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ABSTRACT

We propose two techniques to enhance the performance of recur-
rent neural network (RNN)-based acoustic models. The first tech-
nique addresses training efficiency. Because RNNs require sequen-
tial input, it is difficult to randomly shuffle training samples to ac-
celerate stochastic gradient descent based training. We propose a
“pseudo-shuffling” procedure that instead augments training sample
unexpectedness by skipping successive samples. The second pro-
posed technique is a novel “direct decoding” framework in which
the posterior probability of the RNN is inputted into a decoder with-
out conversion into a hidden Markov model emission probability. In
our large vocabulary speech recognition experiments with English
lecture recordings, the first technique significantly improved RNN
training efficiency, showing a 14.3% relative word error rate (WER)
improvement. The second technique further achieved an additional
3.1% relative WER improvement. Our sigmoid-type RNN achieved
a 10.7% better WER than same-sized deep neural networks without
using long short-term memory cells.

Index Terms— Speech recognition, recurrent neural network,
acoustic model

1. INTRODUCTION

Traditional speech recognition systems are based on the hidden
Markov model (HMM), in which an emission probability P(z¢|s:)
of observation z; given an HMM state s; at each time frame ¢ is
represented (see Fig. 1(a)). Before deep neural networks (DNNs)
gained much attention, the emission probability was represented by
Gaussian mixture models (GMMs). Recently, the DNN-HMM hy-
brid framework, in which DNNs are used to represent the emission
probability instead of GMMs, was proposed, showing much bet-
ter recognition accuracy than GMM-based acoustic models (AMs).
[1, 2]. Because DNNs originally represent the posterior probability
P(s¢|x¢), the emission probability is estimated by applying a Bayes
conversion in the DNN-HMM hybrid framework. The DNN-HMM
hybrid framework has been applied in many scenarios [3, 4, 5, 6]
and has achieved state-of-the-art recognition accuracy.

Recently, recurrent neural networks (RNNs) have been attract-
ing much attention for AMs. Because RNNs are able to represent
long-term time dependencies that DNNs cannot represent, RNNs
seem to be a promising approach to improve AMs. However, using
RNN:S is not particularly easy. Simple sigmoid or tanh-type RNNs
have often failed to produce better results than those obtained using
state-of-the-art baseline systems [7, 8]. As far as we know, there
are a few exceptions that report good results using simple RNNs.
In [9], deep RNNs were trained using a modified backpropagation
procedure. They reported a 4%—7% improvement using sigmoid-
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(a) Hidden Markov Model (HMM) b) Recurrent Neural Network (RNN
Fig. 1. Model structure of (a) HMM and (b) RNN.

type RNNs; however, they compared RNNs with smaller DNNs.'
No discussion was included to elucidate whether the RNNs could
beat DNNGs of the same size. Another study [10] proposed unfolded-
type sigmoid RNNs; however, they also compared larger RNNs with
smaller DNNs. Yet another study [7, 8, 11, 12] proposed the use of
long short-term memory cells (LSTMs), showing better performance
than DNNs. Although LSTMs appear to be promising, LSTMs nor-
mally entail higher computational cost than simple RNNs.? In this
paper, we demonstrate that even a small sigmoid RNN has the ability
to beat larger DNN-HMMs if the RNN-AM is appropriately trained
and used.

One difficulty of RNNs originates in the training procedure. It is
widely known that the neural network can be trained much more ef-
ficiently by the stochastic gradient decent if the training samples are
randomly shuffled [13]. For example, a 7% relative improvement of
the word error rate (WER) was reported by shuffling training sam-
ples [14]. On the other hand, training samples for RNNs must be
a sequence, which makes the framewise shuffling of training sam-
ples impossible. As far as we have investigated, only a single pa-
per [10] has tackled this problem; however, the authors proposed re-
initializing the context information in unfolded RNNs in each frame
to enable training samples to be shuffled. As a result, their model
lost the ability to use infinite context information, which is a key
ability of RNN models. In addition, their model could not be used in
a “folded” structure, which causes decoding to need a much higher
computational load. In contrast to the method above, our training
method does not “shuffle” but does “augment the unexpectedness”
of training samples by skipping successive training samples. We
show that this simple idea achieves much better RNNs compared
with the conventional training procedure.

