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ABSTRACT

Deep neural networks have shown significant improvements
on acoustic modelling, pushing state-of-the-art performance
in large vocabulary continuous speech recognition (LVCSR)
tasks. However, training DNNs is very time-consuming on s-
caled data. In this paper, a data-parallel method, namely two-
stage ASGD, is proposed. Two-stage ASGD is based on asyn-
chronous stochastic gradient descent (ASGD) paradigm and
is tuned for GPU-equipped computing cluster connected by
10Gbit/s Ethernet other than Infiniband. Several techniques,
such as hierarchical learning rate control, double-buffering
and order-locking are applied to optimise the communication-
to-transmission ratio. The proposed framework is evaluated
by training a DNN with 29.5M parameters using a 500-hours
Chinese continuous telephone speech data set. By using 4
computer nodes and 8 GPU devices (2 devices used in each
node), a 5.9 times acceleration is obtained over a single G-
PU with acceptable loss of accuracy (0.5% in average). A
comparative experiment is done to compare the proposed two-
stage ASGD with the parallel DNN training systems reported
in prior work.

Index Terms— Speech recognition, deep neural network,
asynchronous stochastic gradient descent, parallel training

1. INTRODUCTION

Recently, automatic speech recognition (ASR) systems us-
ing deep neural network (DNN) based acoustic models have
shown great power in both research and industry [1, 2]. The
discriminability of DNN is improved when the network grows
deeper, and the generality of DNN is promised when the scale
of training data increases [3]. However, training deep net-
works with large scale of data is time-exhausting. The reason
is that the training algorithm, i.e. the stochastic gradient de-
scent (SGD), is computationally expensive and is difficult to
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be parallelized due to its sequential nature. The employment
of hardware acceleration improves the training speed, such as
the use of GPUs, but the training of a deep network using a
large scale of data is still unacceptably slow, even on a high
performance computing node.

There has been much effort at parallelizing the training of
DNN over a cluster of high performance computing nodes.
The proposed methods mainly fall into three categories.

1. Data parallelism

In data parallelism methods, the training data is spread
over the cluster. Each node works on a portion of the w-
hole data, and develops its own version of the network
independent of other nodes. A master node controls
how the nodes collaborate, either asynchronously (AS-
GD) [4] or synchronously (SSGD) [5].

2. Model parallelism

In model parallelism methods, the DNN parameters are
distributed across several nodes. The nodes commu-
nicate with each other by transmitting the activations
when necessary [6]. A variation of such methods is the
using of multiple small DNNs to compute the posteri-
or probabilities of a subset of the targets, which solves
the communication problem by moderate performance
degradation [7].

3. Hybrid of data and model parallelism

A well recognised hybrid system is the DistBelief [6].
Besides, parallelism can be carefully designed by ex-
ploiting the advantages of individual method for spe-
cific network topologies, such as the convolutional net-
works [8].

In this paper, we proposed a framework named two-stage
ASGD which is used to parallelize the training using a cluster
of workstations equipped with GPUs. The proposed frame-
work falls into the first category. In conventional data parallel
methods, the working nodes communicate with the master by
transmitting their own version of the network, i.e. the parame-
ters or the gradients. Although the communication cost can be
partly relieved by using techniques as model shrinking [9] or
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1-Bit compression [10], these methods require the support of
extra high speed networking techniques, such as Infiniband.
We propose to customize the ASGD parallelism by defining
master, working nodes and GPU devices. The master and n-
odes are connected through Ethernet. Due to the relatively
low bandwidth of Ethernet, communications between master
and nodes is handled by the two-stage framework such that
computation-to-transmission ratio is optimized.

The rest of the article is organized as follows. Conven-
tional ASGD method and its implementation are briefly in-
troduced in section 2. In section 3 the proposed framework
and relating optimizing techniques are presented. Section 4
and 5 give the experimental results and analysis.

2. ASYNCHRONOUS STOCHASTIC GRADIENT
DESCENT AND GPU IMPLEMENTATION

Mini-batch SGD is commonly used for the fine tuning of
DNNs. Parameters are updated using the gradient collected
from a batch of training samples.

ŵ = w − η∆w (1)

where w and ŵ represent the parameters before and after up-
dating. η is the learning rate which is used to scale the gradi-
ent ∆w such that the parameters converge to the optima. The
whole training set is divided into multiple mini batches, which
are sequentially presented to the network for calculating the
gradients.

