
SPARSE NON-NEGATIVE MATRIX LANGUAGE MODELING FOR GEO-ANNOTATED
QUERY SESSION DATA

Ciprian Chelba and Noam Shazeer

Google, Inc.,
1600 Amphitheatre Parkway

Mountain View, CA 94043, USA
Email: {ciprianchelba,noam}@google.com

ABSTRACT

The paper investigates the impact on query language mod-
eling when using skip-grams within query as well as across
queries in a given search session, in conjunction with the geo-
annotation available for the query stream data. As modeling
tool we use the recently proposed sparse non-negative ma-
trix estimation technique, since it offers the same expressive
power as the well-established maximum entropy approach in
combining arbitrary context features.

Experiments on the google.com query stream show
that using session-level and geo-location context we can ex-
pect reductions in perplexity of 34% relative over the Kneser-
Ney N-gram baseline; when evaluating on the ‘”local” subset
of the query stream, the relative reduction in PPL is 51%—
more than a bit. Both sources of context information (geo-
location, and previous queries in session) are about equally
valuable in building a language model for the query stream.

Index Terms— language modeling, geo-location, query
session, sparse non-negative matrix, voice search

1. INTRODUCTION

The google.com query stream is a rich data source for lan-
guage modeling (LM) work. In addition to making available a
very large amount of data, the query stream is annotated with
geo-location information at various resolution levels, query
order within a one day search session, as well as time stamp.

We have recently proposed a novel LM paradigm based
on Sparse Non-negative Matrix (SNM) estimation [9], [9a].
When trained with n-gram features, the SNM-LMs were
shown to perform almost as well as Kneser-Ney ones [7]. In
addition, when pruned using a mutual information-based al-
gorithm, the SNM n-gram LMs suffer less from aggressive
pruning and significantly outperform entropy pruning for the
well-established Katz [6] and interpolated Kneser-Ney mod-
els, as shown in [2]. The SNM-LM paradigm allows one
to combine arbitrary features, offering the same expressive
power as the well-established Maximum Entropy approach.

It is thus well suited to building LMs that incorporate the rich
features available with the query stream data.

A way of leveraging long distance context is to use skip-
grams [8], [11]. Skip-grams are a generalization of regular n-
grams where in addition to allowing adjacent word sequences,
words are also allowed to be skipped, thus covering a longer
context without being hampered as much by data sparsity.
Previous work has revealed that training a model with skip-
gram features is able to compete with neural network-based
models [12]. SNM skip-grams have been shown to be as
adept at modeling long distance dependencies as the RNN-
LM approach, see [9]. In this work we investigate the im-
pact on query language modeling when using within query
skip-grams, as well as across queries in a given session, in
conjunction with the geo-annotation available for the query
stream data. We use SNM-LM as modeling tool.

In the remainder of this paper we describe the SNM-
LM paradigm (Section 2), describe our approach to lever-
age session-level skip-gram and geo-annotation for language
modeling of the google.com query stream (Section 3),
evaluate it experimentally (Section 5) and discuss related
work (Section 6). We end with conclusions and future work
in Section 7.

1.1. Privacy Considerations

Before delving into the technical details, we wish to clarify
the privacy aspects of our work with respect to handling user
data.

All of the query data used for training and testing models
is strictly anonymous; the queries bear no user-identifying in-
formation. The only data saved after training are vocabularies
and n-gram counts.

2. SPARSE NON-NEGATIVE MATRIX LANGUAGE
MODELING

In this section we describe our new paradigm without working
out all the derivations. The interested reader can find these

8978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

in [9].

2.1. Model definition

In the Sparse Non-negative Matrix (SNM) paradigm, we rep-
resent the training data as a sequence of events E = e1, e2, ...
where each event e ∈ E consists of a sparse non-negative
feature vector f and a sparse non-negative target word vec-
tor t. Both vectors are binary-valued, indicating the presence
or absence of a feature or target word, respectively. The size
of f depends on the total amount of features over all events,
whereas the size of t corresponds to the size of the vocabu-
lary V . Hence, the training data consists of |E||Pos(f)|(|V|)
training examples, where Pos(f) denotes the number of pos-
itive elements in the vector f . Of these, |E||Pos(f)| are pos-
itive (presence of target word) and |E||Pos(f)|(|V| − 1) are
negative (absence of target word),