Another difficulty with RNNs originates in the decoding pro-
cedure. Although RNNs have a strong ability to represent sequen-
tial structures, most previous studies that have used RNNs for AMs

Tn [9], RNNs were initialized from the DNNs by assigning additional
recurrent weights. Therefore, the RNNs were larger than the DNNs.

2In fairness to [8], the authors proposed a small representation of LSTMs
and achieved good results.
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[8,9, 10, 11, 12] were based on the DNN-HMM hybrid framework,3
in which dependencies in a state sequence are modeled by HMMs.
In this paper, we propose a novel “direct decoding” framework in
which the state dependency is modeled in the posterior probability
of the RNNs. In the direct decoding framework, the posterior prob-
ability of the RNNs is inputted to a decoder without conversion into
the frame-by-frame emission probability. In fact, the conventional
DNN-HMM hybrid framework can be regarded as one configuration
of this direct decoding framework. The direct decoding framework
achieves a better WER, especially when the RNN-AMs are trained
on the cross-entropy loss criterion.

The structure of this paper is as follows. In Section 2, an
overview of RNN-based AMs is presented. In Section 3, the pseudo-
shuffling procedure is proposed to efficiently train RNN-based AMs.
In Section 4, we revisit the hybrid framework of DNN and HMM.
We next describe the proposed direct decoding framework in Sec-
tion 5. Finally, the experimental results for large vocabulary speech
recognition using English lecture recordings are presented in Section

6.

2. RNN BASED ACOUSTIC MODELS

2.1. Model structure

Given an input sequence X1.7 = {1, ...,z }, standard RNNs cal-
culate the output y1.7 = {y1,..., yr} by iteratively applying, from
t = 1to T, the following equations.

H(Uin - ¢ + Unp - ce—1 + bp) (€))]
Yyt = G(Uno-ct+bo) 2)

Ct =

where U;n,Unn, and Uj, respectively denote weight matrices within
input-hidden, hidden-hidden, and hidden—output layers. Further, by,
and b, respectively denote the bias vectors for the hidden and out-
put layers, H denotes the activation function of a hidden layer that
applies the sigmoid function in an element-wise fashion, and G is an
output layer’s softmax activation function.

When applying RNNs to AM, each node in the output layer is
set to correspond to an HMM state. The ¢-th output of the RNN can
then be regarded as the posterior probability of the i-th HMM state
s; given input history x1.¢,

Ye.i = P(seilx1:0) 3)

because the entire input history x1.+ is inputted recurrently to form
the hidden layer’s activation c; (see the unfolded representation of
RNN in Fig. 1(b)).

Recently, many researchers have proposed deep RNNs [8, 9, 11,
12], which consist of multiple recurrent layers, sometimes with ad-
ditional non-recurrent layers. In this paper, we also use deep RNNs
in which each hidden layer has a recurrent connection.

2.2. Truncated back propagation through time (BPTT)

RNNs are usually trained by using the truncated backpropagation
through time (BPTT) procedure [17]. An overview and the pseudo
code of this method are shown in Figs. 2(a) and 3(a), respectively. In
this procedure, an RNN is first unfolded for 7" time steps, as shown
in Fig. 2 (a) (in this case 7" = 4). Forward propagation (Egs. 1

3Exceptions are those which used RNNs as a feature extractor (known as
the Tandem approach) [15] and those based on the connectionist temporal
classification model [7, 16].
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Fig. 2. Overview of truncated BPTT and one-sample BPTT.

(a) Truncated BPTT

for (t =0;t < num_samples;t =t + T){
RNN.truncated BPTT(C¢—1,X¢, o) X¢+T—1,T€ft) <o T€St47—1)

}

(b) One-sample BPTT

for (t =0;t < num_samples;t =t + 1){
RNN.one_sample_BPTT (Ct—_1, X, o » Xea7—1,T€ft47-1)

}

(c) One-sample BPTT with pseudo-shuffling (= proposed method)

for (loop = 0;loop < T;loop = loop + 1){
for (t = loop ; t < num_samples;t =t + T){
RNN.one_sample_BPTT(C;_1, X, - » X¢a7—1, T€ft27-1)
}
}

Fig. 3. Pseudo code of various truncated BPTT procedures.

and 2) is then conducted to calculate predictions v, ..., yt+7—1. Fi-
nally, errors for each prediction are back-propagated to calculate the
gradient for updating RNNs. In the case of training based on the
cross-entropy loss criterion, the error for prediction y; is the differ-
ence between prediction y; and reference ref;. This procedure is
repeated by shifting 7" training samples, as described in Fig. 3(a). It
is noteworthy that c;—; is essential to perform each iteration of the
truncated BPTT procedure because of Eq. 1, which makes frame-
wise shuffling of the training samples impossible.

