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ABSTRACT
Deep Neural Network (DNN) has been well received as a
powerful machine learning model in a wide range of pattern
classification tasks. Despite its superior performance in han-
dling complex real-world problems, DNNs have been used
pretty much as a black box, without offering much insights
in terms of how and why high quality classification perfor-
mance has been achieved. To address this problem, this paper
studies the DNN hidden unit activities and presents a novel
interpretable DNN visualisation technique that projects the
hidden units of the DNN onto a meaningful 2-dimensional
subspace. The projected points are displayed with colours
to reflect the activation values for the purpose of visualisa-
tion. In this paper, the proposed technique is used to visualise
two DNN acoustic models trained on the multi-condition data
from the Aurora 4 corpus. The technique is able to produce a
two dimensional representation of the DNN “brain” with in-
terpretable regions. It also accentuates the effect of how the
behaviour of the hidden units changes across different layers.

Index Terms— deep neural network, visualisation, inter-
pretability

1. INTRODUCTION

This work is primarily motivated by the lack of interpretabil-
ity of the Deep Neural Network (DNN) models despite the
impressive performance it has achieved in solving many com-
plex real-world classification problems. In speech recogni-
tion, DNN has been used to improve acoustic modelling in
several ways. In a hybrid DNN/HMM system [1], a DNN is
used to predict the posterior probability of the senones, re-
placing the Gaussian Mixture Model (GMM) in the conven-
tional GMM/HMM systems. DNN has also been used as a
feature extractor in the tandem systems [2]. There have been
a number of techniques proposed to improve the robustness
of DNN-based acoustic models in terms of speaker adapta-
tion [3, 4, 5, 6, 7, 8] and noise compensation [9, 10, 11]. How-
ever, many of these techniques focused only on improving the
classification performance without offering much insights.
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Many of the work that attempts to understand the DNN
models come from the vision community [12, 13, 14, 15],
which is not surprising given the nature of the task. There has
not been much work from the speech community in analysing
and understanding the DNN acoustic models. The work
in [16] attempts to visualise how the speech features have
been transformed by each hidden layer in a 2-dimensional
space using t-distribution Stochastic Neighbour Embedding
(t-SNE) [17]. t-SNE has also been used to visualise the out-
puts of multilingual bottleneck layers [18], By contrast, this
paper proposes a novel DNN visualisation technique that em-
phasises on understanding the hidden units. Hidden units are
projected onto a 2-dimensional activity space using t-SNE
such that units that exhibit similar activity patterns are placed
close to one another. This allows interpretable regions to be
constructed for the purpose of visualising and analysing the
hidden unit activations. The proposed technique can also be
used to understand DNN models for other classification tasks.

Essentially, this paper will walk you through the process
of building a “brain model” for a DNN. Section 2 first de-
scribes the experimental setup. The first step, which is to
define a proper activity measure for each hidden unit, is de-
scribed in Section 3. Section 4 describes the next step, which
is constructing a 2-dimensional hidden activity space such
that the placement of the hidden units in this space is based
on the similarity of their activities. Section 5 describes how
to construct meaningful and interpretable regions in this 2-
dimensional activity space, which effectively groups the hid-
den units based on functionality. Section 6 explains how to
utilise the activity space to display the hidden unit activities
for visualisation, where activities for different phones, speak-
ers and noise attributes will be compared.

2. EXPERIMENTAL SETUP

Two DNN acoustic models trained on the Aurora 4 dataset [19]
are chosen for this study. The first acoustic model is trained
on a window of 11 frames of the Linear Discriminant Analy-
sis (LDA) [20] features. Each LDA feature is a 40-dimensional
vector projected from 39 × 7 Mel Frequency Cepstral Coef-
ficients (MFCCs) [21] features (including energy, delta and
delta-delta over a 7-frame window). The second model is
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trained on 11 frames of the 40-dimensional Constrained Max-
imum Likelihood Linear Regression (CMLLR) [22] trans-
formed features. A global CMLLR transform is estimated
for each speaker on top of the LDA features to maximise the
likelihood of a GMM/HMM system. Both of the DNN mod-
els have a 440-dimensional input layer and 7 hidden layers of
2048 dimension each. Sigmoid nonlinear activation functions
are used for all the hidden units. The LDA DNN model has
a 2031-dimensional output layer while the CMLLR model’s
output layer size is 2013. These models achieved 12.5%
and 10.1% word error rates on the Aurora 4 test set. All the
acoustic models are trained using Kaldi [23].

