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ABSTRACT

Keyword search, in the context of low resource languages, has
emerged as a key area of research. The dominant approach in key-
word search is to use Automatic Speech Recognition (ASR) as a
front end to produce a representation of audio that can be indexed.
The biggest drawback of this approach lies in its the inability to deal
with out-of-vocabulary words and query terms that are not in the
ASR system output. In this paper we present an empirical study
evaluating various approaches based on using confusion models as
query expansion techniques to address this problem. We present re-
sults across four languages using a range of confusion models which
lead to significant improvements in keyword search performance as
measured by the Maximum Term Weighted Value (MTWYV) metric.

1. INTRODUCTION

The goal of keyword search (KWS) is to find all occurrences of
a keyword or consecutive sequence of keywords (a query), in a
large audio corpus. Unlike in keyword spotting [1], in pre-indexed
keyword search the corpus to be searched is indexed with no prior
knowledge of the query terms. This implies, no knowledge of the
query terms is used during audio processing, allowing the systems
to be more general. The state-of-the-art speech retrieval systems [2],
use an Automatic Speech Recognition (ASR) system as the front-
end. The Spoken Term Detection (STD) 2006 evaluation [3], a
pilot competition run by the U.S. National Institute of Standards and
Technology (NIST) in 2006, introduced the Actual Term-Weighted
Value (ATWV) and MTWYV metrics for evaluating keyword search
systems, in addition to the various metrics to measure misses and
false alarms commonly used in the literature [4]. Recently, IARPA
introduced the Babel program [5], with the main goal of reducing the
performance gap of spoken-term detection systems between high-
resource, well- studied languages and low-resource, lightly studied
languages. In the limited language pack track of the Babel program,
only ten hours of transcribed data is used for building systems. In
this paper, we focus on four of the languages used under this pro-
gram, namely, Pashto, Tagalog, Turkish and Vietnamese. To put
our results in perspective, the target ATWV for the Babel program
is 0.3 for the full language pack track where systems are built with
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a factor of 10 more training data. This highlights the challenging
nature of this task. The KWS systems in this paper were one of the
best performing systems of the program, in the 2013 Babel program
evaluation.

Keyword search systems must handle two types of queries, terms
that are in the vocabulary of the speech recognition systems (in-
vocabulary or IV) and terms that are out-of-vocabulary (OOV). OOV
query terms become more important in low-resource tasks, where a
limited amount of training data is available. Many approaches to
model token (word or sub-word unit) confusability [6, 7] for OOV
search have been proposed in the literature. In this work, we derive
from our prior research [8, 9, 10, 11] and present a study of the im-
pact of modeling confusability at various stages of the spoken term
detection system for these low-resource languages, namely indexing
system, query generation and search.

After reviewing the related work in Section 2, we begin with a
description of the KWS system in Section 3. The confusion model-
ing approaches studied in detail are presented in Section 4. The data
and ASR systems used in our KWS system are presented in Sec-
tion 5. Section 6 presents the impact of the confusion models on the
different languages. Section 7 concludes with a summary of these
results.

2. RELATED WORK

In KWS or STD, OOV queries can contain one or more OOV terms.
Several approaches to improve performance on OOV query terms
have been proposed in the literature. In this section, we will provide
a brief overview of these, focussing specifically on prior work that
use ASR systems as the front end to STD systems, and incorporate
confusability at the acoustic and linguistic levels. One of the early
attempts to use N-best lists and phonetic confusion matrices to com-
pensate for errors made by an ASR system was proposed in [12, 13].
Approaches that combine word and sub-word indexes (phonetic or
syllabic) have also been proposed to tackle the OOV problem [14].
Information Retrieval based approaches such as query expansion and
stemming [15] have also provided gains in searching for OOV terms.
[6] introduced the use of acoustic confusability for handling OOV
query terms. Once the query is expanded to its phonetic represen-
tations, confusable in-vocabulary phrases were generated using the
recognizer’s dictionary, a language model and a confusion matrix
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that provided scores for the confusions between phonemes as well
as the likelihood of inserting and deleting each phoneme. A vocab-
ulary independent, hybrid LVCSR approach to audio indexing and
search showed that using phonetic confusions derived from poste-
rior probabilities estimated by a neural network in the retrieval of
OOV queries can help in reducing misses [8]. These confusions can
also be HMM based phone confusion estimates [7]. In [16, 10],
the authors introduced the WFST based approach to STD. Since
then, the standard approach to detecting OOV terms employs this
approach, wherein the query terms are converted to a sub-word se-
quence (usually phonemes) by grapheme-to-phoneme (g2p) rules,
a confusion matrix is used to allow for recognizer errors, and this
sequence is then searched for in previously-generated subword lat-
tices. Increased false alarms from g2p generation are controlled with
various constraints on the g2p and the confusion matrices [10, 9].
In morphologically rich languages such as Turkish, using morphs
or morphemes as the sub-word unit has been shown to be effec-
tive [17, 18].