3. ONE-SAMPLE BPTT WITH PSEUDO-SHUFFLING

3.1. One-sample BPTT

Before explaining the pseudo-shuffling procedure, we introduce
“one-sample BPTT,” which is a variant of truncated BPTT.* An
overview and the pseudo code of this method are shown in Figs.
2(b) and 3(b), respectively. Contrary to the case of the original
truncated BPTT, error is calculated only in the final prediction (in
this case, y:+3). This procedure is repeated by shifting samples
one-by-one, as described in Fig. 3(b).

Compared with the original truncated BPTT, the one-sample
BPTT has the advantage that the error calculated for each predic-
tion must be delivered 7-time back steps. On the contrary, in the
case of original truncated BPTT, errors calculated for the NON-final

4Although this algorithm was sometimes called “truncated BPTT” [18],
we refer to it as “one-sample BPTT” to discriminate it from the method de-
scribed in Sec. 2.2



prediction (in the case of Fig. 2 (a), y¢, Y¢+1, Ye+2) are delivered less
than T'-time back steps.

3.2. Pseudo-shuffling

It is widely known that the training efficiency of neural networks
is heavily dependent on the order of training samples [13, 14]. As
an extreme case, if the same M training samples are inputted as
mini-batch data, the average gradient obtained by the M samples is
exactly equal to that obtained by one sample. Therefore, in order
to make training efficient, the order of training samples is usually
randomized when training DNNs.

On the other hand, in the case of the original truncated BPTT,
the method uses successive 1" training samples for one update (Fig.
2(a)). Even in the case of the one-sample BPTT, successive training
samples are repeatedly inputted to the RNN (Fig. 3(b)). Those suc-
cessive samples could cause training RNNs to be highly inefficient
because samples from adjacent frames of the speech stream are often
very similar to each other.

To improve the BPTT procedure, we propose a pseudo-shuffling
procedure with one-sample BPTT. The pseudo code of this method
is described in Fig. 3(c). The differences between this method with
and without pseudo-shuffling are indicated in red. In the pseudo-
shuffling procedure, the training samples for BPTT are selected by
skipping 7" samples. By looping 7" times, all the training samples
are traversed. Using this procedure, the RNN is trained on at least 7-
frame different training samples for each iteration of training. This
procedure does not randomize the order of training samples, but in-
stead “augments the unexpectedness” of training samples. We ex-
perimentally show the superiority of this method in Section 6.

3.3. Mini-batch processing for RNN training

The mini-batch processing makes neural network training much
more efficient, especially when the training is done on GPGPU ma-
chines. In the case of DNNs, making a mini-batch of B samples
is very easy: we just randomly select B training samples. On the
contrary, in the case of RNN training, we must keep the sequential
nature of the training samples. Therefore, some scheme is needed to
realize mini-batch training for RNNs.

In this paper, we use the on-the-fly shuffling scheme [19] in
which a mini-batch consists of randomly lined-up B sequences of
training samples (see Fig. 2 in [19]). Note that if we use conven-
tional truncated BPTT with mini-batch processing, the mini-batch
size B should be smaller (e.g., B = 16) than the case of DNN
training (e.g., B = 256), because the number of training samples
observed for one update is B - T'. In the case of one-sample BPTT,
the number of training samples for one update is B, so we can use
the same value as used for DNN training.

It is noteworthy that the on-the-fly shuffling procedure does not
solve the problem of using successive training samples, which we
mentioned in the previous section. Although on-the-fly shuffling
achieved a nice improvement in WER in its original paper [19], our
experiment revealed that the on-the-fly shuffling is not enough to
obtain good RNN.