In ASGD-based data parallel training paradigm, multi-
ple mini batches are presented to the network simultaneously
such that multiple gradients are calculated in parallel to de-
velop multiple replicas of the network. The replicas asyn-
chronously fetch parameters w and push gradients ∆w to a
parameter server. Using this method, a huge cluster of CPUs
could be used to train DNNs for speech recognition faster than
a GPU [6].
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Fig. 1. Implementation of ASGD on a computing node e-
quipped with 4 GPU devices.

This method came with acceleration guarantees [11] so it
is straightforward to be implemented using multiple GPUs to
scale the DNN-based acoustic modelling. In [4], a computing
node is equipped with 4 GPUs and ASGD is implemented

such that each GPU holds a model replica. The framework is
shown in Figure 1. The CPU of the node works as the param-
eter server, which is responsible for memorising the freshest
model and accumulating the gradients sent by GPU devices
through PCIe.

3. TWO-STAGE ASGD USING GPU CLUSTER

Further scaling of DNN-based acoustic model training re-
quires involving more GPU devices for parallelization. Con-
sidering the capacity and safety of building computing nodes,
such as the limitation brought by the power supply and cool-
ing systems, the optimal number of GPU devices installed
in one node is no more than 6, which necessitates customis-
ing the training paradigm on a cluster of computing nodes,
instead of one. However, due to bandwidth limitation and
transmission latency of Ethernet, naive implementation of
ASGD on such a cluster is impossible. The computation
speed of GPU is much faster than a CPU, so that the com-
munication between master and GPU devices can be easily
jammed by massive transmission of parameters and gradients.
Therefore, current parallelization on multiple GPU nodes re-
place Ethernet with Infiniband for high transmission speed
and low latency [12, 10, 13].
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Fig. 2. Two-stage ASGD framework implemented on a clus-
ter of GPU-equipped computing nodes.

The proposed framework, called two-stage ASGD, aims
at parallelizing the training of DNNs on multiple GPU nodes
using Ethernet. The framework is shown in Figure 2. Inspired
by MapReduce, two-stage ASGD store data shards locally to
avoid massive data transmission. Each node works on its own
DNN replica, using a lock-free ASGD system as described in
section 2, and communicates with the master independently
using Ethernet. When N mini batches have been presented,
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the aggregated gradients are pushed from the node to the mas-
ter.

ŵ(n) = w(n) − η∆w
(n)
j (2)

∆w(n) =

N∑
j=1

∆w
(n)
j (3)

Equation (2) shows the first-stage ASGD in node n. w(n)

represents the model replica stored in that node. The GPU
devices asynchronously updates the replica using gradients
calculated from their own mini batches fetched from the data
shard. For instance, ∆w

(n)
j represents the j-th update. When

N updates are done, the aggregated gradient ∆w(n) is ready
for a push.

In the second-stage ASGD, when the master receives a
pushed gradient, the model parameters are locked, updated,
and sent back to the node.

Ŵ = W − γ∆w(n) (4)

where W is the model parameters hosted by the master,
and Ŵ is the updated version. γ is the learning rate used
in the master. While the first-stage ASGD works on PCIe,
the second-stage ASGD works on Ethernet. Although the
two-stage framework significantly reduce the communica-
tion frequency, the communication cost is still unacceptable.
Three key techniques for stablizing the system are described
below.

3.1. Order-locking ASGD

The pushing period N is a scaling factor of mini batch size
for the master and nodes. With bigger N , the communica-
tion frequency can be significantly reduced. However, as it
is essentially an increasing of the mini batch size, the model
replica may have a greater risk of divergence. Therefore, the
learning rate in second-stage ASGD is shrank by the pushing
period.

γ =
1

N
η (5)

Due to performance difference of the nodes and network
latency, gradients from different nodes might arrive in differ-
ent order in each iteration 1. To avoid the stale gradient prob-
lem, we introduce an order-locking constraint to the second-
stage ASGD. At the beginning of each iteration, the master
memorises the order that the gradients arrive, and keeps the
gradient fetching order locked during the rest of the iterations.

3.2. Double buffering

During the transmission for the second-stage ASGD, GPUs
have to stop computing and wait for the new model replica,

1One iteration means all the training data are presented to the system

resulting in resource waste. For example, if our system con-
sists of one master and four computing nodes. Each node
communicates with the master by transmitting DNN mod-
el parameters or gradients, whose size is usually more than
100MB in speech recognition tasks. Assuming that in the ide-
al condition, we take full use of the 10Gbit/s bandwidth of the
Ethernet, it will take more than 640 milliseconds to transmit
the parameters.

In order to avoid wasting GPUs computation resource dur-
ing transmission, the double buffering mode is applied. G-
PUs will keep computing gradients with the old model replica
while exchanging parameters between nodes and master. Al-
though the delay between the model and the gradient becomes
more severe, the delayed update has been proven to work well
[14].