In [19], the use of discriminative training to construct a phoneme
confusion model is proposed. The criterion used is based on the Fig-
ure of Merit (FOM), which is directly related to the KWS perfor-
mance. The value of pronunciation lexicons for keyword search in
low-resource languages was studied in [20] for Tagalog, where the
lexicon of the LVCSR system used in key-word search is augmented
to cover all the OOV query terms by stitching together fragments
of matching entries in a reference lexicon, using prefix and postfix
transductions and grapheme to phoneme prediction. While it is not
so interesting to expand the lexicon and process the audio to be in-
dexed multiple times, an efficient KWS that maps the OOV term to
an IV proxy that is closest to the phonetic representaton of the OOV
term was utilized. Similar approach was presented in earlier work
for query-by-example search on OOVs [9]. Both these approaches
presented significant gains in KWS performance on OOV terms by
augmenting lexicons. MediaEval2012’s Spoken Web Search task is
similar in flavor to the Babel task. The development data available
is approximately four hours [21]. However, no ASR system was
used in that work and issues with false alarms and misses arose from
acoustic confusability.

3. KWS SYSTEM ARCHITECTURE

The KWS system considered in this paper is based on Weighted Fi-
nite State Transducers (WFSTs). In the WFST approach, the out-
put of the ASR system (typically lattices) is represented as a WFST
where input arc labels are words and the arc weights are ASR scores.
Timing information is represented as output arc labels consisting
of begin and end time pairs. An index of all possible substrings
contained in the input WFSTs is built using the algorithm proposed
in [16] and extended to include timing information in [22]. The re-
sulting index itself is a WFST mapping substrings to utterance num-
bers and occurrence times together with the posterior probability of
occurrence. The queries are also represented as WESTs. Retrieval
consists of composing each query WFST with the index.

The KWS system makes use of a word (or token) index and a
phonetic index. The word (or token) index is obtained directly from
the output of the ASR system whereas the phone index is obtained by
first mapping the ASR output to the phone level. The use of a phone
index is akin to document expansion used in information retrieval.

IV queries are directly searched using the word level index. For
OOV queries we first convert the query to phones (using a grapheme-
to-phoneme converter) and then search the phonetic index. Alterna-
tively the phonetic representation of OOV queries is mapped back
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to a word representation using the inverse of the ASR pronunciation
lexicon transducer, and the new query is matched against the word
level index.

Although the use of lattices makes the KWS system more robust
to ASR errors, it is not always possible to find exact matches to the
queries. To allow inexact matches we use the idea of query expan-
sion to create alternate representation of the query. In the WFST
framework, query expansion is achieved by composing the query
with a confusion model (which is also represented as a WEST) be-
fore composing it with the index. In the next section we describe the
confusion models used in this study.

For each query, the output of the KWS system is a list of hits
ranked by the posterior probability of occurrence. Since it is desir-
able to set a global detection score threshold in order to limit the
number of hits for each query, the final scores are normalized for
each query. For the ATWV metric, the optimal term specific thresh-
old (TST) can be determined if the number of occurrences of the
query in the test corpus is known apriori. It was shown that the sum
of posterior probabilities over the test corpus is a reasonable approx-
imation to the number of occurrences for the purpose of TST [23].
As an alternative to normalizing the posterior probabilities by the
TST, we normalize the posterior probabilities of occurrence by their
sum over the test corpus. This Sum-To-One (STO) normalization
performs similar to the TST normalization.

4. CONFUSION MODELS

A key component of our KWS system is the confusion model which
allows us to do a fuzzy or inexact search. This is especially impor-
tant in the context of this paper, where we focus on systems built with
limited resources. For such systems, the ASR performance tends to
be poor (high WER) and the system vocabulary is limited. The small
vocabulary of the ASR system implies that a large fraction of query
terms are OOV. The poor quality of ASR output implies that we will
miss occurences of many query terms. By creating alternate repre-
sentation of query terms in word and phonetic forms, a confusion
model allows us to recover misses and handle OOV terms, albeit at
the risk of increased false alarms.
We consider the following confusion models.

e Phone to Phone transducer (P2P): This confusion model is
used in conjunction with phonetic indices. To create this
model, Viterbi alignments of the training data are obtained
from the transcriptions using any acoustic model '. The same
acoustic model is used to decode the training data with a
unigram word LM. State-level confusability is computed by
comparing the two sets of alignments from the ground truth
and decoding hypotheses, respectively, which is then con-
verted to phone-level confusability. The training set has ap-
proximately 10 hours of audio data.

e Token to Token transducer (T2T): Word level alignments of
the decoded hypothesis and training text generated for the
P2P model, are used to build a token level transducer (T2T)
as well. The T2T transducer models ASR substitution errors
and can be applied to word indices directly.

e Phone To Phone to Token transducer (P2P2T): The P2P
model can be used directly on word indices by composing it
with the (inverted) decoder dictionary so that it maps phonetic
strings to ASR tokens (P2P2T), i.e. finds IV proxies.

