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ABSTRACT

Our purpose is to realize discrete neural networks (NNs), whose
some parameters are discretized, as a low-resource and fast NNs for
acoustic models. Two essential problems should be tackled for its
realization; 1) the reduction of discretization errors and 2) the imple-
mentation method for fast processing. We propose a new parameter
training algorithm for 1) and an implementation using look-up table
(LUT) on general-purpose CPUs for 2), respectively. The former can
set proper boundaries of discretization at each node of NNs, result-
ing in the reduction of discretization error. The latter can reduce the
memory usage of NNs within the cache size of CPU by encoding
parameters of NNs. Experiments with 2-bit discrete NNs showed
that our algorithm maintained almost the same word accuracy as 8-
bit discrete NNs and achieved a 40% increase in speed of the NN’s
forward calculation.

Index Terms— Deep Neural Network, Acoustic Model, Quan-
tization, Discretization

1. INTRODUCTION

Deep neural networks (DNNs) are widely used as acoustic models
in automatic speech recognition (ASR) instead of Gaussian mix-
ture models (GMMs) because of their high word accuracy (WA)
[1, 2, 3, 4]. However, the applicable computer architecture of DNNs
is still restricted because of their high computational cost. Although
implementation using a graphics processing unit (GPU) [5] and dis-
tributed computing [6] is effective for increasing the speed of DNNs,
such an expensive approach cannot be applied to resource-restricted
systems, such as small/micro computers or embedded systems with
ordinary CPUs. Thus, light DNNs in terms of memory usage and
computational cost are required.

Parameter discretization can drastically reduce memory usage
and computational cost, and thus enables DNNs to finish process-
ing within a reasonable time without GPUs and distributed comput-
ing. A fixed-point DNN, whose weights, bias parameters and middle
layer inputs are linearly quantized to n bits, enables fast processing
on a Very Large Scale Integration [7] or a CPU with Supplemen-
tal Streaming SIMD Extensions 3 (SSSE3) instruction set [8]. The
parameters of fixed-point DNNs are trained by iterating the quantiza-
tion of weights to n bits and usual back propagation [7, 9]. However,
experimental selection of n for the best performance requires mas-
sive quantity of experiments. Moreover, the above implementation
still requires a special instruction set of CPUs or special devices.
Neural networks implemented on general-purpose CPUs without a
special instruction set will be helpful for small/micro computers and
embedded systems.
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Fig. 1. Property of neural networks

The use of look-up tables (LUTs) is a promising approach, and
we call such NNs ‘discrete NNs’ because their weights are treated
as an encoded address for an LUT. For example, the speed of NNs
can increase by SSSE3-like processing with an LUT on a general-
purpose CPU by exploiting its cache memory. Of course, such tech-
niques can be applied to hardware, too. Our previously proposed
training algorithm is based on weight boundary model and control
of weight boundary [10]. In this model, the boundary of weights at
each layer is restricted to a certain range (layer-wise weight bound-
ary model), and it plays a role of layer-wise weight normalization.
Weights are discretized only once after training because the distri-
bution of weights has already become uniform or Bernoulli through
training. We confirmed that 4-bit discrete NNs actually worked with-
out degradation in a large vocabulary ASR task. A critical issue of
4-bit discrete NNs is that use of an LUT for achieving the fast pro-
cessing is not realistic because the table size becomes more than
32 Mbytes where a CPU cache no longer works well. Therefore,
smaller-bit, such as 2 bits, discrete NNs are required.

We propose a parameter training algorithm and implementation
scheme based on node-wise weight boundary model to achieve 2-
bit discrete NNs. The key for 2-bit discretization is the fact that
our previous model normalized weights at each layer in quantiza-
tion. The errors of quantization with the layer-wise normalization
increase because the dynamic range and distribution of weights dif-
fer at each node. Therefore, node-wise normalization is expected
to adjust weight’s range not for a set of all nodes in the layer but
for each individual node. Such normalization is incorporated in the
node-wise weight boundary model. We also discuss two weight en-
coding methods using LUTs, one of which can dramatically reduce
the LUT size. The training algorithm and implementation are val-
idated through experiments involving a large vocabulary ASR task
and the real-time factor (RTF) of forward calculation of NNs.

