropout scheme to RNNs 
is not straightforward because of the difficulty in handling 
recurrent connections. Although there are some attempts to 
apply dropout to RNNs [9,10], they all apply dropout to 
only non-recurrent connections since random dropout of 
recurrent connections makes it hard for RNNs to learn 
temporal dependencies. As shown in Section 4, a DBLSTM 
RNN trained with their methods for phoneme recognition 
did not perform as well as weight noise injection, which is a 
well-known regularization technique.  

In this paper, we propose a new dropout method, rnnDrop, 
which drops out hidden nodes instead of some connections. 
That is, rnnDrop drops both the non-recurrent and recurrent 
connections that are connected to the dropped nodes. More 
importantly, the dropout mask is randomly selected for each 
input sequence and fixed throughout the sequence. The 
proposed method is a better way of applying dropout to 
RNNs, since it can learn temporal dependencies avoiding 
co-adaptation, which leads to better performances. When we 
trained DBLSTM RNN acoustic models for phoneme and 
speech recognition, we obtained the state-of-the-art results: 
the phoneme error rate (PER) of 16.29% on the TIMIT core 
test set, and the word error rate (WER) of 5.53% on the 
Wall Street Journal (WSJ) dataset, dev93.  

The rest of this paper is organized as follows. In Section 2, 
we discuss past research related to this work. In Sections 3 
and 4, we describe our dropout method and experiment 
results, respectively. Finally conclusions follow in Section 5.  
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2. RELATED WORK 
 
2.1. Long Short-Term Memory (LSTM)  
 
Consider an input sequence (utterance) of length T, 
𝐱 = 𝑥!,… , 𝑥! , where each 𝑥! ∈ 𝑅!  is a d-dimensional 
vector. An ordinary RNN with m hidden nodes computes the 
sequence of hidden node output vectors 𝐡 = ℎ!,… , ℎ! ,
ℎ! ∈ 𝑅!  by the following equations throughout the 
sequence from t=1 to T:  

ℎ! =   σ 𝑊!!𝑥! +𝑊!!ℎ!!! + 𝑏! ,        (1) 

𝑦! =   𝑊!!ℎ! + 𝑏! ,                        (2) 

where 𝑊  denotes the weight matrices, b denotes the bias 
vectors, and 𝑦 stands for the network output vector. The 
function σ(∙) is a nonlinear activation function for hidden 
nodes, which often takes the form of an element-wise 
sigmoid function. 

The long short-term memory (LSTM) architecture 
attempts to resolve the exploding and vanishing gradient 
problems of RNNs [11,12,13]. That is, in order to 
effectively learn the memory range of the model from the 
training data, LSTM explicitly designs a memory block 
inside a hidden node that has the following ingredients: a 
memory cell which stores information about the past and 
input, output, and forget gates that control the flow of 
information within and among the memory blocks. Fig. 1 
shows the structure of a single LSTM memory block, which 
replaces a simple hidden node used in ordinary RNNs.  
 

 
Fig. 1.  A long short-term memory block 

 
An LSTM network recurrently applies the following 

series of equations to obtain the sequence of hidden node 
outputs, 𝐡 = ℎ!,… , ℎ! , ℎ! ∈ 𝑅!: 

𝑖! =   σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏!),                    (3) 

𝑓! =   σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐!!! + 𝑏!),       (4) 

𝑐! =   𝑓!𝑐!!! + 𝑖!tanh  (𝑊!"𝑥! +𝑊!!ℎ!!! + 𝑏!),       (5) 

𝑜! =   σ(𝑊!"𝑥! +𝑊!!ℎ!!! +𝑊!"𝑐! + 𝑏!) ,                     (6) 

ℎ! = 𝑜! tanh 𝑐! ,                                     (7) 

where the symbols i, f, o and c, respectively, stand for the 
input gate, forget gate, output gate, and memory cell state 
vectors. Note that for the gates, there are not only the 
recurrent connections from the hidden node outputs from the 
previous time stamp, but also the peephole connections from 
the cell states. With explicitly designed cell and gate 
structures as above, LSTM learns 𝑊  and 𝑏 from the training 
data so that it can determine when to receive input signals to 
the cell, output the hidden node activations from the 
memory blocks, and reset the cell states to refresh the 
memory.  

The learning of LSTM parameters can still be done with 
conventional backpropagation through time (BPTT) 
algorithm as long as a differentiable loss function on the 
output layer is used. Optimization with BPTT on such 
network parameters can be conducted by the stochastic 
gradient descent (SGD) method. 