'We used a speaker independent (SI) deep neural network (DNN).



Language Training Data Development Data
(hours)  (tokens) (types) (hours)
Pashto 11 117K 7K 10
Tagalog 11.5 73 K 6K 10
Turkish 12 79K 12K 10
Vietnamese 11 122K 3K 10

Table 1: Data statistics for each language. rypes refers to number of

distinct tokens

Language | WER | LatDensity Deep | LatDensity Shallow
Pashto 63.7 33953 1761
Turkish 65.7 23273 798
Tagalog 64.5 12865 497
Vietnamese | 70.2 58513 1665

Table 2: Average number of arcs per second (LatDensity) and WER
for deep and shallow lattices

These confusion models are used in our keyword search archi-
tecture by way of query expansion. We take the transducer represen-
tation of the query term and compose it with the confusion model.
We derive n-best paths from the composed transducers. The n-best
paths can be considered as alternate plausible representations of the
query term. For the P2P2T model, the n-best operation can be done
after the composition with the inverted lexicon or before. If the n-
best is done as the final step after the composition with lexicon we
refer to the model as P2P2T and if it is done right after the P2P model
we refer to it as P2ZP2TN.

5. DATA AND ASR SYSTEM DESCRIPTIONS

In this study, data from the Babel limited language pack track for
four languages, namely Pashto, Turkish, Tagalog, and Vietnamese
are used. The information about the data for these languages is given
in Table 1.

The acoustic model used in these experiments for all languages
is the IBM Speaker-Adapted DNN (SA DNN) system which uses
a deep neural network (DNN) acoustic model with the standard
front-end pipeline [24]. The DNN takes 9 frames of 40-dimensional
speaker adapted discriminative features as input, contains 5 hidden
layers with 1,024 logistic units per layer, and has a final softmax
output with 1,500 targets. Training occurs in three phases: (1) layer-
wise discriminative pre-training using the cross-entropy criterion,
(2) stochastic gradient descent training using back-propagation and
the cross-entropy criterion, and (3) distributed Hessian-free training
using the state-level minimum Bayes risk criterion [25]. The lexicon
is the same as that provided with the corpus (contains words in the
training data only). The language model (LM) is a trigram LM with
modified Kneser-Ney smoothing that was trained on the acoustic
transcripts. Deep and shallow lattices were generated using a static
decoder by adjusting the beam parameters. Silences and hesitations
were treated as transparent words to ensure more unique words
appeared in the lattice. The lattice sizes and the corresponding
one-best Word Error Rate (WER) are presented in Table 2.
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Language | Total | No exact match | OOV
Pashto 967 243 215
Turkish 307 94 83
Tagalog 353 89 80
Vietnamese | 200 87 28

Table 3: Number of queries with no hits without query expansion,
number of oov queries and total number of queries for each language

6. RESULTS

In this section, we present our findings on using confusion models
for keyword search. We first look at the following dimensions of
confusion as they are used in our KWS system:

e Type of confusion model: Phonetic confusion (P2P), Token
confusion (T2T), and Phonetic confusion converted to token
confusion (P2P2T).

Depth or strength of the confusion model: We consider dif-
ferent depths of confusion (n-best) ranging from 1 to 10000.
For the P2P2T confusion model we consider the two variants
in Section 4.

Depth of lattices: We consider deep and shallow lattices along
with best-path output generated from deep lattices. See Sec-
tion 5 for details on how the lattices were generated.

Our results for Pashto (Figure 1a), Turkish (Figure 1b), Tagalog
(Figure 1c) and Vietnamese (Figure 1d) show that good improve-
ments in MTWYV can be expected with confusion models. Each sub-
plot in these figures provides MTWYV performance when using the
one-best hypothesis, shallow lattices and deep lattices for keyword
search in combination with different confusion models. Here are the
observations that generalize across these languages:

e Phone to Phone to Token (P2P2T) models work as effectively
as pure phonetic (P2P) models. Unlike the P2P model which
requires a phone level index, the P2P2T model operates from
a word level index. Since the two perform roughly the same
we can significantly simplify the computational architecture
and resource requirements by keeping just one word level in-
dex and using P2P2T.