One of the advantages of the discrete NNs is that they can be
applied to various tasks by adjusting their precision of weights, i.e.,
the number of bits, according to their required performance (Fig. 1).
In other words, the discrete NNs lie between continuous NNs and
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binary NNs. Binary NNs [11, 12], whose parameters are all binary,
i.e. {0, 1}, are considered an ultimate form of NNs, but their actual
performance for an large vocabulary ASR has not been shown as far
as we know.

Our contributions are as follows:

1. Achieve fast processing of 2-bit discrete NNs for large vocab-
ulary ASR task on a general-purpose CPU

2. Discuss the minimum number of bits for the discrete NNs
through experiments

2. DISCRETE NEURAL NETWORKS BASED ON
LAYER-WISE WEIGHT BOUNDARY MODEL

We first explain the forward model of discrete NNs with layer-wise
normalization by contrasting it to that of continuous NNs. Next, we
introduce its parameter training algorithm based on weight boundary
model and contraction mapping. Finally, we explain the problem
with previous work regarding smaller-bit discrete NNs. Figure 2
gives an overview of the training process of discrete NNs .

2.1. Forward Model in Semi-Continuous Domain

The structure of continuous NNs is defined recursively on the layer
index l. First, the input vector xl = [xl,1, ..., xl,Nl

]T ∈ R
Nl is

affine transformed, then activation functions hl : RMl → R
Nl+1

are applied. Here, ·T denotes the transportation operator, Nl and Ml

are dimensions of xl and temporal vector zl = [zl,1, ..., zl,Ml
]T at

l-th layer, respectively. Therefore, the output of the L-th layer can
be recursively described for l = 0, ..., L − 1 given the initial input
vector x0.

zl = Wlxl + bl (1)

xl+1 = hl(zl) (2)

where the matrix Wl = (wl,ij) ∈ R
Ml×Nl and vector bl =

[bl,1, ..., bl,Ml
]T ∈ R

Ml are the weight and bias parameters at the
l-th layer, respectively. The sigmoid function and soft-max function
are often used as an activation function hl. In ASR, the input vector
x0 corresponds to temporal speech features, and the final output
vector xL is used for the acoustic likelihood of Hidden Markov
Model (HMM) states [1].

The forward calculation of discrete NNs is defined to approx-
imate the continuous NNs in a semi-continuous domain where
weights and middle input vectors are encoded into several bits.
Note that this formula is used only for forward calculation in
the recognition phase not for training. The i-th element of zl is
calculated based on layer-wise normalization as follows:

zl,i = αl

Nl−1∑
j=0

F(Qy[yl,ij ],Qx[xl,j ]) + bl,i (3)

where Qy and Qx are the encoding function to binary or integer
code for normalized weights Yl = (yl,ij) ∈ R

Ml×Nl (i.e. yl,ij =
wl,ij/maxi,j |wl,ij |) and middle input variable xl,j , respectively.
The F(a, b) includes the decoding and multiplication functions of
two binary-coded values, a and b. The αl is a normalization param-
eter of the l-th weights and depends on the definition of Yl,Qy,Qx

and F .
The well designed operators for the target computer architecture

increase the computation speed based on the instance calculation of
several Fs and the summation in Eq.(3). For example, we use the
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Fig. 2. Training process of discrete NNs

case whenQy,Qx are linear quantization into a n-bit integer and F
is just an integer multiplication. If we use a special instruction set,
such as the SSSE3, only three instructions result in multiply-and-
add of eight variables. If we use an LUT, the pre-calculated result
of multiply-and-add of several variables is loaded at the index of
connected binary-codes of weights and middle inputs.

2.2. Parameter Training in Continuous Domain

The parameters for discrete NNs are trained in the continuous do-
main in two steps, 1) back propagation [13] based on the layer-wise
boundary model for several epochs, and 2) contraction of the weight
boundary. Steps 1) and 2) are conducted iteratively several times.
We assume to already have fine-tuned parameters with continuous
NNs.

We set the boundary constraint of weights similar to Eq.(3) to
obtain parameters appropriate for bit encoding. By using the latent
matrix Vl = (vl,ij) ∈ R

Ml×Nl , the forward model can be written
as

zl = αlgl(Vl)xl + bl, (4)

where gl(x) = (gl(xij)) is a element-wise bounded function matrix
with the range of [−1, 1], such as tanh(x) whose derivative is 1 −
tanh2(x). Here, yl,ij = gl(vl,ij).