In this work, three attributes are considered: phone,
speaker and noise. For the phone attribute, 40 position-
independent phones are used as the attribute instances. For
the speaker attributes, there are a total of 83 training speakers
and 10 development speakers. For the noise attributes there
are 7 types of noise conditions (including the clean condition)
and 2 channel conditions to give a total 14 noise attribute in-
stances. There are 15.11 hours of speech (7137 utterances)
in the multi-condition training set and 8.94 hours of speech
(4620 utterances) in the development set.

3. HIDDEN UNIT ACTIVITIES

The first step towards building a brain model for a DNN is to
define an activity measure for each hidden unit. Suppose that
the hidden activation of the ith node in the lth layer at time
t is given by h(l)i (t), then the activity of the hidden unit with
respect to a certain attribute (e.g. phone, speaker or noise),
can be defined as an S-dimensional activity vector:

a
(l)
i =

[
a
(l)
i (1) a

(l)
i (2) . . . a

(l)
i (S)

]
(1)

where S is the total number of attribute instances and the sth
element of the vector is given by

a
(l)
i (s) =

∑
t γs(t)h
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i (t)∑S

s=1

∑
t γs(t)h

(l)
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γs(t) is the probability of associating attribute s with the
acoustic feature at time t. For the phone attribute, γs(t) can
be obtained using a forward-backward algorithm (soft align-
ment) or a Viterbi algorithm (hard alignment). For speaker
and noise attributes, γs(t) is set to 1 for all the frames that be-
long to attribute s and 0 otherwise. Note that

∑
s a

(l)
i (s) = 1

and a
(l)
i (s) ≥ 0 for all s1. Therefore, a(l)i (s) effectively

measures the weightage of the hidden unit’s activations with
respective to attribute s. A higher value of a(l)i (s) indicates
that the hidden unit will have a higher activation when the
acoustic frame belongs to attribute s, and vice versa.

1This is true for sigmoid units where h
(l)
i (t) ≥ 0. For other activation

functions, it may be necessary to rescale the activation values.

Fig. 1. Plots of normalised entropies for hidden units in dif-
ferent hidden layer. Hidden units are ordered according to as-
cending entropy values. Each row corresponds to an attribute
(top to bottom): senone, phone, speaker and noise.

Since a
(l)
i is a probability (sum-to-one) vector, we can

also measure the sensitivity of that hidden node with respec-
tive to an attribute using the normalised entropy measure:

E
(l)
i =

−
∑

s a
(l)
i (s) log a

(l)
i (s)

−
∑

s
1
S log 1

S

The values of E(l)
i lie in the range [0, 1]. A lower entropy

value means higher information content, which indicates a
higher sensitivity to a given attribute. A hidden unit is in-
sensitive to an attribute when E(l)

i = 1, which happens when
a
(l)
i is a uniform vector, i.e. a(l)i (s) = 1/S.

Fig. 1 shows the entropy profile for different hidden layers
of the LDA DNN acoustic model with respect to the senones,
phones, speakers and noise types. The hidden units are sorted
in ascending order according to the entropy values. In gen-
eral, there seems to be a consistent trend where the hidden
units become less sensitive to all the attributes as the depth of
the layer increases. In fact, there is a notable increase in the
number of insensitive hidden units ‘plateaued’ at the top of
the graph, where the normalised entropy is 1. This is clearly
observed starting from layer 3 for all the attributes. This sug-
gests that there are inactive hidden units in the DNN that do
not contribute much to the final classification performance.
To verify this, we prune the DNN model by removing hid-
den units whose entropy values based on the phone attribute
are above a certain threshold. Setting the threshold to be the
nth percentile of the entropy values of all the hidden units
will retain n% of the hidden units after pruning. Fig. 2 shows
the frame accuracies of the pruned DNN models on both the
training and development data. There is only a very small
drop in frame accuracies when up to 40% of the hidden units
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Fig. 2. Frame accuracies of the pruned DNNs on the training
and development data for different pruning thresholds.