Deeper lattices are a better way to improve performance
compared to query expansion. However the additional gains
from confusion modeling appear to hold over both shallow
and deep lattices indicating that confusion models and lattice
depth are complimentary.

While choosing the optimal confusion model depth is tricky,
it is better to err on the side of deeper models.

Table 3 lists the total number of query terms, OOV terms and IV
terms for which no exact match was found in word search. We use
the search cascade described in Section 3. Table 4 shows the best
performing models and their MTW Vs for all the four languages. We
consider MTWYV for the full set of queries as well as subsets contain-
ing just the in-vocabulary (IV MTWYV) and out-of-vocabulary (OOV
MTWYV) terms. Note that the values in the MTWYV columns are aver-
aged over the respective subsets (Full, IV, OOV). Thus the MTWV’s
of just IV terms or OOV terms can be higher then the MTWYV for all
queries.

Further analysis on the impact of confusion models are pre-
sented on one language, Tagalog. When searching with confusion
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Fig. 1: Variation of MTWYV with

models, it is desirable that the lattices are phonetically closer to the
audio so that we can find matches for out of vocabulary and infre-
quent terms. By increasing the acoustic weight we can improve
the phonetic match but this tends to degrade performance for in-
vocabulary terms. We use two sets of lattices generated with dif-
ferent acoustic weights. The first set of lattices, which are generated
with an acoustic weight that minimizes the WER, are used for IV
terms and for OOV queries we use lattices generated with higher
acoustic weight. For Tagalog, the optimal acoustic weight was 0.13
for WER. By using a higher acoustic weight for OOV terms we could
improve the MTWYV from 0.2696 to 0.2786, as shown in Table 5.
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n-best for various confusion models

Figure 2 shows the DET curves with optimal n for the various
confusion models. As can be seen from the plots, the P2P model
performs better at high false alarm regions whereas the P2P2T and
P2P2TN confusion models are better at low false alarm regions. For
MTWYV as defined in the Babel program, they perform equally well.

We also found that score normalization plays a critical role in
improving MTWYV scores with confusability models. Figure 3 shows
the False Alarm(FA) vs Miss(PMiss) tradeoff for P2P search with
different n-best depths with sum-to-one normalization (STO) which
is the default for our system. The DET curves show that with higher
N its possible to reduce misses at cost of some FA and achieve an
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Language Model | MTWV | IVMTWV | OOV MTWV
identity | 0.1916 0.2127 0
P2p 0.1945 0.2123 0.0330
Pashto 2t 0.1916 0.2127 0.0000
p2p2t 0.1937 0.2127 0.0209
p2p2tN | 0.1938 0.2126 0.0222
identity | 0.3147 0.4287 0
P2p 0.3477 0.4457 0.0792
Turkish t2t 0.3209 0.4371 0.0000
p2p2t 0.3522 0.4349 0.1147
p2p2tN | 0.3520 0.4363 0.1115
identity | 0.2253 0.2907 0
P2p 0.2694 0.2906 0.1887
Tagalog 2t 0.2260 0.2897 0.0000
p2p2t 0.2673 0.2912 0.1777
p2p2tN | 0.2696 0.2908 0.1904
identity | 0.1550 0.1802 0
P2p 0.2117 0.2067 0.2421
Vietnamese t2t 0.1704 0.1981 0.0000
p2p2t 0.2096 0.1964 0.2728
p2p2tN | 0.2160 0.2049 0.2490

Table 4: Best MTWYV for all query terms, IV terms and OOV terms
with different confusion models. identity refers to exact search in
word lattices

Acwt | MTWV
0.13 0.2696
0.14 0.2762
0.15 0.2786
0.16 0.2768

Table 5: MTWYV vs acoustic weight for Tagalog

overall improvement in MTWV. However when we look at the DET
curves without STO (Figure 4) we find that the FA/Miss tradeoff
with increasing N does not allow for improving MTWV.

7. CONCLUSION

We summarize our key findings as follows:

e For limited resource KWS systems, the performance can be
improved by using a confusion model. Given the limited
amount of data a phone level confusion model is preferable.

e Among the alternatives for applying the confusion model,
there does not seem to be a clear winner. However, mapping
the queries into a phonetic representation, applying the con-
fusion model and mapping back to words has the advantage
of requiring only a word level index.

e The size of the lattices plays an important role, especially in
the limited resource case where error rates are high.

e Score normalization plays a important role in getting gains
from confusion models.

o Finally, increasing the confusability by optimizing the acous-
tic weight to maximize MTWYV is a promising approach.
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