4. DNN-HMM HYBRID FRAMEWORK

We now move on to the topic of a decoding procedure. Before in-
troducing our proposed framework, we first review the conventional
DNN-HMM hybrid framework.
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4.1. Overview of the DNN-HMM hybrid framework

Traditional speech recognition systems are based on the noisy chan-
nel model with HMM-based AMs. In this framework, a word se-
quence W, given observations X1.7, is estimated as follows.

W = arg max P(W|x1.1) 4
W
_ P(X1T|W)P(W)
= o ZZLOSE ®
~  arg max P(xlzT|SI:T)P(SI:T|W)P(W). ©)
1% P(xy.r)

In Eq. 6, s1.7 = {s1,...,s7} denotes a sequence of HMM states
and Viterbi approximation is used. Term P(x1.7|s1.7) denotes the
probability of emitting observations x1.7 from si.7. According to
the structure of HMM, z; only depends on s; (see Fig. 1(a)). There-
fore P(x1.7|s1.7) can be calculated as a product of the emission
probability P(z¢|s:) as

P(x1.r|sur) = HP(xt\st)‘ 7

t=1

Before DNN-AMs gathered much attention, P(x¢|s:) was usu-
ally calculated using GMMs. For the remaining terms in Eq. 6,
P(s1.7|W) is calculated as a product of the HMM’s transition prob-
ability and word pronunciation probability, and P(W) is calculated
using a language model. Because P(x.r) is constant for each
hypothesis, it is ignored in the argmax calculation.

In the DNN-HMM hybrid framework [1, 2], emission probabil-
ity P(wx¢|s;) is calculated using DNNs instead of GMMs. Because
the DNNs originally represent the posterior probability P(s¢|x¢),
emission probability P(x|s;) is calculated using Bayes’ rule as

P(ét‘.’lft)P((lft) o P(st\xt)
P(St) P(St) '

P(,rt\st) = (8)
Here, P(s:) can be estimated by counting the number of states in
the aligned training data. Because P(x:) is constant for each HMM
state, it is ignored in the argmax calculation.

4.2. Problem of the combination of RNN and HMM

In the previous studies [8, 9, 10, 11, 12], RNN outputs P(s¢|x1:¢)
are also divided by P(s¢), as they are in the case of DNN-HMMs.
Here, it is noteworthy that if we divide P(s¢|x1.¢) by P(st), we
obtain a value that is proportional to P(x1:¢|s¢) instead of P(x¢|s¢),
as follows.

P(st|x14) _ P(xu1[se)
P(s¢) P(x1:4)

o P(x1:¢]s¢). ©)

First, P(x1:¢|s¢) is no longer proportional to P(z|s;) because
the previous input history xi.¢—1 and s¢ have strong dependency
in RNNs. Therefore, this value cannot be used as-is in Eq. 7. A
practical trick to deal with P(x1.¢|s¢) in decoding is the following:
Let X1.7 = {&1,..., &7} be a sequence in which &, is defined as
T+ = X1:¢+. We then reconsider the recognition problem as a problem
to estimate word sequence W given observations Xi.7. This trick
works well in practice. However, it is worth noting that the RNN
has the power to estimate not only the current emission probability
P(#¢|st) = P(x1:¢|s¢) but also the emission probability of the
previous observation P(Z:—1|s¢), as shown below.

P(ihus,,):P(xl:ffl\st):/ P(xuals)dze.  (10)



Unfortunately, HMM has no means to incorporate P(&—1|s;), even
if this value is already calculated.” Therefore, the power of RNNs
cannot be used fully in the DNN-HMM framework. This problem
occurs as long as the framework is based on state-based emission
probability.

5. DIRECT DECODING FRAMEWORK

5.1. Overview of the direct decoding framework

Instead of using the DNN-HMM hybrid framework, we propose a
“direct decoding” framework in which the RNN outputs are used
without frame-by-frame Bayes conversions. The direct decoding
framework is represented as follows.