% Hidden Layer Size
1 2 3 4 5 6 7

10 21 488 344 176 156 84 165
20 115 965 638 368 290 172 319
30 359 1331 911 539 430 291 440
40 734 1644 1158 702 569 422 505
50 1263 1874 1340 870 726 570 525
60 2008 2043 1488 1013 860 655 535
70 2048 2048 1489 1019 860 658 1913
80 2048 2048 1494 1259 860 1712 2048
90 2048 2048 1801 2048 861 2048 2048

Table 1. Comparison of hidden layer sizes for different lev-
els of entropy-based pruning. The ‘%’ column indicates the
percentage number of hidden units retained after pruning.

are removed. Beyond that, the classification accuracy quickly
drops to below 20% when 50% or more of the hidden units
are removed. A more aggressive pruning beyond 50% leads
to a large performance degradation. Table 1 shows the cor-
responding hidden layer sizes of the pruned DNN models for
different pruning thresholds. At 60% and above, the hidden
units being removed corresponds to those at the plateau re-
gion of Fig. 1. At 50% and below, sensitive units are being
removed, which results in a large performance degradation.

Besides, it is interesting to note that the hidden units in
the second hidden layer generally have a lower entropy with
respect to all the attributes. This suggests that the network is
potentially learning some attribute-specific information in the
first two layers. For the speaker and noise attributes, which
are not relevant to senone classification, the network may be
trying to identify useful information that could be used to sup-
press the speaker and noise effects in the subsequent layers. It
is also worth pointing out that the hidden units are generally
less sensitive to the speaker attribute.

4. HIDDEN ACTIVITY SPACE

A hidden activity space is a 2-dimensional space where the
position of the hidden units are determined such that hidden
units that exhibit similar activity measures are placed closer
together. Hence, the hidden activity space is specific to an
attribute. Given the activity vector of each hidden unit with
respect to an attribute (c.f. Eq. 1), the location of the hidden
units in the hidden activity space can be obtained by applying
the T-distribution Stochastic Neighbour Embedding (t-SNE)
projection method [17]. Fig. 3 shows the projection of the
hidden units for the different layers of the LDA and CMLLR
DNN models in the hidden activity space. The top two, mid-
dle two and bottom two rows of the graphs show the hidden
activity space with respect to the phone, speaker and noise
attributes, respectively. These spaces cannot be compared di-
rectly as they are obtained by learning separate t-SNE projec-
tions. By contrast, it is possible to learn a single hidden activ-
ity space for all the hidden units from different hidden layers
and across different DNN models, so long as a consistent set
of activity vectors are used to describe the hidden units. This
is useful as it allows easy comparison of models trained with
different acoustic features, or model architecture. There are
several interesting observations that can be made from Fig. 3,
which will be discussed in the following subsections.

4.1. The shape of the hidden activity spaces

The shape of the hidden activity space is given by the con-
vex hull of the projection of the hidden units in this space.
This is the shape of our ‘brain model’ for each hidden layer!
In general, the shape of the hidden activity spaces are rather
similar across different hidden layers and between the LDA
and CMLLR models. However, there is a noticeable differ-
ence in shape between the LDA and CMLLR models with
respect to the speaker attribute. This is expected given the
nature of the features these models are trained with. This sug-
gests that there exists similar ‘extreme’ hidden units across
different layers and even different DNN models that form the
convex hull of the shape. It will be shown later that these ‘ex-
treme’ points are indeed the sensitive hidden units with low
entropy values.

4.2. The distribution of the hidden units

The distribution of the hidden units varies tremendously
across different hidden layers. However, it looks relatively
more similar when comparing the same hidden layer across
the two different DNN models. This suggests that the func-
tionality of the hidden units changes dramatically from one
hidden layer to another.

For the phone attribute, the hidden units of the first layer
are more or less uniformly distributed over the entire space
except the ‘hollow’ region at the top left and the middle of the
space (see the next point for the discussion of the ‘hollow’
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Fig. 3. Projection of hidden units onto the hidden activity space with respect to phones (top 2 rows), speakers (middle two
rows) and noise (bottom 2 rows). The hidden activity spaces across different attributes cannot be compared directly.

regions). As the depth of the hidden layer increases to 3, two
regions with higher density are formed at the top and bottom.
At the same time, strips of hidden units begin to appear within
the hollow region. Finally, in the last layer, most of the hidden
units concentrate at the top left of the ‘hollow’ region.