3.3. Computation-to-transmission ratio optimization

The computation-to-transmission ratio of the system is influ-
enced by several factors. Firstly, bandwidth and transmission
delay limit the maximum number of nodes, which limits the
scale of system. To make the system efficient, the upper limit
of the number of nodes is the one that saturates the bandwidth.
For instance, when Message Passing Interface (MPI) is used
for inter-node data transmission, communication between t-
wo nodes through a single process consumes about 40% of
the bandwidth (based on our preliminary test). Thus the sys-
tem can bear at most 3 nodes to communicate with the master
simultaneously. Besides, the master can be used as an ad-
ditional local node which does not compete for the network
bandwidth. Therefore, a cluster with more than 4 nodes will
not bring more benefits as network competition problem be-
comes critical and each node occupies less bandwidth.

Secondly, the pushing period N determines the efficiency
of the system. The optimal N is to keep the gradients com-
putation time equal to the parameters transmission time, in
which way the system works most efficiently with no waste
of resources. The transmission time, defined as the total time
for gradient pushing and parameter fetching, is calculated us-
ing the number of nodes in the cluster and the acoustic model
size.

Ttrans =
2NeM

B
(6)

where Ne is the number of executive nodes and M denotes
the model size. B represents the actual bandwidth utilised
during transmission.

The computation time is decided by:

Tcalc =
P

Tf
· NcN

Gn
(7)

where P is the number of model parameters, Tf represents
the computation speed of GPU (FLOPS), and Gn is the num-
ber of GPU used in each node. Nc is the mini batch size on a
computing node. In the proposed framework, each GPU de-
vice works on a mini batch of 1024 samples at one time. Once
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Nc samples are presented, the model replica on that node is
broadcast to all the devices to avoid stale gradients. Increas-
ing Nc and N means the system can be parallelized by using
more GPUs in one node, the computation on one node will
be faster. However, the DNN model on master may get un-
stable. In our preliminary experiments, we seek for a balance
between training speed and convergence performance.

4. EXPERIMENTS

A 500-hour Mandarin conversational telephone speech dataset
is used to evaluate the scalability and recognition performance
of the proposed two-stage ASGD framework. 90% of the to-
tal 500-hour data is used as training set and the held-out 10%
is used as the validation set for modifying the learning rate
and monitoring the training. An 1-hour test set collected in
real application (CTS) and an 1.5-hour test set which is a
part of HKUST Mandarin Telephone Speech dataset (LD-
C2005S15/LDC2005T32) developing set (LDC) are used
to evaluate recognition performance in character error rate
(CER). The number of frames processed per second (fps) is
used to evaluate the training speed of DNN. Training speech
are represented by a 60-dimension feature which is formed by
appending pitch and voicing strength [15] to 13-dimensional
PLP [16] and their first three orders of dynamics. Concate-
nated features of 11 frames with a context window of 5 are
used as the input of DNN. Each DNN has 5 hidden layers of
2048 nodes and an output layer with 6245 nodes representing
the tri-phone states. The total number of parameters is about
29.5 million.

4.1. System optimisation for scalability

The hyper-parameters in Equation (6) and (7) need customisa-
tion for improving the scalability of the paradigm. The band-
width B is optimised by using the MPI protocal for transmis-
sion in the 10Gbit/s Ethernet. The model scale is determined
by P ≈ 29.5million and M ≈ 112Megabytes. Tf is fixed
because all the GPU devices in our cluster are of the same
model. There are 4 computing nodes in the cluster, meaning
that Ne = 4. In a preliminary experiment on single node AS-
GD, the node batch size Nc is set to 4096 to produce reliable
gradients. Therefore, the hyper-parameters to be tuned are the
pushing period N and the number of GPU devices per node
Gn.

As mentioned in [5], smaller learning rate and good initial
model endorse a larger limit of the mini batch size. Table 1
shows the seek for optimal batch size NcN by increasing N .
Learning rate is modified using the strategy as Equation (5).
Besides, the model ran on a warming start and the learning
rate for each run decrease proportionally to NcN . The recog-
nition performance degrades sharply when the batch size is
more than 24k.

Table 1. The influence of batch size to the final recognition
results.

NcN 4096 8192 16384 24576 32768
N 1 2 4 6 8

CER 35.3 35.2 35.3 35.4 36.3

Table 2. Training speed in 1000 frames per second (kfps)
when increasing GPU devices number together with pushing
step N , with and without double-buffering (DB). 4x2 means
4 nodes and 2 GPU devices for each are used in the training.