W= 11

12)

arg max P(W|x1.7)
W

12

arg max P(W|s1.7) P(s1.7|X1.1).
w

In Eq. 12, Viterbi approximation is used as in the conventional
framework. In general, P(s1.7|x1.7) in the equation above is very
difficult to use in decoding because the scores for all combinations of
s1.7 in the recognition hypotheses need to be calculated. Therefore,
instead of a strict estimation of P(s1.7|x1.¢), we approximately es-
timate P(s1.7|x1.¢) by using RNN outputs P(s¢|x1.¢), as follows.

|
-

P(s1.r|x1:7) P(s¢|s1:t—1,x1:7) 13)
t=1
T
~ [ Psilsri-1,x14) (14)
t=1
T
~ [ PGsilx). (15)

o«
Il
_

Equation 13 is derived from Bayes’ rule and strictly holds. In Eq. 14
we assume that the posterior distribution of s; can be well estimated
without depending on future observations X(;11).7. Generally, this
assumption does not hold; however, we can expect this approxima-
tion to work when sufficient future information is included in x,
which can be achieved by splicing the input feature or delaying the
reference label.® Finally, in Eq. 15, we assume that the posterior
probability of P(s¢|s1:t—1,X1:¢) can be well approximated by the
outputs of RNN P(s¢|x1:¢). It is important to note that this approx-
imation does not equal the assumption of the independence between
st and s1:¢+—1. Even when s; and s1.+— are strongly dependent, one
can expect this approximation to work well if an RNN has a strong
power to estimate s from observation x1.; alone. Although this ap-
proximation is a coarse one, experimentally, it works.
The remaining term in Eq. 12, P(W|s1.7), is calculated as

P(s1.0|W)P(W)

P(W|51;T) = P(SLT)

(16)

Here, P(s1.7|W) and P(W) are calculated in the same manner as in
the HMM-based framework. Term P(s1.7) can be estimated from
the state sequence in aligned training data using conventional lan-
guage modeling tools. In this study, we used a bigram model to

5Practically, it is not easy to calculate, but theoretically, it can be.
This assumption can be completely removed by using bi-directional
models [20], which will be explored in our future work.
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calculate P(s1.7), as shown below.

T
P(sir) ~ [ [ P(selse1). (17)
t=1
5.2. Relation to the DNN-HMM hybrid framework
By inputting Eq. 16 into Eq. 12, one can obtain
W = arg max Lz Xen) Pleir|W)PW) (18)

w P(s1.1)

Comparing Eqs. 6 and 18, it is apparent that while P(x1.7|s1:7)
is calculated by Egs. 7 and 8 in the DNN-HMM framework,
P(s1.7|x1:7)/P(s1.7) is calculated in the direct decoding frame-
work. Recall that the DNN outputs are divided by P(s;) frame-by-
frame in the DNN-HMM framework (Eq. 8). Hence, the difference
between the DNN-HMM and direct decoding frameworks can be
summarized by the method used to calculate P(si.7). In fact, if
we use a unigram probability P(s;) in Eq. 17, then results based
on the direct decoding framework become identical to those based
on the DNN-HMM hybrid framework. Therefore, the DNN-HMM
hybrid framework can be regarded as one configuration of the direct
decoding framework.

5.3. Implementational issues

We modified our decoder to enable the calculation of P(s¢|s¢—1) for
Eq. 17 when expanding the recognition hypotheses. In our imple-
mentation, each hypothesis contains the previous HMM-states, and
the decoder evaluates each hypothesis according to Eq. 12 ~ Eq.
17. We would like to point out that if the decoder is based on the
weighted finite state transducer (WFST) H o C' o L o G, which con-
verts the HMM-state sequence into a word sequence, the same thing
can be done by composing S~ with H o C' o L o G.” Here, S™*
is a WFST from an HMM-state sequence to the same HMM-state
sequence in which each arc has probability P(s; \st_l)_l.

5.4. Sequence discriminative training for the direct decoding
framework

It is widely known that DNNs trained using a sequence discrimina-
tive criterion (e.g., the MMI or SMBR criteria) achieve better WER
than those trained with a cross-entropy loss criterion [14, 22]. The
original form of the MMI objective function for DNN training is de-
scribed as follows.

xl:Tlsl:T)NP(Sl:T‘W)

MMI gy _ Ll
F (0) = ;log >wr P(xvr|sir) P(si.r|W’) )

Here, u indicates the utterance ID, 6 indicates the parameters to be
updated, and « is the acoustic scaling parameter.

