
HYBRID DNN-LATENT STRUCTURED SVM ACOUSTIC MODELS FOR CONTINUOUS
SPEECH RECOGNITION

Suman Ravuri

International Computer Science Institute, Berkeley, CA
University of California - Berkeley, Berkeley, CA

ABSTRACT

In this work, we propose Deep Neural Network (DNN)-
Latent Structured Support Vector Machine (LSSVM) Acous-
tic Models as replacement for more standard sequence-
discriminative trained DNN-HMM hybrid acoustic models.
Compared to existing methods, approaches based on mar-
gin maximization, as is considered in this work, enjoy better
theoretical justification. In addition to a max-margin based
criteria, we also extend the Structured SVM model to in-
clude latent variables in the model to account for uncertainty
in state alignments. Introducing latent structure allows for
better sample complexity, often requiring 33% to 66% fewer
utterances to converge compared to alternate criteria. On
an 8-hour independent test set of conversational speech, the
proposed method decreases word error rate by 9% relative to
a cross-entropy trained hybrid system, while the best existing
system decreases the word error rate by 6.5% relative.

Index Terms— Structured SVM, Deep Learning, Sequence-
Discriminative Training, Large Margin, Acoustic Modeling

1. INTRODUCTION

Statistical speech recognition reposes on the assumption that a
word sequence W and its associated acoustics O is a stochas-
tic process distributed according to O,W ∼ Ptrue(O,W ).
Modern Automatic Speech Recognition (ASR) systems at-
tempt to model this process with PM (O,W ), typically
comprising four major components: neural networks for
frame-level triphone classification, Hidden Markov Models
(HMMs) for state-level sequence classification, a lexicon for
phone-to-word transduction, and a language model that es-
timates the likelihood of word sequences. An application
of elementary probability theory allows us to combine these
separate models:

Ŵ = argmax
W

PM (W |O) = argmax
W

PM (O|W )PM (W )

= argmax
W

∑
S

PM (O,S|W )PM (W )

= argmax
W

∑
S

PM (O|S)PM (S|W )PM (W )

≈ argmax
W,S

PM (O|S)PM (S|W )PM (W )

= argmax
W,S∈SW

PM (O|S)PM (W )

where S denotes the state sequence and PM (S|W ) the lexi-
con.1 Since in general the typical dictionaries only define al-
lowable phone sequences without more detailed relative prob-
abilities, the decode equation in the final line searches over
SW , the set of states consistent with word sequences.

If PM (O,W ) could accurately model Ptrue(O,W ), then
independent training of each of these separate components,
and Minimum Bayes Risk (MBR) decoding [1] would likely
yield an accurate recognition. HMM modeling assumptions,
however, are rather poor: [2] showed that if the data were
actually distributed according to the HMM modeling assump-
tions, word error rates would drop from 30-60% to 1-5% even
with weak frame-level classification and suboptimal MAP de-
coding (which minimizes expected sentence instead of ex-
pected word error rate). Moreover, since MBR decoding pre-
supposes accurate estimates of Ptrue(W |O), it is perhaps not
surprising that implementing Minimum Bayes Risk decoding
with model posteriors more modestly improves recognition
performance than expected.

Many of the standard fixes used to improve word recog-
nition performance, such as raising language model scores by
a scaling factor in the exponent, violate the traditional rules
of probability while partially fixing poor modeling assump-
tions. As mentioned by [3], the result is that the full decoding
model more resembles a log-linear model. Denoting ht to
be the last hidden layer of a Deep Neural Network (DNN)
system (augmented by 1 to accommodate a bias term), αs as
the logistic regression layer weights for state s (augmented by
bs−logP (s), the bias with the log prior of state s subtracted),
the model transition log-probabilities αsi−1,si , and the lan-
guage model scaling factor αlmsf, we can more accurately rep-
resent the decoding problem argmaxW,S∈SW logPM (O|S)+

1The lexicon defines phone, not state, sequences, but the two are trivially
related.
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logPM (W ) as:

= argmax
W,Si∈SW

∑
i

(logPM (Oi|Si) + logPM (Si|Si−1))

+ αlmsf logPM (W )

= argmax
W,S∈SW

∑
i

(αᵀ
sihti + αsi−1,si) + αlmsf logPM (W )

Even this log-linear model does not accurately model Ptrue,
so let us discard the probabilistic interpretation – i.e., we keep
the same model parameters as before but eschew the notion
that decoding scores are representative of probabilities – and
ask a slightly different question: for model parameters α in
model family A, what parameters will minimize our true risk

min
α∈A
R ≡ min

α∈A
EPtrue(W,O)[L(Ŵ ,W )]

where L is the word error rate. Here risk corresponds to the
expected word error from a random test set.