A language model is represented by a non-negative matrix
M that, when applied to a given feature vector f , produces a
dense prediction vector y:

y = Mf ≈ t (1)

Upon evaluation, we normalize y such that we end up with a
conditional probability distribution PM(t|f) for a model M.
For each word w ∈ V that corresponds to index j in t, and
its history that corresponds to feature vector f , the conditional
probability PM(tj |f) then becomes:

PM(tj |f) =
yj∑|V|

u=1 yu

=

∑
i∈Pos(f)Mij∑

i∈Pos(f)

∑|V|
u=1Miu

(2)

For convenience, we will write P (tj |f) instead of PM(tj |f)
in the rest of the paper.

As required by the denominator in Eq. (2), this compu-
tation involves summing over all of the present features for
the entire vocabulary. However, if we precompute the row
sums

∑|V|
u=1Miu and store them together with the model, the

evaluation can be done very efficiently in only |Pos(f)| time.
Note also that the row sum precomputation involves only few
terms due to the sparsity of M.

2.2. Adjustment function and metafeatures

We let the entries of M be a slightly modified version of the
relative frequencies:

Mij = eA(i,j)Cij

Ci∗
(3)

where C is a feature-target count matrix, computed over
the entire training corpus and A(i, j) is a real-valued func-
tion, dubbed adjustment function. For each feature-target pair

(fi, tj), the adjustment function computes a sum of weights
θk(i, j) corresponding to k new features, called metafeatures:

A(i, j) =
∑
k

θk(i, j) (4)

From the given input features, such as regular n-grams and
skip-grams, we construct the metafeatures as conjunctions of
any or all of the following elementary metafeatures:

• feature identity, e.g. [the quick brown]

• feature type, e.g. 4-gram

• feature count Ci∗

• target identity, e.g. fox

• feature-target count Cij

Note that the seemingly absent feature-target identity is repre-
sented by the conjunction of the feature identity and the target
identity. Since the metafeatures may involve the feature count
and feature-target count, in the rest of the paper we will write
A(i, j, Ci∗, Cij) when necessary. This will become important
in Section 2.5 where we discuss leave-one-out training.

Each elementary metafeature is joined with the others to
form more complex metafeatures which in turn are joined
with all the other elementary and complex metafeatures, ul-
timately ending up with all 25 − 1 possible combinations of
metafeatures.

2.3. Model estimation

Estimating a model M corresponds to finding optimal
weights θk for all the metafeatures for all events in such a
way that the average loss over all events between the target
vector t and the prediction vector y is minimized, according
to some loss function L.

In [9] we suggested a loss function based on the Pois-
son distribution: we consider each tj in t to be Poisson dis-
tributed with parameter yj . The conditional probability of
PPoisson(t|f) then is:

PPoisson(t|f) =
∏
j∈t

y
tj
j e
−yj

tj !
(5)

and the corresponding Poisson loss function is:

LPoisson(y, t) = −log(PPoisson(t|f))

= −
∑
j∈t

[tj log(yj)− yj − log(tj !)]

=
∑
j∈t

yj −
∑
j∈t

tj log(yj) (6)

9

where we dropped the last term, since tj is binary-valued1.
Although this choice is not obvious in the context of language
modeling, it is well suited to gradient-based optimization and,
as we will see, the experimental results are in fact excellent.
Moreover, the Poisson loss also lends itself nicely for multi-
ple target prediction which might be useful in e.g. subword
modeling.

The adjustment function is learned by applying stochas-
tic gradient descent on the loss function. That is, for each
feature-target pair (fi, tj) in each event we need to update the
weights of the metafeatures by calculating the gradient with
respect to the adjustment function.

∂(LPoisson(Mf , t))

∂(A(i, j))
= fiMij(1−

tj
yj

) (7)

For the complete derivation we refer to [9].
We then use the Adagrad [3] adaptive learning rate pro-

cedure to update the metafeature weights. Rather than using
a single fixed learning rate, Adagrad uses a separate adaptive
learning rate ηk,N (i, j) for each weight θk(i, j) at the N th
occurrence of (fi, tj):

ηk,N (i, j) =
γ√

∆0 +
∑N

n=1 ∂n(ij)2
(8)

where γ is a constant scaling factor for all learning rates,
∆0 is an initial accumulator constant and ∂n(ij) is a short-
hand notation for the N th gradient of the loss with respect to
A(i, j).