The parameters are optimized by supervised back propa-
gation with the cost function E and supervisory signal vector
r = [r1, ..., rNL ]

T ∈ R
NL , the same as continuous NNs. The

cross entropy function is used as E. After calculating the initial
error vector εL =

(
∂E
∂x

(r,xL)
)
, we update each parameter for

l = L− 1, ..., 0 as follows:

δl =

(
∂hT

l

∂z
(zl)

)
εl+1, (5)

εl = αlg(Vl)
T δl, (6)

αl ← αl − ηδT
l gl(Vl)xl, (7)

Vl ← Vl − η
∂gl

∂V
(Vl) ◦

(
αlδlx

T
l

)
, (8)

bl ← bl − ηδl, (9)

where ◦ is an operator of the element-wise multiplication of matri-
ces, and η is a learning parameter that controls the speed and pre-
cision of training. Note that the part of the training algorithm for
binary NNs recently discussed in [12] is similar to our weight bound-
ary model, but we have proposed it before [10].

At an appropriate epoch, we apply boundary contraction map-
ping to make the normalization parameter αl smaller. This is be-
cause of the following two facts from the previous experiments; 1) a
smaller αl reduces the quantization errors (QEs) in Eq.(3), and 2) the
distribution of wl,ij becomes non-Gaussian, nearly Bernoulli, which
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is better for a linear quantizer Qy.

αl ← max
i,j
|wl,ij |, (10)

vl,ij ← wl,ij/max
i,j
|wl,ij |, (11)

where Wl = αlgl(Vl). Since we use tanh for g, αl decreases
monotonically with this operation.

2.3. Problem with Layer-wise Boundary Model

The training based on the layer-wise boundary model enables us to
construct a discrete NN and achieve 4-bit quantization of parameters
without degradation of ASR performance. However, the increase
in forward calculation speed using an LUT has not been possible
because the memory size of an LUT becomes 32 Mbytes even for
4-bit quantization. Such a large table size is usually more than the
cache size of CPUs. Therefore, we need smaller-bit NNs without
ASR performance degradation. The limitation of the quantization is
mainly due to the normalization of weights at each layer while the
actual dynamic range and distribution of weights differ at each node
of NNs. We should consider the different dynamic ranges of weights
in the training and implementation for further improvement.

3. DISCRETE NEURAL NETWORKS BASED ON
NODE-WISE WEIGHT BOUNDARY MODEL

We propose a training algorithm and implementation based on the
node-wise weight boundary model for discrete NNs to adjust the dy-
namic range of weights among nodes, which results in equalizing
weight distributions at each node. We first explain the node-wise
weight normalization in forward calculation, node-wise boundary
model for training and its parameter update. Next, we discuss the
implementation using LUT, which can be applied to any computer
architecture. Finally, the selection of layers for discretization is dis-
cussed.

3.1. Forward Model and Parameter Optimization

We control the boundary of weights more flexibly and adequately
for each node, not for each layer. Therefore, different normaliza-
tion parameters λl = [λl,1, ..., λl,Ml

]T are introduced to each node,
instead of αl. The node-wise normalization in a semi-continuous
domain is represented as

zl,i = λl,i

Nl−1∑
j=0

F(Qy [yl,ij ],Qx[xl,j ]) + bl,i. (12)

By using the notation of the diagonal matrix of normalization pa-
rameters Λl = diag(λl,1, ..., λl,Ml

), the corresponding node-wise
weight boundary model in the continuous domain is expressed as

zl = Λlgl(Vl)xl + bl. (13)

The parameters are also trained using back propagation based on
the stochastic gradient. The update rules concerning new parameters
are derived straightforwardly as

εl = Λg(Vl)
T δl, (14)

λl ← λl − ηδl ◦ (gl(Vl)xl) , (15)

Vl ← Vl − η
∂gl

∂V
(Vl) ◦

(
Λlδlx

T
l

)
. (16)

We can see that the propagated errors δl affects each normalization
parameter, whereas they are concentrated on one αl in Eq.(7). The
boundary contraction mapping under Wl = Λlgl(Vl) is also mod-
ified as

λl,i ← max
j
|wl,ij |, (17)

vl,ij ← wl,ij/max
j
|wl,ij |. (18)

3.2. Implementation using Look-up Table

There are two types of LUT implementation; whether Qx outputs
a binary {0, 1} or not. We first explain the encoding and decoding
processes for an LUT in a general case. After that, we discuss a
specific binary case.