While directly optimizing for risk is likely difficult for a
finite training set (though [4] showed theoretically that one
could use perceptron-like update to obtain an exact loss gra-
dient on an “infinite” training set), there exist methods which
minimize surrogate objectives that also give nice theoretical
guarantees. Structured Support Vector Machines (SVMs)
provide one such method for linear models, providing the-
oretical guarantees that true risk is not much higher than
training set error (see [5] for a typical proof). Such a guaran-
tee assumes that the input features to the Structured SVM are
bounded, which is trivially true for hidden units with sigmoid
non-linearities as used in this work.2

2. RELATED WORK

Max-margin methods are not the only way to approach
approximate optimization of Bayes risk, and sequence-
discriminative training criteria have long attempted to mini-
mize the risk equation through different approximations. The
minimum phone error (MPE) [6] and state-level minimum
Bayes risk (sMBR) [7, 8] criteria directly try to optimize for
the risk through the approximation:

argmin
α∈A

R ≈ argmax
α∈A

EPEmp(O)EPModel(W |O)[P(Ŝ, S)]

where S are phones for MPE and triphone states for sMBR,
and the raw accuracy P is the number of correct units mi-
nus the number of insertions, calculated without substitutions
or deletions for efficiency purposes. Maximum Mutual In-
formation (MMI) [9] and boosted MMI [10] make somewhat

2One can also make similar claims about rectified linear units, assuming
that the norm of each row of the pre-nonlinearity weight matrix W in cal-
culation Wx is bounded. The less-discussed aspect of dropout constraints
exactly this norm.

different approximation:

EEmp(O,W )[log(1+
∑
Ŵ 6=W

exp(−(bP(Ŝ, S)+log
PM (W |O)

PM (Ŵ |O)
))]

which substitutes empirical risk for true risk, and a log-loss
for true loss. Boosted MMI uses a soft margin, inspired by
the work of [11], who applied large margin Gaussian Mixture
Models (GMMs) to phoneme recognition. To the best of our
knowledge, neither of these approximations have theoretical
guarantees on test set error.

There have been some more recent attempts to include
Structured SVM criteria – first introduced in [12] and later ex-
tended by [13] – into speech recognition: [14] augments the
standard ASR model with per-phone acoustic model scaling
factors learned through a cutting-plane algorithm, while more
recent work on hybrid systems attempt to learn the output and
transition model parameters using a frame-based loss [15],
showing an improvement over cross-entropy trained neural
networks on TIMIT phone recognition. There have also been
attempts to incorporate Structured SVM criteria into segmen-
tal ASR models: see [16] for a comparison of different seg-
mental models under different loss functions. Finally, [17]
directly incorporated margin-terms into MMI and MPE cri-
teria for a hidden CRF extension to GMMs, but were unable
significant improve upon results of the MPE baseline on a
large-vocabulary recognition task.

3. LATENT STRUCTURED SVM HYBRID
ACOUSTIC MODELS

To connect speech recognition to Structured SVMs, note that
the log-linear speech recognition model can be compactly ex-
pressed as:

log p(W |O) = αᵀφ(h,W )

whereα comprises the model parameters, h = (h
(1)
n , . . . , h

(t)
n )

constitutes the acoustic observations in the form of the se-
quence of final hidden layer activations, and feature function
φ(h,W ) ∈ Rn encodes information about the features and
the structure of the model.

In the concrete example of a hidden Markov Support Vec-
tor Machine (HMSVM) [18], α includes αk, defining the hy-
perplane associated with class k, and αi,j , parameterizing the
state transitions, while φ(x,y) effectively defines a hidden
Markov model via indicator functions that select the appro-
priate terms from α:

α =



α1

. . .
αk

α11

α12

. . .
αkk


φ(x,y) =



∑N
i xi1yi=1

. . .∑N
i xi1yi=k∑N

i=2 1yi−1=1,yi=1∑N
i=2 1yi−1=1,yi=2

. . .∑N
i=2 1yi−1=k,yi=k


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Thus, to obtain the decoding score for labeling y = (4, 5, 6)
of input features x = (x1, x2, x3), one simply performs the
dot product 3:

αᵀφ(x, (4, 5, 6)) = αᵀ
4x1 + αᵀ

5x2 + αᵀ
6x3 + α4,5 + α5,6

For more examples of this formalism, please see [13].
SVMs (and structured extensions) seek to minimize:

min
α∈A

EPtrue(W,O)[L(Ŵ ,W )]

where Ŵ = argmax
W

αᵀφ(h,W)

by making the following three approximations: replacing
true with empirical risk R ≈ 1

N

∑
i L(Ŵ ,W ), upper-

bounding the loss L(Ŵ ,W ) which is not differentiable with
respect to α with sub-differentiable hinge loss [L(Ŵ ,W ) +
αᵀ(φ(h, Ŵi) − φ(h,W ∗i ))]+

4, and keeping ‖α‖ small to
limit generalization error. This leads to the (margin-rescaled)
Structured SVM:

min
α,ξ

λ

2
||α||2 + 1ᵀξ

s.t. ∀i, Ŵi 6= Wi

αᵀ(φ(h,Wi)− φ(h, Ŵi)) ≥ L(Wi, Ŵi)− ξi

Unfortunately, the current form of the equation cannot be ap-
plied to acoustic model training, as updating parameters re-
quires a state-level alignment; resorting to a frame-level loss
based on fixed state-level alignment does not provide a good
reflection of word error rate.

Instead, we propose an extension to the Structured SVM
which includes latent variables to describe the alignment.
Note that the optimal alignment l∗i can be calculated as:

l∗i = argmax
li∈W∗i

αᵀφ(h,Wi, li)

where li ∈ Wi is the set of alignments associated with the ref-
erence word sequence Wi. If loss is based on words, then this
form is equivalent to the Latent Structural SVM first proposed
in [19]. We will also consider other units for loss (denoted be-
low as yi instead of Wi) which depart from the formalism in
that work.

Incorporating latent variables and recasting the con-
strained optimization as unconstrained:

L(α, θ) =
∑
i

[ max
ŷi,l̂i,Ŵi

(L(yi, ŷi) + αᵀφ(h, Ŵi, l̂i))

− max
li∈Wi

αᵀφ(h,Wi, li)]+ +
λ

2
||α||2

3Computing argmaxy α
ᵀφ(x,y) additionally requires efficient infer-

ence
4[x]+ = max(x, 0)

Fig. 1. The figure represents the decode score for the word
“cat” using monophone states.

Here α consists of parameters of the output layer of the DNN,
the language model scaling factor, and transition model pa-
rameters. φ corresponds to the structure of the log-linear
model. In addition, we would also like to update the other
parameters of the deep neural network θ using gradient de-
scent. Fig. 1 illustrates a simplified model using monophone
states. Algorithm 1 shows the full training procedure, em-
ploying stochastic sub-gradient descent for optimization.

This hybrid DNN-LSSVM model exhibits two nice prop-
erties, one practical and the other more theoretical. The
computational advantage is that the sub-gradient is sparse
– unlike gradients for other discriminative training crite-
ria. To see this, define the loss-augmented alignment as
φ(h, W̄i, l̄i) = argmaxŷi,l̂i,Ŵi

(L(yi, ŷi) + αᵀφ(h, Ŵi, l̂i))

and φ(h,Wi, l
∗
i ) = argmaxli∈Wi

αᵀφ(h,Wi, li). Then if
L(y∗i , yi) + αᵀφ(h, W̄i, l̄i) ≥ αᵀφ(h,Wi, l

∗
i ), the subgradi-

ent (omitting, for clarity, the L2 penalty on α) is:

∇αL = φ(h, W̄i, l̄i)− φ(h,Wi, l
∗
i )

otherwise it is 0.
For a particular frame, the error vector backpropagating

through the output and earlier layers of the DNN contains
only two non-zero values. Although not pursued in this work,
for systems with a large number of context-dependent tri-
phones (such as a recent state-of-the-art recognizer with 32k
outputs[20]), exploiting the sparsity of this model could lead
to large speed improvements: backpropagation of the error
signal through the output layer requires subtraction of 2|H|
vectors instead of a multiplication of |O| × |H| matrix with a
|H| vector (where |O| and |H| are the number of output and
hidden units in the last hidden layer, respectively).