2.4. Optimization

If we were to apply the gradient in Eq. (7) to each (positive
and negative) training example, it would be computationally
too expensive, because even though the second term is zero
for all the negative training examples, the first term needs to
be computed for all |E||Pos(f)||V| training examples.

However, since the first term does not depend on yj , we
are able to distribute the updates for the negative examples
over the positive ones by adding in gradients for a fraction of
the events where fi = 1, but tj = 0. In particular, instead
of adding the term fiMij , we add fitj Ci∗

Cij
Mij which lets us

update the gradient only on positive examples. This is based
on the observation that, over the entire training set, it amounts
to the same thing. For the complete derivation we refer to [9].

We note that this update is only strictly correct for batch
training, and not for online training since Mij changes after
each update. Nonetheless, we found this to yield good results
as well as seriously reducing the computational cost. The on-
line gradient applied to each training example then becomes:

∂(LPoisson(Mf , t))

∂(A(i, j))
= fitj

Ci∗ − Cij

Cij
Mij+fitj(1−

1

yj
)Mij

(9)
1In fact, even in the general case where tj can take any non-negative

value, this term will disappear in the gradient, as it is independent of M.

which is non-zero only for positive training examples, hence
speeding up computation by a factor of |V|.

2.5. Leave-one-out training

A model with a huge amount of parameters is prone to over-
fitting the training data. The preferred way to deal with this
issue is to use held-out data to estimate the parameters. Un-
fortunately the aggregated gradients in Eq. (9) do not allow us
to use additional data to train the adjustment function, since
they tie the update computation to the relative frequencies Ci∗

Cij

in the training data. Instead, we have to resort to leave-one-
out training to prevent the model from overfitting. We do this
by excluding the event that generates the gradients from the
counts used to compute those gradients. So, for each posi-
tive example (fi, tj) of each event e = (f , t), we compute
the gradient, excluding 1 from Ci∗ and Cij . For the gradients
of the negative examples on the other hand we only exclude
1 from Ci∗, because we did not observe tj . In order to keep
the aggregate computation of the gradients for the negative
examples, we distribute them uniformly over all the positive
examples with the same feature; each of the Cij positive ex-
amples will then compute the gradient of Ci∗−Cij

Cij
negative

examples.
To summarize, when we do leave-one-out training we ap-

ply the following gradient update rule on all positive training
examples:

∂(LPoisson(Mf , t))

∂(A(i, j))

= fitj
Ci∗ − Cij

Cij
eA(i,j,Ci∗−1,Cij)

Cij

Ci∗ − 1

+ fitj(1−
1

y′j
)eA(i,j,Ci∗−1,Cij−1)Cij − 1

Ci∗ − 1
(10)

where y′j is the product of leaving one out for all the relevant
features:

y′j = (M′f)j

M′ij = eA(i,j,Ci∗−1,Cij−1)Cij − 1

Ci∗ − 1

3. SKIP-GRAM LANGUAGE MODELING

In our approach, a skip-gram feature extracted from the con-
text Wk−1 is characterized by the tuple (r, s, a) where:

• r denotes the number of remote context words

• s denotes the number of skipped words

• a denotes the number of adjacent context words

relative to the target word wk being predicted. For example,
in the sentence <S> The quick brown fox jumps

10

Model Training Test Set Perplexity
Set all all/local all/geo all/geo/local

abs rel (%) abs rel (%) abs rel (%) abs rel (%)
Katz 5-gram 10B 91.1 - 95.8 - 88.9 - 94.3 -
+ DMA 5-gram 10B 85.9 6 73.5 23 80.2 10 57.3 39
Katz 5-gram 100B 79.1 13 84.6 12 77.2 12 83.9 11
+ DMA 5-gram 100B 73.7 19 64.1 33 68.2 23 49.9 48
Kneser-Ney 5-gram 10B 86.0 - 90.9 - 83.9 - 89.7 -
+ DMA 5-gram 10B 80.8 6 69.4 24 75.3 10 54.1 40
Kneser-Ney 5-gram 100B 76.3 11 82.8 9 74.6 11 82.3 8
+ DMA 5-gram 100B 70.9 18 62.6 31 65.6 22 48.6 46

Table 1. N-gram perplexity for Katz and Kneser-Ney models trained on 10B and 100B words, with and without geo-location
information.

over the lazy dog </S> a (1, 2, 3) skip-gram feature
for the target word dog is:
[brown skip-2 over the lazy]

For performance reasons, it is recommended to limit s and
to limit either (r + a) or limit both r and s; not setting any
limits will result in events containing a set of skip-gram fea-
tures whose total representation size is quintic in the length of
the sentence.