3.2.1. General Model

For the following explanation, we divide the row-vector of weights
and middle input vector into several groups, and assume each group
has D elements. Their binary code sets can be described as

ȳ(l,i,k) = {Qy[yl,ij ]}D(k+1)−1
j=Dk , and (19)

x̄(l,k) = {Qx[xl,i]}D(k+1)−1
i=Dk , (20)

respectively. The LUT, T , is referred by the combination of the
binary code sets. For example, when ȳ(l,i,k) = [110, 101] and
x̄(l,k) = [010, 101], the index for T becomes [110101010101] in
binary code. The forward calculation from Eq.(12) is re-described
as

zl,i = λl,i

Nl/D∑
k=0

T [ȳ(l,i,k)x̄(l,k)] + bl,i. (21)

Obviously, the number of summations decreases to 1/D.
The T has the calculation results of every pattern of binary code

sets in advance. The table is built up by enumerating every possible
pattern of ā, b̄, i.e. from 0 to 2n − 1 in binary, as follows

T [āb̄] =

D−1∑
j=0

F(aj , bj) =

D−1∑
j=0

Q−1
y [aj ]Q−1

x [bj ] (22)

where aj and bj denote the corresponding elements of ā and b̄.
SinceQ−1

y andQ−1
x are the decoding function corresponding toQy

and Qx, they return the continuous representation of the binary pat-
tern.

Given gl(x) = tanh(x) and hl(x) = (1/(1 + exp(−x)), each
n-bit decoding and encoding operator is defined as

Qx[x] = floor[(2n − 1)x+ 0.5], (23)

Qy[y] = floor[(2n − 1)(y + 1)/2 + 0.5], (24)

Q−1
x [x] = x/(2n − 1), (25)

Q−1
y [y] = 2y/(2n − 1)− 1. (26)

We did not consider optimizing these LUTs in this paper.

3.2.2. Binary Model

If we adopt the binary quantization for xl, the table size halves
through bit mask operation. For example, when ȳ(l,i,k) = [110, 101]
and x̄(l,k) = [0, 1], the index for T is usually [11010101]. By mask-
ing bits of ȳ(l,i,k) with x̄(l,k), the index for binary model table
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Table 1. Memory requirement per layer in bytes
for weights for LUT

32-bit float 4NlMl –
8-bit SSSE NlMl –

4-bit general LUT NlMl/2 28D

3-bit general LUT NlMl3/8 26D

3-bit-bin binary LUT NlMl3/8 23D

2-bit general LUT NlMl/4 24D

1-bit general LUT NlMl/8 22D

Table 2. Configuration

Audio data 16 bits, 16 kHz sampling
STFT analysis hamming window: 25 ms, shift: 10 ms

Features for GMM
MFCC 39 dim.

[13+ Δ 13 + ΔΔ 13]

Features for DNN
FBANK 825 dim.

[(25+ Δ 25 + ΔΔ 25) × 11 frames]

Language model
3-gram statistical

65000 words

GMM-HMM
3-state tri-phone
4000 tied-states

32 mixtures
# of DNN layer (L) 7

DNN network size
input layer: 1024 × 825

middle layer: 1024 × 1024
output layer: 4000 × 1024

Training set 223 hours (799 males and 168 females)
Test set 3.5 hours (15 males and 5 females)

Tb becomes [000101] as long as the decoding functions satisfy
Q−1

y [000] = 0, Q−1
x [0] = 0, and Q−1

x [1] = 1. This can be
understood by following equations

T [11010101] = Q−1
y [110]Q−1

x [0] +Q−1
y [101]Q−1

x [1], (27)

= 0 +Q−1
y [101] = Q−1

y [000] +Q−1
y [101], (28)

= Tb[000101]. (29)

Therefore, the definition of Qy andQ−1
y should be modified heuris-

tically from Eqs. (24) and (26) to realize this binary model. Note
that this will increase the QE and lead to performance degradation
of ASR.

The memory usages are compared in Table 1. The terms 32-bit
float and 8-bit SSSE do not require memory for an LUT. The term 3-
bit-bin (binary LUT) represents a binary case, and others are general
cases. The 32-bit float requires 4NlMl but others require less than
1/8 that. The size of an LUT depends on parameter D. The total
memory usage should be less than 1 or 2 Mbytes considering the
size of the actual CPU cache.