A more theoretical observation is that the boosting param-
eter b in boosted MMI is equivalent to L2 regularization pa-
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rameter in the Latent SSVM framework. To see this, note that
in the boosted optimization problem:

min
α,ξ

λ

2
||α||2 + 1ᵀξ

s.t. ∀i, Ŵi 6= Wi

αᵀ(φ(h,Wi, l
∗
i )− φ(h, Ŵi, l̂i)) ≥ bL(yi, ŷi)− ξi

dividing the constraints by b and making a transformation of
variables α′ = α

b and ξ′ = ξ
b leads to the equivalent optimiza-

tion problem:

min
α′,ξ′

bλ

2
||α′||2 + 1ᵀξ′

s.t. ∀i, Ŵi 6= Wi

αᵀ(φ(h,Wi, l
∗
i )− φ(h, Ŵi, l̂i)) ≥ L(yi, ŷi)− ξ′i

Since we use different regularization parameters for the Struc-
tured SVM parameters α and DNN parameters θ, we will use
the boosting parameter b for the Latent Structured SVM pa-
rameters, and regularization constant λ for DNN parameters.

Algorithm 1 DNN-Latent SSVM training algorithm
1: Split training set T into K batches of size N , denoted
T0 . . . Tk

2: Set initial learning rate to β0 and learning rate decrease
to γ

3: for each i in 0 . . . k − 1 do
4: β = γiβ0
5: Calculate l∗ = argmaxl∈Y α

ᵀφ(h, y∗i , l) for each ut-
terance in Ti

6: Generate N-Best List.
7: Calculate ŷi, l̂i = argmaxyi,li L(y∗i , yi) +
αᵀφ(h, yi, li) for each i in batch

8: if L(y∗i , yi) + αᵀφ(h, ŷi, l̂i) ≥ αᵀφ(h, y∗i , l
∗
i ) then

9: ∇α(t)L = λα + 1
k

∑k
i=1(φ(h, ŷi, l̂i) −

φ(h, y∗i , l
∗
i ))

10: α(t+1) ← α(t) − β∇α(t)L
11: θ(t+1) ← θ(t) − β∇θ(t)L, where ∇θ(t)L is the

gradient with respect to the neural network parameters
12: end if
13: end for

3.1. Experiments

Given this framework, we would like to study five problems.
The first is to determine which units of loss – frame-level,
state-level, phone-level, or word-level – give us the best
recognition. The latter three losses are measured as the
number of substitutions plus deletions plus insertions, and
do not need a raw accuracy approximation since we only
need one loss-augmented alignment. Our second question

is to understand how sensitive the models are to the boost-
ing/regularization parameter. Third, since loss-augmented
inference maxŷ,Ŵ ,l̂ L(y, ŷ) +αᵀφ(h, Ŵ , l̂) currently uses an
N-best list for search, we would like to see how the size of the
N-best list affects recognition performance. Fourth, in initial
experiments, we discovered that convergence of this model
requires fewer utterances than other sequence-discriminative
training criteria, which we wish to quantify. Finally, we
would like to evaluate performance on an independent test
without extra parameter tuning.

3.2. Connection to boosted MMI

Since the proposed method is not the first margin-inspired
one, we would like to connect the SVM criterion to the more
familiar boosted MMI. The analysis is similar to [17]. As a
setup, define G(β;B) ≡ logβ

∑
b∈B β

b for β > 1. Note that
G(β;B) ≥ maxb∈B b, is monotonically decreasing for in-
creasing β, and G(β;B)→ maxb∈B b as β →∞. Also, note
that raw phone accuracy is related to its loss by L(l∗, l) =
|l| − P(l∗, l), where |l∗| is the number of frames. Defining
dφ(h, l, l∗) ≡ φ(h, l) − φ(h, l∗), the boosted MMI criterion
for one utterance in Structured SVM notation is:

argmax
α∈A

log
exp(αᵀφ(h, l∗))∑

l exp(αᵀφ(h, l)− b|l∗|+ bL(l∗, l))

= argmin
α∈A

log(1 +
∑
l 6=l∗

exp(αᵀdφ(h, l, l∗) + bL(l∗, l))))

Changing the bases of the natural logarithm and e to logβ and
β, respectively, adding L2-regularization, and taking the limit
as β →∞ recovers SVM criterion.

4. EXPERIMENTAL SETUP

4.1. Data and Language Model

We use the spontaneous portion of the ICSI meeting corpus
[21], recorded with near-field microphones. The training set
consists of 23,739 utterances – 20.4 hours – across 26 speak-
ers. The training set is based on meeting data used for adap-
tation in the SRI-ICSI meeting recognizer [22]. The test set
comprises 58 minutes of speech, taken from ICSI meetings
portions of the NIST Rich Transcription Evaluation Sets 2002
[23], 2004 [24], and 2005 [25]. Previous work [2, 26, 27, 28]
use this setup with an HTK recognizer, as described in [26].