One can stack multiple LSTM layers to make the network 
structure deep, and combine two separate LSTM networks 
that run in forward and backward directions to implement 
bidirectional architecture. For more detailed coverage on the 
structure and learning LSTM networks, we refer the readers 
to [14] and [15] and the references therein. The ability of 
LSTM network to learn the sequential dependency patterns 
from the data has led its empirical success in achieving 
state-of-the-art performances for several sequence 
recognition tasks such as speech recognition or handwriting 
recognition [2].  
 
2.2. Dropout 
 
Dropout was first introduced in [5,6] as a training method 
for preventing co-adaptation among hidden nodes of deep 
feed-forward neural networks, e.g., DNNs. The method 
randomly omits hidden nodes with probability p (usually 
p=0.5) during each iteration of training process, and only the 
model weights that are connected to surviving nodes are 
updated by backpropagation. As a result, each hidden node 
becomes more robust, and the co-adaptation among hidden 
nodes is mitigated.  

 

 
Fig. 2. An example of applying the dropout method proposed 
in [7] to DNNs. Note that input data for the time stamp t 
typically includes several consecutive frames in speech 
recognition.  
 

Once the weights are learned with dropout training, 
during test time, the weights of full model are rescaled by 
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multiplying (1- p) as a mean of effectively averaging the 
different models learned with random omission during 
training. In [5,6], it is shown that the neural networks 
trained with dropout have excellent generalization 
capabilities and achieve the state-of-the-art performances in 
several benchmark datasets. Furthermore, dropout played an 
indispensable role in the neural network systems that won 
recent learning competitions such as ImageNet classification, 
the Merck molecular activity challenge, and the Street View 
House Numbers recognition [5,6,16]. 

 In the context of speech recognition, applying dropout for 
training a DNN-based acoustic model can be depicted with a 
simplified example in Fig. 2. Basically, the way to apply 
dropout is the same as in image recognition, as long as the 
same network structure is used. The figure shows a two-
layer neural network being trained with dropout for three 
time stamps, t-1, t, and t+1. Circles stand for nodes in the 
neural network and arrows are the model weights that 
connect nodes. The black circles denote the randomly 
omitted hidden nodes during dropout training, and the 
weights connected to those omitted nodes are shown with 
dotted arrows. From the figure, we can see that a different 
dropout mask (a random omission pattern) is chosen for 
each time stamp; hence, different sets of model weights, the 
surviving ones, are updated at each time stamp.  

Recently, there have been attempts to apply dropout to 
recurrent neural networks [9,10]. They all keep the recurrent 
connections among the hidden nodes and only randomly 
drop the non-recurrent connections. Their methods have 
been shown to improve performance in some applications 
such as handwriting recognition. As presented in Section 4, 
however, their dropout methods do not perform as well as a 
well-known regularization method for deep neural networks, 
called weight noise injection [14]. 
 

3. RNNDROP: DROPOUT FOR RNNS 
 

We propose a new dropout method to train recurrent 
neural networks motivated from the success of dropout for 
deep feed-forward neural networks. When applying dropout 
to RNNs, the difficulty arises in dealing with recurrent 
connections. In contrast to previous work [9,10], we 
consider dropping both the non-recurrent and recurrent 
connections. If we apply different random omission patterns, 
i.e., dropout masks, for different time stamps as in Fig. 2, 
each hidden node would be omitted very frequently (every 2 
time stamps on average if p=0.5 is used); hence the memory 
on the past may be easily lost. This frequent memory reset 
will hurt the main power of RNNs, and LSTM networks in 
particular, which learns long-term dependencies in data 
through memory cells. In fact, we observed that when we 
trained a deep bidirectional LSTM network as just described, 
the performance of the resulting network dramatically 
deteriorated.  

In order to resolve the above problem and still realize the 
effectiveness of dropout, instead of applying different 

dropout masks for different time stamps, our proposed 
dropout method, rnnDrop, generates the dropout mask only 
at the beginning of each training sequence and fixes it 
through the sequence. A simple figure to explain the idea is 
given in Fig. 3. The figure shows an RNN being trained 
with rnnDrop for three frames (t-1, t, t+1) on two different 
training sequences in the data (denoted as ‘sequence1’ and 
‘sequence2’). The black circles denote the randomly omitted 
hidden nodes during training, and the dotted arrows stand 
for the model weights connected to those omitted nodes. 
The recurrent connections to the omitted nodes are deleted 
and not shown in the figure for clear presentation. The 
difference from Fig. 2 is that a random omission pattern is 
fixed throughout each training sequence. 