Similarly, for the speaker and noise attributes, there are
‘hollow’ regions in their respective hidden activity spaces
with very few hidden units across all the hidden layers. The
hidden units in the first layer concentrate mostly at the bot-
tom of the space; while the final layer hidden units are mostly
at the top, forming a high density patch. As before, strips
of hidden units begin to surface within the ‘hollow’ region
starting from layer 3.

4.3. The ‘hollow’ region within the activity space

Fig. 4 depicts the condensed plot of the hidden units from all
the layers of the two DNN models for each attribute. In addi-
tion, each hidden unit is now denoted by a larger circle filled
with colours that reflect the entropy value of that hidden unit.
A darker colour corresponds to a lower entropy, which indi-
cates a more sensitive hidden unit. In general, more sensitive
hidden units are mostly projected onto the outer region of the
space; while less sensitive units concentrate in the middle.

Fig. 4. Hidden units shown as larger circles filled with colours
corresponding to their entropy values with respect to the
phone (left), speaker (middle) and noise (right) attributes.

What happen is that the t-SNE projection attempts to place
the highly sensitive hidden units (whose activity vectors are
essentially close to a ‘one-hot’ vector) as far apart as possible
from each other as well as from the insensitive hidden units.
Consequently, these highly sensitive hidden units tend to be
pushed to the edge of the space, forming the ‘extreme’ points
of the convex hull. Less sensitive units are found in the inner
region of the space. The formation of the ‘hollow’ regions
is the result of the gap created between the sensitive and in-
sensitive hidden units. The strips of hidden units within the
‘hollow region’ are in fact the insensitive hidden units that
form the plateau of the entropy profile graphs in Fig. 1.
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Fig. 5. Interpretable regions of the hidden activity space with respect to the phone (left), speaker (middle) and noise (right)
attributes. Some labels are omitted for clarity.

5. INTERPRETABLE ACTIVITY REGIONS

Now that the hidden activity space is constructed for the hid-
den units, we are now ready to partition the hidden activity
space into meaningful and interpretable regions according to
the attribute of interest. Fig. 5 illustrates the interpretable re-
gions of the hidden activity space for the phone, speaker and
noise attributes. These regions are created using the following
procedure:

1. Find a seed hidden unit for each attribute s;

2. Use the seed to initialise the regions, Ps

3. Set the ranking threshold to r∗ = 1;

4. For each s, recursively add all connected units where
r
(l)
i (s) ≤ r∗ to Ps;

5. Increment the threshold: r∗ ← r∗ + 1;

6. If r∗ ≤ S, go to step 4;

The above procedure requires a set of neighbouring hidden
units to be defined for each hidden unit. This is achieved
by perform Delaunay triangulation [24] to construct a trian-
gle mesh where the vertices of the triangles are given by the
hidden unit locations. The edges of the triangles define the
two connected vertices as neighbours. The procedure also re-
quires a rank vector to be computed for each hidden unit:

r
(l)
i =

[
r
(l)
i (1) r

(l)
i (2) . . . r

(l)
i (S)

]
(2)

where r(l)i (s) ∈ {1, 2, . . . , S} denotes the rank of attribute s
according to a(l)i (s) such that

r
(l)
i (s) < r

(l)
i (s′) ⇐⇒ a

(l)
i (s) > a

(l)
i (s′) ∀s, s′

The first step of the procedure finds a seed hidden unit for
each s, which has the largest average activity value computed
from itself and its immediate neighbours. The seeds are then
used to initialise the regions. The regions are expanded by
adding all the connected hidden units whose rank values,
r
(l)
i (s), are smaller or equal to a threshold, r∗. The thresh-

old is initialised as r∗ = 1 and progressively incremented
to gradually grow the regions until the entire hidden activity
space is covered.

Fig. 5 shows that the hidden units (of all the layers)
form clear attribute-dependent regions in the hidden activity
spaces. For example, the top left region of the phone activity
space corresponds to silence. Besides, the regions for two
similar phones, /eh/ and /ay/, are found next to each other, at
the bottom of the space. For the speaker attribute, speaker
051 occupies a large portion of the top left region of the space
while the regions for speakers 052 and 053 are very small.
For noise attribute, there are seven noise conditions, each has
two channel types, denoted by the subscript 1 and 2 respec-
tively. For certain noise conditions, such as clean and car,
the two channel regions are next to each other. For airport
and train, however, the channel regions are quite far apart.
Some noise attributes have large regions, such as street2,
clean1 and car1. Other noise attributes have relatively
smaller regions, such as babble1, clean2 and airport1.
Larger activity regions may correspond to more important
and distinct attributes since more hidden units are used to
identify them.