If we used the direct decoding framework, this equation also
should be modified to meet the framework. In this case, the MMI
objective function for network training becomes

P(Wisi.¢)P(s1r|x1.1)"
]_—IMI\/II 0) = 1
O = 08 a1 P(sror )

(20)

In practice, this modification is done by replacing the DNN-HMM-
framework-based lattice generation procedure with the direct-
decoding-based one.

"That was not done for this study because our current decoder is based on
C o L oG in [21], and the authors had insufficient resources to test H o C' o
L o G-based decoding in that particular study.



Table 2. Frame accuracy (FA) and word error rates (WER) of RNNs with different training procedures.

Model Training BPTT On-the-fly FA (%) WER (%) Number of
type method step (=7') | shuffling(=B) || on Dev set | Dev set [ Tst2013 | parameters
Truncated BPTT 16 16 539 16.75 22.17
RNN.512.3 One-sample BPTT 9 256 56.2 16.40 21.94 5.6M
One-sample BPTT w/ pseudo-shuffling 9 256 62.0 14.10 18.83
RNN.512.5 | One-sample BPTT w/ pseudo-shuffling 9 256 62.6 13.77 17.96 6.6M

Table 3. Word error rates (WER) of RNNs with different decoding frameworks.

Model Framework N-gram calculation WER (%) Number of
type in Eq. 17 Deyv set [ Tst2013 | parameters
P(s1)0® 411 | 19.08
DNN-HMM Framework P(s¢)10 (=baseline) 14.10 18.83
RNN.512.3 Plsi)'2 1432 | 18.84 5.6M
Plstlse_1) 0 1431 | 20.12
Direct Decoding Framework P(st|si—1)T° 13.59 18.67
P(St)0'75 . P(st\st,1)0'75 1370 18.23
RNN.512.5 DNN-HMM Framework P(s¢)!Y (=baseline) 13.77 17.96 6.6M
Direct Decoding Framework | P(s¢)77 - P(s¢[s;—1)0™ 13.49 17.63

Table 1. Frame accuracy (FA) and word error rates (WER) of DNNZs.

Model FA (%) WER (%) Number of

type on Dev set | Dev set [ Tst2013 | parameters
DNN.512.5 50.2 15.36 20.41 5.6M
DNN.1024.5 52.4 13.80 18.71 13.3M

6. EXPERIMENTS

6.1. Evaluation settings

We evaluated our system based on the IWSLT 2013 ASR English test
dataset (designated as Tst2013) [23], which includes 4.8 hours (28
speakers) of TED lecture recordings. As a development set to tune
system parameters, we used 5.7 hours (29 speakers) of TED lecture
recordings (a combination of the data called dev2010, tst2010, and
dev2012).

As training data for the AMs, we used a 346-hour speech corpus,
which comprised 163 hours of TED recordings, 102 hours of the
HUB4 corpus, and 81 hours of the WSJ corpus. A DNN-based AM
with five hidden layers, each of which had either 512 or 1,024 nodes,
was trained as a baseline model. The output layer had 7,838 nodes
that corresponded to context-dependent phone HMM states. As
acoustic features, 72 dimension filter-bank features (24 filter-bank
features, delta coefficients, and delta-delta coefficients) with mean
and variance normalization per speaker were used. We concatenated
the features of both the previous and following seven frames (15
frames of features in total) when inputting to DNNs. Each model
was initialized using the discriminative pre-training method [24]
and was fine-tuned using the standard stochastic gradient descent
based on cross-entropy loss criterion. The initial learning rate® was
set to 1.0 and the mini-batch size was set to 256. The learning rate
was tuned during training using the development set. Training was
iterated until the relative improvement of the frame accuracy of the
development set became less than 0.1%.