4.2. Recognition System

We created a new Kaldi [29] recipe, adapted from the Switch-
board System, to create relatively strong baseline systems,
which we will make publicly available to encourage repro-
ducible research.

GMM-HMM systems were trained using best-performing
parameters of 2500 states and 40k Gaussians. Models were
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initially trained on MFCC features with first and second
derivatives. Then the GMM-HMM system was retrained us-
ing LDA+MLLT features, akin to the Switchboard setup.
Finally, speaker-adaptive training (SAT) was performed
using per-speaker feature-space maximum likelihood lin-
ear regression (fMLLR) transforms, which we refer to as
LDA+MLLT+SAT.

Alignments from the GMM-HMM systems and the
LDA+MLLT+SAT system were used to train the DNN mod-
els, using a 6-hidden-layer neural network with 2048 hidden
units per layer, as these parameters produced the best results.
Restricted Boltzmann Machine (RBM) pretraining [30] was
performed until the final hidden layer, with each hidden layer
using a sigmoid nonlinearity. Then cross-entropy training was
performed using alignments from the GMM-HMM systems,
which converged after 15 epochs.

We then updated the cross-entropy-trained DNN using
four sequence-discriminative training models: MMI, boosted
MMI, MPE, and sMBR. Some effort was made to ensure that
each baseline sequence-discriminative training system was
tuned for optimal performance. Each system converged after
3 epochs, with lattices regenerated after the first epoch of
training. Neither more epochs of training, nor more lattice re-
generation, produced better results on this corpus. For MMI,
and bMMI, frames were dropped according to the standard
recipe, and a boosting value of 0.05 gave best results. We also
performed some initial experiments with L2-regularization,
but this gave no benefit on the sequence-discriminative train-
ing systems. We also tuned learning rate, but found the
optimal parameter to be the standard 0.00001.

For most experiments, the DNN-Latent Structured SVM
system was trained on one sweep through the data, except
for convergence and testing on independent test sets which
were trained on two sweeps. The L2-regularization parame-
ter on the weights was set to 0.0001. Since alignments in this
framework are regenerated after every batch, we found that
a much higher learning rate of 0.0002 could be used. Due
to the aggressive step size, some utterances with poor align-
ments caused a temporary high bias to the silence phone: re-
moving alignments which contained 1.5 seconds more silence
than the “loss-augmented alignment” fixed this problem. This
occurred for fewer than 1% of the utterances. Batch size was
set to 512 utterances (after which alignments and N-best lists
were generated for the following batch), and learning rate de-
cay was set to 0.98, so that the learning rate at the end of
the epoch was roughly half that at the beginning. N-best lists
were generated from lattices using a unigram language model,
akin to other sequence-discriminative training criteria, and the
“loss-augmented alignment” was searched via an N-best list
of size 1000 unless otherwise noted. DNN-Latent Structured
SVM training used initial parameters from the cross-entropy
trained DNN-HMM system.

We use a trigram language model (LM) [22] that was
trained at SRI by interpolating a number of source LMs;

these consisted of webtext and the transcripts of the follow-
ing corpora: Switchboard, meetings (CMU, ICSI, and NIST),
Fisher, Hub4-LM96, and TDT4. We renormalized the lan-
guage model after removing words not present in the training
dictionary. The perplexity of this meeting room LM is around
70 on our test set. To be compatible with the SRI LM, we use
the SRI pronunciation dictionary, which includes two extra
phones compared to the CMU phone set – “puh” and “pum”
– to model hesitations.

5. RESULTS

Table 2 shows the the effect of loss and boosting parame-
ters on ASR performance. In nearly every case (except for
word loss with boosting parameter 1) the proposed systems
beat the other sequence-discriminative training approaches,
shown in Table 1. In particular, the best frame-level loss based
system reduces error by 2.6% absolute compared to a cross-
entropy trained baseline system, compared to 1.7% absolute
with a state-level MBR trained system. The relative improve-
ments of the system are in line with a comparative study of
sequence-discriminative trained systems in [31].

Somewhat surprisingly, frame-level loss seems to outper-
form other types of loss, albeit by a small margin. Of the
remaining loss units, phone-level loss seemed to perform the
best, although the differences between phone, state, and word
level loss are fairly small.

CE MMI bMMI MPE sMBR
22.7 21.3 21.2 21.1 21.0

Table 1. Word Error Rates for baseline systems. CE refers
to cross-entropy, MMI maximum mutual information, bMMI
boosted MMI, MPE minimum phone error, and sMBR state-
level minimum Bayes risk.