GPUs 4x1 4x2 4x3 4x4
N 2 4 6 8

w/ DB 28.2 56.3 84.6 112.5
w/o DB 15.1 30.0 44.5 59.6

The next step is to choose the optimal Gn so that Tcalc ≈
Ttrans, where the system works at the maximum speedup.
It is implied from Table 2 that increasing the pushing period
N when employing more GPUs can speed up the training for
both systems with or without double-buffering. And it is obvi-
ous that double-buffering is essential to the two-stage ASGD
system.

To measure the scalability, the training is ran several times
by varying the number of GPUs. Figure 3 reports the average
speed in term of 1000 frames per second (kfps) using each
configuration together with the final frame accuracy on the
cross validation dataset. By using the system optimisation
procedures, it is shown that the training speed increases al-
most linearly with more GPUs added. However, when using
more than 8 GPUs, the frame accuracy get a sharp decline
since the batch size of master is too large.
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Table 3. Performance comparison in terms of CER (%) and
processing 1000 frames per second.

System LDC CTS kfps Speedup
Baseline 44.1 34.8 9.4 1x

Two-stage (4x2) 44.6 35.4 55.7 5.9x

4.2. Recognition performance

In the performance comparison experiment, a baseline DNN
is trained using a single GPU card with mini batch of 1024
frames and random initialisation. We use a decaying learning
rate strategy that starts from 0.008 and halves after each iter-
ation once the frame accuracy on the validation set increase
less than 0.5% for three times. The first iteration of the base-
line is used as a warming start initial model. In the fine tuning
process, all 4 nodes with two GPUs on each are used. The
configuration of learning rate of each client is the same as the
baseline. Therefore, Gn is 2 and N is set to 6. Table 3 shows
the performance comparison of the proposed two-stage AS-
GD system and the baseline in CER and training speed (the
initialization time is included). We can see the proposed two-
stage ASGD system can give a 5.9 times acceleration with
slight performance degradation, 0.5% absolutely.

4.3. Comparison with prior work

This paper focus on finding a method to take use of the Ether-
net to apply distributed training of DNN with multiple GPU
devices while prior approaches usually require the support of
InfiniBand. The framework is inspired by the idea of ASGD
and customised for fine tuning of DNN models using GPU
cluster. Table 4 compares the proposed method with some
approaches reported in prior work, such as single-ASGD [4],
multi-DNN [7] and 1-Bit SGD [10]. Since the test sets are
different, we take speedup and relative C/WER loss accord-
ing to corresponding baseline systems as consideration. Com-
pared with single-ASGD, the proposed framework has a bet-
ter scalability since the single-ASGD could not use more than
one computing node. Multi-DNN split the original DNN into
several smaller pieces and each piece is trained independent-
ly. Although this method leads to a rather high efficiency in
speedup, a relative high WER loss is observed. From the last
two rows, it is shown that the proposed framework performs
slightly better than 1-Bit SGD system with InfiniBand when
using the same number of GPUs.

5. CONCLUSION

In this paper, an asynchronous parallelization framework for
training DNNs, namely two-stage ASGD, is proposed. The
proposed framework allows training deep neural network-
s with multiple GPU-equipped computing nodes connected
across Ethernet. Several techniques to optimise the training

Table 4. Comparison with prior work in terms of speedup fac-
tor and C/WER loss. IFB means whether Infiniband is used.

System IFB #GPU Speedup C/WER loss
ASGD[4] No 4 3.2x 1.8%

MultiDNN[7] No 4 4.9x 5.4%
1-Bit[10] Yes 8 5.6x 1.8%
Two-stage No 8 5.9x 1.4%

system are introduced, such as hierarchical learning rate con-
trol, order-locking and double-buffering. Using two-stage
ASGD, the bandwidth bottleneck problem in Ethernet-based
cluster is addressed. Experimental results show that the pro-
posed framework achieves significant speedup by using mul-
tiple GPUs on multiple nodes. The scaling on GPU cluster is
almost linear. In the future, we will investigate introducing
more advanced learning rate modification technology, such as
AdaGrad [17], to further scale the training system with Eth-
ernet. For instance, [10] used 40 GPU devices with support
from Infiniband.

6. FUTURE WORK

We have verified the validity of the proposed the framework
by training a classical DNN using cross entropy criterion.
In the future work, we will explore the universality of the
method to DNN sequence training with utterance-level loss
functions. As mentioned in 3.1, the second-stage ASGD is
strictly order-locked and the length of the utterances pro-
cessed by computing nodes determines the length of compu-
tation time. To balance the computation time of each node,
the training data may be firstly ranked by the length of the
sentence so that each node deal with the same amount of
frames at one time.
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