3.3. Selection of Discrete Layer

The discrete forward calculation is not applied to every layer be-
cause at least the inputs of the first layer are not bounded [0, 1]
[8, 10]. However, there is a possibility to improve ASR performance
by selecting layers for weight discretization. In our previous work,
weights of all layers except for the first layer were discretized. For
this study, we left the last layer continuous because the final outputs
are used for classification.

4. EXPERIMENTS

4.1. Experimental Setup

We evaluated our node-wise boundary model by conducting large-
vocabulary continuous-speech recognition experiments using the
Corpus of Spontaneous Japanese (CSJ), which is a collection of
Japanese lecture recordings [14]. We first compare WA of node-wise
model and layer-wise model at n-bit discretization. We investigate
WAs of all the combinations of applying the layer-wise or node-wise
model to the training (Eq.(4) or Eq.(13)) and recognition phases
(Eq.(3) or Eq.(12)). Next, we discuss the average QE of normalized
weights, |y − Q−1

y [Qy [y]]|, and the node-wise weight statistics by
using normalized kurtosis, E[(x − E[x])4]/E[(x − E[x])2]2 − 3.
Here, E represents the expectation operator. Finally, the RTF of
forward calculations of each implementation, LUT in general or
binary model, are compared. The RTF is defined as

RTF = (processing time)/(data duration). (30)

The training data for the acoustic model of the DNNs contained
223 hours of Academic-Presentation-Speech recordings 1. The eval-
uation data were test sets 1 and 2 of the CSJ, i.e., 3.5 hours of lec-
tures featuring 20 speakers (15 males and 5 females). The training
data for the language model contained all transcriptions in CSJ ex-
cept the evaluation data. We used a tri-gram language model with
65,000 words. Julius (ver. 4.3.1) was used for decoding [15], and
the language model weight and insertion penalty were set to default,
8 and −2, respectively.

We first trained a GMM-HMM with a tri-phone, 4000 tied-
states, and 32 Gaussian mixtures by using HTK2. The 13 Mel-
frequency cepstral coefficients (MFCCs) and delta and delta-delta
coefficients with mean and variance normalization per utterance
were used as speech features. The features were extracted at every
10-ms interval from the speech signal, whose sampling rate was
16 kHz. The window size for short-time Fourier Transformation
(STFT) was 25 ms. The DNN-HMM used the same HMM with a
GMM-based model and L = 7 layers with 1024 hidden nodes. The
output dimensions were 4000 to classify the tied-states of the HMM.
There were a total of 825 dimensions of features for DNNs input,
including 11 frames (previous 5 frames and following 5 frames) of
basic features. The basic features consisted of 25 log filter bank
coefficients, and the delta and delta-delta coefficients. The mean and
variance normalization were applied to features. These configura-
tions are summarized in Tab. 2.

Next, the DNNs were trained with Viterbi force alignment labels
by using the GMM-HMM. We used a discriminative pre-training
method [1] for the pre-training and used the AdaGrad method [16]
for scheduling learning rate parameters. The mini-batch size was 64.
After the fine tuning of the parameters, the training with the bound-
ary model was applied. Although the drop out [17] will improve the
absolute performance of DNNs, we believe that it does not critically
affect the relative results among the methods, as discussed in [7].

4.2. Results

4.2.1. Word Accuracy

Table 3 specifies the WAs with different number of bits for dis-
cretization. The normal training row represents the weights that

1Since the amount of data and the ASR decoder are different from those
in our previous paper[10], WA was a little worse than that of the previous
paper.

2http://htk.eng.cam.ac.uk/
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Table 3. Word accuracy vs. quantization bits.
Applied model Word accuracy (%)

Training Recognition
Discrete layer l

1-bit
2-bit

2-bit
3-bit

3-bit 4-bit 8-bit
32-bit

-bin -bin float

Normal training

– layer-wise 1-6 – – -2.24 – -1.16 -3.35 80.63

81.86
– layer-wise 1-5 1.10 – 2.17 – 2.80 49.54 81.74
– node-wise 1-6 – – 2.13 – 57.47 79.07 81.82
– node-wise 1-5 1.07 0.69 2.17 1.33 62.35 79.83 81.82

Baseline P0 layer-wise layer-wise 1-5 2.98 – 77.78 – 80.07 81.07 81.32
81.33

P1 layer-wise node-wise 1-5 2.73 41.17 77.55 59.45 80.82 81.47 81.36
Proposed P2 node-wise layer-wise 1-5 2.06 – 44.35 – 66.13 80.14 81.52