 

 
Fig. 3. A new dropout method, rnnDrop, for RNNs. The 
dropout mask is randomly selected for each sequence and fixed 
throughout the sequence. 

 
We can think of rnnDrop as applying dropout to hidden 

nodes at the sequence level. We believe this is a more 
appropriate way of doing dropout for RNNs, since nodes are 
on or off once for a single training sequence, as they are in 
DNNs for a single training image. In other words, 
considering BPTT on unfolded recurrent layers, the network 
connections remain consistent through time. Moreover, as 
different random sets of hidden nodes are omitted for 
different training sequences, rnnDrop still combats co-
adaptation among the hidden nodes as in the original 
dropout.  

Mathematically, the proposed rnnDrop can be simply 
described by adding following one update formula between 
Eqs. (5) and (6): 

𝑐! ←   𝑚!⨀𝑐!,                   (8) 

where 𝑚!  stands for the dropout mask vector with each 
element drawn independently from Bernoulli(p). The 
symbol ⨀ stands for element-wise multiplication. Note from 
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the subscript u that the dropout mask is generated once for 
each training example (e.g., utterance) and does not depend 
on t. The BPTT algorithm for the model update can be also 
done by setting the gradients of the weights connecting to 
the omitted nodes to zero. After training, analogously as in 
the original dropout, we rescale the learned weights by 1-p 
so that the model averaging can be done effectively during 
test time.  

In our experiments, we used deep bidirectional LSTM 
(DBLSTM) networks to build acoustic models for phoneme 
and speech recognition. DBLSTM networks not only take 
the past, but also the future for making a prediction at the 
current time. The rnnDrop method can be easily applied to 
DBLSTM networks by generating independent dropout 
mask vectors for each direction. 
 

4. EXPERIMENTS 
 
In experiments on benchmark datasets, we evaluated the 
effectiveness of rnnDrop compared to other regularization 
methods by training DBLSTM-based acoustic models using 
rnnDrop for TIMIT phoneme recognition [17] and Wall 
Street Journal (WSJ) large vocabulary continuous speech 
recognition [18]. We implemented our proposed method on 
a GPU using NVIDIA CUDA. To speed up the training of 
large DBLSTM networks, we implemented a data-parallel 
training algorithm similarly as in [19]. On each iteration of 
the training process, the SGD method is done separately 
with randomized disjoint subsets of the training data on 
different GPUs, which can be in different machines. After 
that, we average the parameters of the resulting models and 
redistribute the result to the GPUs. We repeat this process 
for a specified number of epochs or until convergence.  
 
4.1 TIMIT experiments 
 
We followed the data preparation procedure outlined in [1]. 
The standard 462 speaker set with all SA records removed 
was used for training, and a separate development set of 50 
speakers with 300 utterances was used for early stopping. 
The results are for the 24-speaker core test set with 192 
utterances. We used the Fourier-transform-based log 
filterbank with 40 coefficients (plus energy) distributed on 
mel-scale, together with their first and second derivatives. 
Thus, the input vector size for each frame was 123. The data 
were normalized so that every element of the input vectors 
had zero mean and unit variance over the training set. All 61 
phoneme labels were used for training and decoding and 
then mapped to 39 classes for scoring.  

We used exactly the same model configuration as in [1] in 
order to demonstrate the effect of rnnDrop compared to the 
regularization method used in [1], i.e., weight noise 
injection. In weight noise injection, zero mean Gaussian 
noise is added to the weights when computing the gradient. 
The DBLSTM networks we used had 5 layers, each of 
which contains 250 LSTM memory blocks for each 

direction. We used three sub-phone states for each of 61 
phonemes; hence the dimension of target states was 183. A 
simple GMM-HMM system was used to generate a forced 
alignment for cross-entropy training. The posterior state 
probabilities provided by the networks were not divided by 
the state occupancy priors as in [1]. We constructed a bi-
phone language model from the training data and used it for 
decoding. See [1] for more details on the training procedure 
such as learning rates, momentum and initialization of 
weights.   
 
Table 1. Phoneme error rate (PER) results on the TIMIT core 
test set. 