We configure the skip-gram feature extractor to produce
all features f , defined by the equivalence class Φ(Wk−1), that
meet constraints on the minimum and maximum values for
the number of :

• context words used r + a;

• remote words r;

• adjacent words a;

• words skipped s.

We also allow the option of not including the exact value
of s in the feature representation; this may help with smooth-
ing by sharing counts for various skip features. Tied skip-
gram features will look like:
[curiousity skip-* the cat]

In order to build a good probability estimate for the target
word wk in a context Wk−1 we need a way of combining an
arbitrary number of skip-gram features fk−1, which do not
fall into a simple hierarchy like regular n-gram features. The
following section describes a simple, yet novel approach for
combining such predictors in a way that is computationally
easy, scales up gracefully to large amounts of data and as it
turns out is also very effective from a modeling point of view.

3.1. Extension to Query Sessions

For query sessions, we extend the above skip-gram feature
extractor to allow skips across previous query boundaries. A
skip-gram is now defined by the number of :

• context words used r + a;

• remote words r;

• adjacent words a;

• previous query boundaries skipped q;

• skipped words s counted in reverse order from the end
of the landing query.

4. GEO-LOCATION N-GRAM LANGUAGE
MODELING

A simple way of making use of geo-location information in
an N-gram language model is to split the data according to
geo-tagged partition of the query stream, train a geo-tagged
N-gram language model for each and then interpolate the rel-
evant components when predicting the words of a geo-tagged
query, see [1].

The SNM modeling approach allows for a more elegant
approach: N-gram features can be augmented with either
POSTAL CODE or DMA geo-tag, and used along the reg-
ular N-grams features for predicting the next word in a query.
Experiments reported in Section 5.3 show that this approach
is as effective as the one described above.

5. EXPERIMENTS

5.1. Query Benchmark

Our experiments use an internal benchmark corpus gener-
ated from English mobile query sessions—non-overlapping
24 hour time spans. For about 60% of queries we also have
available geo-location annotation at postal code (ZIP), and
designated marketing area (DMA) resolution.

The benchmark contains two training sets:

• one hundred billion (100B) word set

• ten billion (10B) word set

11

counting sentence begining and end boundary markers; the
10B set is a subset of the 100B one, at the tail end in chrono-
logical order.

The test set consists of sessions containing a total of about
7.7 million queries. The training data is selected from months
prior to the test data. Test queries are also annotated with
a “local” bit, signaling the fact that the search results page
for that query contains results that are of local interest: local
points of interest, businesses, restaurants, etc.

Since we aim our experiments at voice-search, both train-
ing and test data was pre-processed as commonly done for
speech recognition.

To evaluate the full impact of geo-location on the quality
of our LMs, we evaluate on all four test subsets: all, all/local,
all/geo, and all/geo/local. Only the results on the subsets of
the test set with geo annotation fully evaluate the impact of
geo-location on LM; when measuring PPL on the full test set
we are mixing almost equally predictions that use geo tags,
with predictions that do not, so it is not an accurate reflec-
tion of the potential that geo-location information holds for
improved LM.

5.2. N-gram Experiments

We have built and evaluated both Katz and Interpolated
Kneser-Ney 5-gram LMs as baselines for both the 10B and
the 100B training sets, respectively. The vocabulary was cho-
sen to contain the most frequent 1 million words (978565),
with an out-of-vocabulary (OoV) rate of 0.6% and 0.4% on
the all and all/local test sets, respectively; the OoV rate is not
affected by restricting either subset to the queries that have
detailed geo annotation.

A simple way to make use of the DMA geo-location infor-
mation is to interpolate the LM built from the entire training
data with one built from the data for a specific DMA.