81.53
P3 node-wise node-wise 1-5 1.45 58.45 79.37 61.40 81.05 81.10 81.52

Table 4. Quantization error (QE) vs. quantization bits. Discrete layers are 1-5 in all cases.
Applied model Quantization error

Training Recognition 1-bit 2-bit 3-bit 4-bit 8-bit

Normal training
– layer-wise 9.13E-01 2.50E-01 8.42E-02 3.43E-02 1.96E-03
– node-wise 8.31E-01 1.98E-01 7.25E-02 3.33E-02 1.96E-03

Baseline P0 layer-wise layer-wise 3.10E-01 1.89E-01 8.16E-02 3.29E-02 1.97E-03
P1 layer-wise node-wise 2.26E-01 1.27E-01 7.25E-02 3.58E-02 1.96E-03

Proposed P2 node-wise layer-wise 7.24E-01 1.38E-01 6.83E-02 3.35E-02 1.96E-03
P3 node-wise node-wise 2.92E-01 1.52E-01 7.85E-02 3.44E-02 1.96E-03
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were not trained for discrete NNs. The Discrete Layer column repre-
sents the layers were discretized. The 3-bit-bin means the bits used
for weight was 3 and that for middle inputs was 1. The 2-bit-bin
means the bits used for weight was 2 and that for middle inputs was
1. For other notations, such as 2-bit, the bits for weight and middle
inputs were the same. The 32-bit float means un-quantized weights.
Note that the WA of GMM-HMM was 75.8 %.

The WAs only slightly differed among all methods in the 8-bit
case, but the difference became clearer at smaller bits. We focus
on the rows of normal training in this table. The normal trained
weights did not work well with less than 4-bit discretization. By
just applying the node-wise model in recognition, WAs improved
dramatically, indicating the importance of node-wise normalization.
The discrete layer selection seemed to improve WA at a sensitive
discretization, such as at 3 bits. Therefore, we now compare the
results whose discrete layers were from 1 to 5.

The WAs of our node-wise model outperformed the baseline by
a maximum of about 1.8 points in the smaller-bit case, except the
mismatched combination case, P2. Moreover, P3 maintained high
accuracy even in the 2-bit case and degraded by only 2 points from

8-bit discretization which is almost the same as continuous NNs.
The WA of the 3-bit-bin and 3-bit-bin was more than 50%, although
the middle inputs were quantized to {0, 1}. These results show the
advantages of our node-wise boundary model. However, nothing
was recognized with the 1-bit quantized weights, and there is a large
gap between 2-bit and 1-bit quantization. Therefore, more precise
training or quantization is required for the 1-bit NNs.

4.2.2. Quantization Error and Weight Distribution

The average QEs at each bit are listed in Table 4 to understand the
relationship between QE and WA. The QEs of the normal training
and the baseline (P0) decreased by applying node-wise model in the
recognition phase. However, the low average QE did not necessarily
mean a high WA. For example, the QE of P1 improved from that of
P0, but their WAs were the same.

We then focused on the distribution of the node-wise kurtosis of
weights to analyze the difference among normal training, node-wise
and layer-wise boundary model training. The kurtosis of Gaussian,
uniform and Bernoulli are 0, −1, −2 respectively. Figure 3 shows
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Table 5. Computer specifications
OS Ubuntu 14.04.2 LTS

CPU Intel Core i5-4690 3.50GHz
Memory 32GB
Cache 6M

Table 6. RTF of forward calculation and memory usage on single CPU

Memory usage (bytes)
Methods RTF D LUT total weights (l = 1, ..., 5)

Standard 32-bit float 0.981 1 – 20 M

Baseline 4-bit (general LUT) 1.222 3 32 M 2.5 M
4-bit (general LUT) 0.709 2 128 K 2.5 M
3-bit (general LUT) 0.644 3 512 K 1.85 M

Proposed 3-bit-bin (binary LUT) 0.500 7 4 M 1.85 M
2-bit (general LUT) 0.561 4 128 K 1.25 M
1-bit (general LUT) 0.484 8 128 K 640 K

Special 8-bit SSSE 0.496 8 – 5 M

the kurtosis distribution of normal training, the baseline P0 and ours
P3 after training. Since the kurtosis of normal training was over 0, its
weight distribution looks like Gaussian or more sparse one. On the
other hand, the weight distributions of baseline and ours were likely
Bernoulli because most of the kurtosis were less than −1. We can
see the distribution of the baseline’s kurtosis had several peaks while
that of ours had one. This suggests that the “outlier”, such as one of
several peaks at higher kurtosis, increases the non-uniform and un-
expected prediction errors of NNs after quantization, and the range
of errors are also different among nodes. Therefore, the outlier er-
rors are unfortunately accumulated, not canceled by each other, and
the errors exceed the acceptable range that can be smoothed with an
HMM. The node-wise boundary training equalizes the weight dis-
tribution at each node and fill the gap between continuous and dis-
cretized weight, which avoids such case and improves WA.