6. ACTIVITY VISUALISATION

Finally, we can use the hidden activity space to visualise and
interpret the activation of the hidden units. Each hidden unit
is visualised as a 2-dimensional triangle mesh constructed by
applying the Delaunay triangulation algorithm to the hidden

26



Fig. 6. Visualisation of the hidden unit activations for three
different phones: /sil/ (top), /sh/ (middle) and /er/ (bottom).

Fig. 7. Visualisation of the hidden unit activations for three
different speakers: 051 (top), 22h (middle) and 420 (bot-
tom).

unit locations on the hidden activity space. Since the vertices
of the triangles correspond to the hidden units, we can assign
a colour to each vertex according to their activation. Each
triangle is then filled with a gradient colour based on the lin-
ear interpolation of its vertex colours. Fig. 6, 7 and 8 show
the visualisation of the hidden unit activations of the CMLLR
model with respect to the phone, speaker and noise attributes,
respectively. Each column corresponds to one hidden layer.
Three attribute instances are chosen for each attribute. The jet
colour map is used to convert the hidden unit activations into
vertex colours. Blue colour indicates a low activation while
red colour correspond to a high activation. As expected, the
regions with high activation (red regions) correspond roughly
to the respective interpretable regions of the attributes as de-
picted in Fig. 5. For example, the /sil/ phone and the 051
speaker show high activity in the top left region of their re-
spective hidden activity spaces. On the other hand, clean1

shows a prominent high-activity region at the bottom of the
space.

In Fig. 6, the activity vector of the three phones, /sil/, /sh/
and /er/ are compared. For /sil/, the size of the high-activity
region at the top left corner increases with increasing hidden
layer depth. This shows that more hidden units are used to
classify silence in the deeper layers, many of which actually
correspond to the insensitive units as described in Section 3.
Similar patterns are also observed for the 051 speaker and the
train2 noise in Fig. 7 and Fig. 8 respectively. On the other
hand, for the /sh/ and /er/ phones, the high-activity regions are
relatively smaller compared to that of /sil/ and they become
more concentrated in deeper layers. This suggests that more

Fig. 8. Visualisation of the hidden unit activations for three
different noise types: clean1 (top), car1 (middle) and
train2 (bottom).

of the hidden units in the first few layers are used to classify
these two phones, perhaps in dealing with context, speaker
and noise variability.

So, far, we have developed a method of constructing a vi-
sualisable and interpretable hidden activity space to help un-
derstand and analyse the hidden activity patterns of a DNN.
We believe that having a better insight into how different hid-
den units response to different attributes will enable us to ma-
nipulate DNNs more effectively. Although not shown in this
paper, this visualisation technique can also be used to observe
changes in the hidden activity patterns over time. Hopefully,
this work will open up possibilities and inspire future work
to better understand, discover and manipulate DNNs. For the
future work, we will extend this work to develop new speaker
and noise adaptation methods for DNN.

7. CONCLUSIONS

This paper has presented a novel technique for analysing
and understanding DNN in terms of the activity patterns of
its hidden units. By examining the entropy of these activity
patterns, it is possible to identify insensitive hidden units
that have negligible contribution towards the final classifica-
tion performance, which can be removed from the network
without affecting much of its classification performance.
Moreover, a 2-dimensional hidden activity space can be con-
structed such that hidden units that exhibit similar activity
patterns are closer together in this space. The proposed tech-
nique is used to analyse two DNN models trained on the multi
condition data from the Aurora 4 dataset. The analysis reveals
that up to 40% of the hidden units can be removed without
affecting much of the classification performance. Moreover,
by measuring the sensitivity of the hidden units with respect
to different attributes, interpretable regions within the hid-
den activity space can be constructed to yield a meaningful
visualisation of the hidden unit activations. The size of the
activity regions may also reflect the importance of different
attributes. Besides, a consistent hidden activity space can be
constructed across different hidden layers and DNN models,
which make it possible to analyse how the hidden activity
patterns change from one layer to another.
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