The results are presented in Table 2.5. Increasing the
amount of training data ten-fold does reduce the PPL of the
model by about 10% relative. As noted before, the per-
formance gap between Katz and Interpolated Kneser-Ney is
shrinking as the amount of data increases. Adding geo-
location to the LM is about as productive in reducing PPL as
increasing the amount of data ten-fold; for the local subsets
it is particularly beneficial, reducing the PPL by about 40%
relative over the regular N-gram LM. The relative gain holds
as more training data is used for the LM.

5.3. Geo-tagged and Session-skip N-gram Experiments
Using SNM Estimation

Similar to the expressive power of maximum entropy models,
SNM LM estimation allows us to integrate geo-location infor-
mation at various resolution levels, along with skip N-grams,
constructed by either limiting the skip to the current query, or
skipping query boundaries within the current query session.

Our current SNM LM implementation does not yet scale
to 100B words of training data, so we have only run exper-
iments on the 10B training set. The results are presented in
Table 5.3.

We highlight below what we consider the most interesting
results:

• N-gram: the SNM 5-gram PPL of 89 is better than the
Katz 5-gram baseline (91), and slightly worse than the
KN 5-gram baseline (86)

• geo-location N-gram:

– DMA yields about 6%/23% relative gain over
SNM 5-gram on all/local test sets, just as it
does for Katz and KN n-grams; when evaluat-
ing on subset with detailed geo tags (both DMA
and POSTAL CODE are present, besides COUN-
TRY) the relative reduction in PPL is 11%/39%

– POSTAL CODE: about same results as DMA

– DMA together with POSTAL CODE yields about
8%/28% relative gain over SNM 5-gram on
all/local test sets; when evaluating on subset
with detailed geo tags (both DMA and POSTAL
CODE are present, besides COUNTRY) the rela-
tive reduction in PPL is 13%/46%

• skip N-gram:

– within query: 4% relative reduction in PPL over
SNM 5-gram

– within session: 26% rel reduction in PPL over
SNM 5-gram

• geo-location and skip N-gram: geo-location (DMA
and POSTAL CODE) combined with session-level skip
N-gram features yield 33%/41% relative gain over
SNM 5-gram on all/local test sets; when evaluating on
the subset with detailed geo tags the relative reduction
in PPL is 36%/53% on the all/geo and all/geo/local test
sets, respectively.

6. RELATED WORK

SNM estimation is closely related to all N-gram LM smooth-
ing techniques that rely on mixing relative frequencies at vari-
ous orders. Unlike most of those, it combines the predictors at
various orders without relying on hierarchical nesting of the
contexts, setting it closer to the family of maximum entropy
(ME) [11], or exponential models.

We are not the first ones to highlight the effectiveness of
skip-grams at capturing dependencies across longer contexts,
similar to RNN-LMs; previous such results were reported
in [12]. Recently, [10] also showed that a backoff general-
ization using single skips yields significant perplexity reduc-
tions. We note that our SNM models are trained using both

12

Model Test Set Perplexity
all all/local all/geo all/geo/local

abs rel (%) abs rel (%) abs rel (%) abs rel (%)
SNM 5-gram 89.4 - 94.9 - 87.3 - 93.6 -
SNM 5-gram + GEO
GEO=DMA 83.5 6 73.1 23 77.4 11 56.8 39
GEO=POSTAL CODE 83.5 6 72.7 23 77.4 11 56.1 40
GEO=DMA + POSTAL CODE 82.5 8 68.6 28 75.7 13 50.2 46
SNM 5-gram + skip
skip=within query 85.8 4
skip=within session 63.6 29 73.3 23 62.3 29 73.8 21
SNM 5-gram + skip + GEO
skip=within session,
GEO=DMA + POSTAL CODE 59.6 33 55.9 41 55.5 36 43.7 53

Table 2. SNM LM perplexity using various feature extraction configurations on the 10B words training set.

single and longer skips and that our method of estimating the
feature weights is, as far as we know, completely original.

The speed-ups to ME, and RNN LM training provided
by hierarchically predicting words at the output layer [5], and
subsampling [13] still require updates that are linear in the vo-
cabulary size times the number of words in the training data,
whereas the SNM updates in Eq. (10) for the much smaller
adjustment function eliminate the dependency on the vocabu-
lary size.