Acoustic Model Test PER 
GMM (2011) [20] 25.6% 
DNN (2012) [20] 20.7% 
CNN (2012) [20] 20.0% 
HP-CNN-DNN [21]  18.7% 
DBLSTM + weight noise [1]  18.0% 
DBLSTM + dropout as in [9] 18.2% 

 
We first summarize the recent progresses made on the 

TIMIT core test set in terms of PER in Table 1. The first 
row in the table shows the PER of a conventional GMM-
HMM based system, and the next three the PERs obtained 
by DNN-HMM based systems. DBLSTM networks trained 
with weight noise injection performed the best as shown in 
the fifth row. The last row shows the PER obtained when we 
applied the dropout method proposed in [9] to DBLSTM 
networks. Their dropout method was not as effective as 
weight noise injection in phoneme recognition.  

Table 2 shows the PERs of our DBLSTM acoustic 
models trained with rnnDrop. We have run five experiments, 
each with different random weight initialization. For each 
experiment, we picked the model that minimized the PER 
on the development set and tested it on the core test set. We 
indicated the mean and standard deviation of PERs obtained 
from those five experiments.  
 
Table 2. PER results of our DBLSTM-HMM systems with the 
same complexity as in [1] trained with rnnDrop on the TIMIT 
validation set and core test set. 

Acoustic Model Dev PER Test PER 

DBLSTM 
+ rnnDrop 15.93±0.14% 16.92±0.19% 

 
Our DBLSTM acoustic models trained with rnnDrop 

achieved the test PER of 16.92%, which is a 6% relative 
improvement over the state-of-the-art. We also have trained 
a larger 5-layer DBLSTM network with 500 LSTM memory 
blocks in each direction using rnnDrop and obtained an even 
lower PER of 16.29%, which is a 10% relative PER 
reduction compared to the state-of-the-art. Due to time and 
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resource constraints, we were not able to conduct repeated 
experiments as before. We believe that, by enlarging the 
model size and applying rnnDrop, we can further lower the 
PER. 
 

4.2 Wall Street Journal (WSJ) experiments 
 
We conducted large vocabulary automatic speech 
recognition experiments using WSJ corpus (available as 
LDC corpus, LDC93S6B and LDC94S13B). We followed 
the standard Kaldi recipe s5 [18,22] for preparing speech 
data.  

We used 5-layer DBLSTM networks, in which each 
direction has 1000 memory blocks. For training, we 
followed the standard approach. That is, we first trained a 
baseline GMM-HMM system on the full 81 hours training 
set by Kaldi recipe tri4b. With the baseline GMM-HMM 
system, we generated a forced alignment, in which there 
were 3469 triphone states. It is used for training DBLSTM 
networks with cross entropy loss. After that, we switched to 
sequence training. Among many variations of sequence 
training criteria, we used state-level minimum Bayes risk 
[23]. We applied rnnDrop to both cross entropy training and 
sequence training. DBLSTM networks were trained in a 
data-parallel fashion on 8 GPUs as described above. A 
pruned trigram language model was used in decoding. We 
compared the performance of our DBLSTM acoustic 
models to the state-of-the-art result from Kaldi open source 
toolkit [18], which used a DNN-based acoustic model.  
 
Table 3. Test results on the WSJ eval92 and dev93 datasets. 
The relative WER reductions are indicated inside parentheses. 

 Acoustic Model eval92 WER dev93 WER 

DNN [18] 3.56% 6.15% 

DBLSTM + rnnDrop  3.53% 
(0.8%) 

5.53% 
(10.1%) 

 
Table 3 summarizes the word error rate (WER) results on 

the eval92 and dev93 datasets. We can see that our 
DBLSTM acoustic models outperformed DNN-based ones 
used in the Kaldi recipe. Particularly, for the dev93 dataset, 
which is a harder test set, we achieved 10.1% relative WER 
reduction compared to the state-of-the-art. Furthermore, 
when rnnDrop was not used, the performance of DBLSTM 
acoustic model was worse than that of the DNN-based ones, 
which shows the critical importance of applying rnnDrop for 
attaining our results. 
 

5. CONCLUSIONS 
 
In this paper, we have proposed a novel dropout method 
called rnnDrop for RNNs. Compared to other dropout 
methods, rnnDrop is a better way of applying dropout to 
RNNs, fixing the random dropout mask for each sequence. 

With experiment results on benchmark datasets, we showed 
that DBLSTM acoustic models trained with rnnDrop 
outperformed the current state-of-the-arts for both phoneme 
recognition and large vocabulary automatic speech 
recognition. Obviously, the rnnDrop technique can play a 
significant role in other applications beyond speech 
recognition, as long as RNNs are adopted in the application.   

Although DBLSTM networks trained with rnnDrop 
showed superior performances, it took much longer to train 
them. As future work, we plan to devise a fast rnnDrop 
method similarly as in [24].  
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