We then trained RNN-AMs with three or five hidden layers, each
of which had 512 nodes. In both RNN models, every hidden layer

8Qur training tool uses the mini-batch average of gradient instead of mini-
batch sum of gradient, which some AM tools (e.g., Kaldi[25]) use. Therefore,
the initial learning rate must be set relatively high.
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had a recurrent connection. The output layer had 7,838 nodes, which
was the same as the DNN models. The 72 dimensional filter-bank
features were used as acoustic features. When features were fed into
the RNNs, the prior and subsequent three frames of features were
concatenated. Additionally, we delayed the reference label by four
frames. As a result, the RNNs could observe seven future frames to
predict the reference label; configuration was used to be fair to the
DNN models. We initialized the RNNs by using the sparse initial-
ization technique [26] with no pre-training. The RNNs were trained
using the method described in Section 3. The training methods are
compared in the next section. The initial learning rate was set to 2.0
for the three-hidden-layer model and 1.0 for the five-hidden-layer
model, and tuned using the development set. When training the
MMI, networks were copied from the cross-entropy-trained models,
and three epochs of training were conducted with a learning rate of
0.0025.

In addition, a bigram model of the HMM-state for Eq. 17 was
estimated from the aligned training data. Through our preliminary
evaluation, we found that the probability that is estimated by a lan-
guage modeling toolkit tends to become too high for known (ob-
served) sequences and too low for unknown sequences. As we divide
the hypothesis score by P(s1.7), too-high probabilities of P(s1.7)
for known sequences become too-low hypothesis scores for known
sequences. To mitigate this problem, we used two smoothing meth-
ods that (1) added a constant value to each entry when estimating
bigrams,” and (2) interpolated a bigram with unigram probability.
We present the experimental results in the following subsection.

Finally, we trained a 4-gram language model with modified
Kneser-Ney smoothing [28]. We first trained two models; one was
trained based on 184K sentences of the TED transcription and an-
other was trained based on selected 10M sentences from the English
Gigaword corpus, fifth edition. These language models were then
interpolated and used in the decoder. When decoding, the language
model weight was tuned by the development set.

6.2. Evaluation of one-sample BPTT with pseudo-shuffling

We first evaluated the conventional DNN-based models. The results
are presented in Table 1. In this table, DNN.z.y indicates a DNN

9We used the SRILM toolkit [27] with the setting “-gtlmax 0 -
addsmooth2 5.”



Table 4. Word error rates (WER) of RNNs with MMI training

Model type Decoding MMI training WER (%)
framework framework Dev set | Tst2013
DNN-HMM DNN-HMM (Eq. 19) 12.31 16.73
RNN.512.3 Direct Decoding (Eq. 20) 12.71 17.92
Direct Decoding DNN-HMM (Eq. 19) 12.20 16.34
Direct Decoding (Eq. 20) 12.25 16.65

with y hidden layers, each of which has = nodes. Although the big
DNN with five hidden layers of 1,024 nodes achieved an 18.71%
WER, the small DNN with 512 nodes produced much a worse WER
of 20.41%. This result indicates the importance of the number of
parameters for DNN models.

We then evaluated an RNN with three hidden layers with 512
nodes. This RNN had the same number of parameters as the smaller
DNN (5.6M parameters). The frame accuracy (FA) and WER with
various training methods are listed in the upper three columns of Ta-
ble 2 (denoted as “RNN.512.3”). Note that we tested various com-
bination of parameters (including the learning rate), and the most
representative results are listed in the table. When the RNN was
trained using the truncated BPTT, while the FA (53.9%) became bet-
ter than DNN models, the WER (22.17% for Tst2013) was much
worse than the DNNs.! An RNN trained by the one-sample BPTT
slightly improved the FA and WER; however, the WER was still
much worse than that of the DNNs. Finally, an RNN trained by the
one-sample BPTT with pseudo-shuffling achieved a 5.8-point bet-
ter FA (56.2% to 62.0%) and 3.11-point better WER (21.94% to
18.83%) for Tst2013. This WER was 1.58 percentage points bet-
ter even than the same-sized DNN (20.41%). The difference be-
tween the one-sample BPTT with and without pseudo-shuffling was
just the order of the training data used, as described in Section 3.2.
These results indicate how important the sampling order is to train
good RNNs.

We also trained an RNN with five hidden layers of 512 nodes
with one-sample BPTT and pseudo-shuffling. Although this model
had only 6.6M parameters, it achieved a much better WER (17.96%)
even than the larger DNNs (18.71%) with 13.3M parameters.