The computational advantages of SNM over both ME and
RNN-LM estimation are probably its main strength, promis-
ing an approach that has the same flexibility in combining ar-
bitrary features effectively and yet should scale to very large
amounts of data as gracefully as N-gram LMs do.

The benefits of using geo-location information in build-
ing N-gram LMs for the query stream have been investigated
in [1].

7. CONCLUSIONS AND FUTURE WORK

We have investigated the impact on query language modeling
of using skip-grams within query as well as across queries in
a given search session, in conjunction with the geo-annotation
available for the query stream data. As modeling tool we use
the recently proposed sparse non-negative matrix estimation
technique, since it offers the same expressive power as the
well-established Maximum Entropy approach in combining
arbitrary context features.

Experiments on the google.com query stream show
that using session-level and geo-location context we can ex-
pect reductions in perplexity of 34% relative over the Kneser-
Ney N-gram baseline; when evaluating on the ‘”local” subset
of the query stream, the relative reduction in PPL is 51%—
more than a bit. Both sources of context information (geo-
location, and previous queries in session) are about equally
valuable in building a language model for the query stream.

As for future work, we would like to compare the ability
of making use of the rich contextual information available in
the query stream across all modeling approaches: SNM, ME,
as well as RNN-LM.

8. REFERENCES

[1] Ciprian Chelba, Xuedong Huang and Keith Hall. “Geo-
location for Voice Search Language Modeling,” Inter-
speech, to appear, 2015.

[2] Joris Pelemans, Ciprian Chelba and Noam Shazeer.
“Pruning Sparse Non-negative Matrix N-gram Language
Models,” Interspeech, to appear, 2015.

[3] John Duchi, Elad Hazan and Yoram Singer. “Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization,” Journal of Machine Learning Research,
12, pp. 2121–2159, 2011.

[4] Joshua T. Goodman. “A Bit of Progress in Language
Modeling, Extended Version,” Technical Report MSR-
TR-2001-72, 2001.

[5] Joshua T. Goodman. “Classes for Fast Maximum Entropy
Training,” Proceedings of ICASSP, pp. 561–564, 2001.

[6] Slava M. Katz. “Estimation of Probabilities from Sparse
Data for the Language Model Component of a Speech
Recognizer,” IEEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-35, 3, pp. 400–401, 1987.

[7] Reinhard Kneser and Hermann Ney. “Improved Backing-
Off for M-Gram Language Modeling,” Proceedings of
ICASSP, pp. 181–184, 1995.

[8] Hermann Ney, Ute Essen, and Reinhard Kneser. “On
Structuring Probabilistic Dependences in Stochastic Lan-
guage Modeling,” Computer Speech and Language, 8,
pp. 1–38, 1994.

13

[9] Noam Shazeer, Joris Pelemans and Ciprian Chelba.
“Skip-gram Language Modeling Using Sparse
Non-negative Matrix Probability Estimation,”
CoRR, abs/1412.1454, 2014. [Online]. Available:
http://arxiv.org/abs/1412.1454.

[9a] Noam Shazeer, Joris Pelemans and Ciprian Chelba.
“Sparse Non-negative Matrix Language Modeling For
Skip-grams,” Interspeech, to appear, 2015.

[10] Rene Pickhardt, Thomas Gottron, Martin Körner, Paul
G. Wagner, Till Speicher, and Steffen Staab. “A Gener-
alized Language Model as the Combination of Skipped
n-grams and Modified Kneser-Ney Smoothing,” Proceed-
ings of ACL, pp. 1145–1154, 2014.

[11] Ronald Rosenfeld. “Adaptive Statistical Language Mod-
eling: A Maximum Entropy Approach,” Ph.D. Thesis,
Carnegie Mellon University, 1994.

[12] Mittul Singh and Dietrich Klakow. “Comparing RNNs
and Log-linear Interpolation of Improved Skip-model
on Four Babel Languages: Cantonese, Pashto, Tagalog,
Turkish,” Proceedings of ICASSP, pp. 8416–8420, 2013.

[13] Puyang Xu, Asela Gunawardana, and Sanjeev Khudan-
pur. “Efficient Subsampling for Training Complex Lan-
guage Models,” Proceedings of EMNLP, pp. 1128–1136,
2011.

14