Loss/Boost 1 3 5 7 9
frame 20.2 20.3 20.1 20.4 20.5
state 20.7 20.7 20.6 20.7 20.7
phone 20.7 20.3 20.5 20.5 20.5
word 21.2 20.6 20.6 20.6 20.6

Table 2. Effect of loss unit and boosting parameter onthe
performance of DNN-Latent Structured SVM systems. λ =
0.0001, size of the N-best list is 1000.

Table 3 shows the effect of the size of the N-best list for
the best-performing of the frame-loss and phone-loss models.
The optimal size seems to be about 1000, although increasing
or decreasing the size of the N-best list by a factor of two
seems not to make much difference.

Table 4 shows the effect of updating the transition model
in the best model for each type of loss unit. In this case, we
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N-best size 100 500 1000 2000
frame 20.2 20.6 20.1 20.3
phone 20.7 20.5 20.3 20.5

Table 3. Effect of N-best list size on word error rate. For the
frame model the boosting parameter is 5, while for phone it
is 3.
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Fig. 2. Word Error Rate vs. Number of training utterances
seen for different sequence-discriminative training criteria

do not normalize the probabilities from the outgoing states to
sum to 1. This necessitated a change in the weighted FST
composition algorithm, as FSTs are composed under a log
semiring in the standard recipe, under the assumption that the
language and HMM models are roughly probabilities. For up-
dating the time transitions, we instead use a tropical semiring,
which generally produced ASR results that were the same or
0.1% worse than graphs produced with a log semiring. In any
case, updating the time transitions seems not to have a ma-
terial effect either way. For loss and phone-level units, the
results were the same, while results were slightly better for
word and slightly worse for state. It is likely that updating
transition parameters does not improve recognition results

Update time transitions? No Yes
frame 20.1 20.1
state 20.6 20.9
phone 20.3 20.3
word 20.6 20.4

Table 4. The effect of updating phone model temporal param-
eters on word error rate. The boosting parameter is 5 for the
frame model and 3 for the phone model.

In initial experiments comparing the latent SSVM, which
updated alignments after every batch, to a regular SSVM
whose alignments were updated only after each epoch, we
found that the latent SSVM converged to a better model
after seeing fewer training utterances. Figure 2 compares
two LSSVM systems to the standard sequence-discriminative
training criteria. We note that the proposed model needs
33 − 66% fewer utterances to converge, although with an
N-best list of size 1000, processing time per utterance seems
to be roughly 50% longer than standard systems.

Finally, given that these models were implicitly tuned on

the test set, we wanted to determine their performance on an
independent test set. We compared the best frame-level and
phone-level loss models to standard sequence-discriminative
systems on the dev and eval portions of the AMI meet-
ing corpus under the individual headset microphone (IHM)
condition. Each set consists of roughly 8 hours of speech;
more details can be found at [32]. As is shown in Table 5,
the latent Structured SVM models outperform the sequence-
discriminative training criteria, and the results are statistically
significant with p < 0.001 using a signed test for paired out-
comes. The boosted MMI system is not included here as
results on the AMI Dev and Test Sets were not better than
those from the cross-entropy model.

AMI Dev AMI Eval
CE 37.2 42.6
MMI 36.0 41.3
MPE 35.0 39.8
sMBR 35.0 39.9
LSSVM-frame 34.6 39.1
LSSVM-phone 34.5 38.9

Table 5. λ = 0.0001, for frame, boosting parameter is 5,
while for phone, it is 3.

6. CONCLUSION

In this work, we have proposed hybrid DNN-Latent Struc-
tured SVM acoustic models. These systems outperform
strong sequence-discriminative trained baselines, while often
requiring fewer than half the utterances to converge.

Some directions for future research include comparing
our method on a larger task to see if both the performance
and sample complexity generalize. Initial results using Kaldi
AMI Setup seem to match those on the ICSI meeting cor-
pus, but more work is needed. Second, currently, the “loss-
augmented alignment” in the training algorithm requires both
lattice generation and an N-best list, the latter of which seems
to increase the processing time per utterance roughly 50%
compared to that for extant sequence-discriminative training
criteria. Future work will include methods for faster search.

Caveats aside, DNN-Latent Structured SVM acoustic
models seem to offer a promising alternative to sequence-
discriminative training criteria. Moreover, this framework is
not specific to the DNN-HMM paradigm, and could be used
with other acoustic models such as the LSTM, or another
approximately log-linear model, such as [33].
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