Finally, we just confirm the actual weight distributions of each
methods in Fig. 4. While the distribution of normally trained weights
is like Gaussian, the distribution of weights trained with boundary
model become like Bernoulli. The two peaks near −1 and 1 tend to
go outside as the normalization parameters αl, λl,i become smaller.
Therefore, they are considered to control the form of distribution.

4.2.3. Real Time Factor of Forward Calculation with LUT

We reveal the actual increase in speed of the forward calculation of
discrete NNs with two implementation schemes we used, general
model and binary model. The memory usage of LUT and weights
are also shown. The computer specifications are listed in Table 5,
and the frequency and cache size of CPU were sufficient for using
an LUT.

We focused on the relationship between the RTF and its required
memory for LUT size and weights, as shown in Table 6. The term
32-bit float denotes the usual implementation without special in-
struction sets or LUT, and 8-bit SSSE is the implementation using
[8]. The baselines are the results of 4-bit discrete NNs that was the
limitation of layer-wise model. The notation D means the number
of variables calculated at the same time with Eq. (21). The RTF of
our implementations with D = 3, 4 achieved a 30% to 40% increase
in speed from that with the baseline and became closer to that of the
SSSE, which uses the CPU’s special instruction set. Moreover, the
RTF of the 3-bit-bin, whose WA was still not sufficient, was almost
the same as that of the SSSE, although it required a 4 M LUT. If we
can achieve 2-bit discrete NNs, the LUT size with D = 8 becomes
512 K, and will run at the same speed as the SSSE. Since 1-bit dis-
crete NNs outperformed 8-bit SSSE, the improvement of WA of it is
expected.

5. DISCUSSION

We obtained two facts about WA, QE, and weight statistics from the
experiments, 1) the actual relationship between QE and WA, and 2)
effects of weight normalization. The former affects the strategy of
parameter training of NNs. Since QE does not necessary improve
WA directly, it is no longer effective just to add the minimizing con-
straint of QE to the cost function of NNs. The latter indicates the
possibility of another constraint of weights for discrete NNs. If we
use this fact directly, minimization of the mean of the node-wise kur-
tosis may be effective in improving WA. Of course, the non-linear
quantization of weights using an optimized LUT will also improve
WA of low-bit discrete NNs, such as 1-bit discrete NNs.

On the other hand, there is a possibility of an implementation
based on a binary case LUT because our node-wise model does not
take into account the quantization effect of middle inputs. Ideally,
the distribution of its output signal should also be Bernoulli. There-
fore, it is important to find or develop a useful constraint to control
their distribution. This may be possible with the Bayesian approach
or just controlling the scaling parameter of the sigmoid function used
as the activation function. After addressing these issues, we will
conduct an implementation based on a 3-bit and 2-bit binary or 1-bit
LUT.

6. CONCLUSION

Our goal is the development of discrete neural networks (NNs) with
reduced memory and computational cost for acoustic models on
CPUs without special processors. Two-bit discrete NNs are required
for realistic implementation in terms of memory usage because even
4-bit discretization requires a large look-up table. The key to using
two bits is normalizing variation of weights to reduce the influence
of discretization error. We developed a parameter training algorithm
based on the node-wise weight boundary, not layer-wise as in pre-
vious studies. The algorithm resulted in the node-wise equalization
of weight distribution. We also implemented discrete NNs with two
different schemes in terms of memory usage. Experiments with
2-bit discrete NNs showed that our algorithm maintained high word
accuracy and achieved a 40% increase the speed of the NNs’ forward
calculation.

The main future work is the 1-bit discretization of middle inputs
to achieve dramatic improvement in memory usage and processing
speed. Key approaches making this possible are non-linear weight
quantization and giving appropriate constraint to the distribution of
middle inputs during training.
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