6.3. Evaluation of the direct decoding framework

Before evaluating the direct decoding framework, we again evalu-
ated the smaller RNN (three hidden layers, 512 nodes) based on the
DNN-HMM framework. The results are listed in the upper part of
Table 3. Note that using unigram P(s;) instead of bigram in Eq. 17
is equivalent to using the DNN-HMM framework, as we described
in Section 5.2. In this experiment, we additionally investigated the
results with various values of scaling parameter for P(s;), which is
known as the prior smoothing [29]. As shown in the table, a prior
smoothing of 0.8 or 1.2 produced no improvement, but instead de-
graded the WER. Therefore, we set a baseline with P(st)l'o. In
this case, the WER for Dev and Tst2013 was 14.10% and 18.83%,
respectively.

We then evaluated the same RNN with the direct decoding
framework. The results are shown in the middle of Table 3. When
we used bigram P(s¢|s;—1) with a scaling factor of 1.0, the WER
was degraded to 14.31% and 20.12% for Dev and Tst2013, respec-
tively. However, when we used a scaling factor of 1.5, the WER for
Dev was significantly improved to 13.59%. The WER for Tst2013
was also improved to 18.67%, which is slightly better than that of the

10Note that it is often observed that a model with better FA produces worse
WER, especially when comparing different types of networks.
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baseline DNN-HMM framework (18.84%). Finally, the logarithmic
interpolation of unigram and bigram (P(s;)% ™ - P(s¢|s¢—1)%" )
gave us a further improvement for Tst2013, and the WER became
18.23%, which was 10.7% better than a DNN of the same size. The
WER for Dev showed a slight degradation (13.70%); however, it was
still significantly better than the case of the DNN-HMM framework
(14.10%) and the score of the same-sized DNN (15.36%).

We also evaluated the larger RNN with five hidden layers of 512
nodes. The results are shown in the last two columns of Table 3. For
this RNN, the direct decoding framework again achieved a better
WER for both Dev and Tst2013. The final WER for Tst2013 was
17.63%, which was 1.08 points better than the much larger DNN
with 13.3M parameters. These results indicate the superiority of the
direct decoding framework.

Finally, we evaluated the effect of MMI training based on the
direct decoding framework. In this experiment, we used a setting of
P(54)%™ - P(s¢|s:—1)%". The results are listed in Table 4. Here,
we used an RNN with three hidden layers of 512 nodes. First, when
the decoding framework was the DNN-HMM framework, an RNN
trained by a “DNN-HMM based MMI-criterion” (Eq. 19) showed a
significant improvement, and achieved 12.31% and 16.73% WERs
for Dev and Tst2013, respectively. In contrast, an RNN trained by
a “direct-decoding-based MMlI-criterion” (Eq. 20) showed much
worse results: 12.71% and 17.92% WERSs for Dev and Tst2013,
respectively. These results were within our expectations because
there was a mismatch of the training and decoding criteria. When
the decoding framework was the direct decoding framework, an
RNN trained by a direct-decoding based MMI-criterion showed
slightly better results than those of the DNN-HMM case: 12.25%
and 16.65% WERs for Dev and Tst2013, respectively. Contrary to
our expectations, the best results were obtained by an RNN trained
by a DNN-HMM based MMlI-criterion with the direct decoding
framework (12.20% and 16.34% WERSs for Dev and Tst2013, re-
spectively). We did not expect this result because there was a
mismatch between the training and decoding criterion. Note that we
used a unigram language model for the MMI training, which was
different from the language model that we used for decoding. We
speculate this mismatch might have caused the unexpected behavior
above. In either case, the direct decoding framework showed better
results than the DNN-HMM framework, even when the model was
trained based on the MMI criterion.

7. CONCLUSION

This paper proposed two techniques to enhance the performance
of RNN-AMs. The first is the one-sample BPTT procedure with
pseudo-shuffling that accelerates training efficiency by augmenting
the unexpectedness of training samples. The second is the direct de-
coding framework for RNN-AMs, which uses RNN outputs without
frame-by-frame Bayes conversion. Both methods significantly im-
proved the performance of RNN-AMs, and our small RNN-AM:s fi-
nally achieved much better results than the larger DNN-based AMs,
without using complicated network structures like LSTMs.
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