
UNSUPERVISED WORD SEGMENTATION FROM NOISY INPUT

Jahn Heymann, Oliver Walter,
Reinhold Haeb-Umbach

University of Paderborn
Department of Communications Engineering
Pohlweg 47-49, 33098 Paderborn, Germany

Bhiksha Raj

Carnegie Mellon University
Language Technologies Institute
5000 Forbes Avenue, Pittsburgh

PA 15213, United States

ABSTRACT

In this paper we present an algorithm for the unsupervised segmen-

tation of a character or phoneme lattice into words. Using a lattice at

the input rather than a single string accounts for the uncertainty of the

character/phoneme recognizer about the true label sequence. An ex-

ample application is the discovery of lexical units from the output of

an error-prone phoneme recognizer in a zero-resource setting, where

neither the lexicon nor the language model is known. Recently a

Weighted Finite State Transducer (WFST) based approach has been

published which we show to suffer from an issue: language model

probabilities of known words are computed incorrectly. Fixing this

issue leads to greatly improved precision and recall rates, however at

the cost of increased computational complexity. It is therefore prac-

tical only for single input strings. To allow for a lattice input and

thus for errors in the character/phoneme recognizer, we propose a

computationally efficient suboptimal two-stage approach, which is

shown to significantly improve the word segmentation performance

compared to the earlier WFST approach.

Index Terms— Automatic speech recognition, Unsupervised

learning

1. INTRODUCTION

While the task of unsupervised language acquisition from audio

recordings is often viewed as direct discovery of repeating patterns

that may represent word- or phrase-like structures, e.g. [1] [2], ar-

guably a better solution would be one that mediates words through

a phonetic inventory. In this situation, the task of unsupervised

language acquisition from audio recordings of continuous speech

may be divided into two subtasks [3]: a) the discovery of the basic

acoustic building blocks of speech, i.e. a phonetic inventory, and

b) the discovery of the lexical units which manifest themselves as

recurring sequences of these basic acoustic building blocks. While

the input to the first stage is the raw speech, the input to the second

is of categorial nature, the label sequence identifying which of a

finite number of acoustic building blocks is present. There are sev-

eral applications which are characterized by such an unsupervised

setup. Besides the mentioned unsupervised learning of an automatic

speech recognizer directly from the speech data for low or zero-

resource languages [4] [5], there is the semantic analysis of audio

data [6] [7], where a high-level transcription of acoustic events can

be learned from low-level audio patterns. It may also be helpful as a

computational model for early (child) language acquisition.

This paper focuses on task b), the lexical discovery, assuming a

known phonetic inventory for the language. A special case of this is

the unsupervised segmentation of a written text into words, where,

however, the input is a character sequence rather than a sequence

of phonemes or other acoustic building block labels. From the per-

spective of audio recordings, unsegmented text may be viewed as

analogous to unsegmented phoneme sequences derived from audio:

segmentation would also imply discovering the words themselves.

In a practical setting, however, the output of the phonetic discovery

unit (task “a” above), will never be error free. Even good phoneme

recognizers have a phoneme error rate of well above 10%. Relatively

few works exist on unsupervised word segmentation from such noisy

(error-prone) input, e.g. [8] who try to discover words in phoneme

lattices obtained from spoken digits through maximum likelihood

estimation, assuming a fixed-vocabulary “multigram” model. How-

ever, in practice, the vocabulary size can usually not be assumed a

priori; on the other hand, additional linguistic structure may validly

be assumed. The text analogy for this, then would be the unsuper-

vised segmentation of noisy text, with substitutions, insertions and

deletions of characters, assuming no prior knowledge of vocabulary,

but taking advantage of expected structure in the language. This is

the problem we tackle in this paper.

We will employ a Bayesian paradigm to assign a probability to

a hypothesized segmentation. Since the segmentation must be un-

supervised, we can only assume minimal a priori information. We

will assume that the actual number of words to be discovered is not

known a priori. Consequently, the statistical model we employ must

be non-parametric – it must not be specified in terms of a fixed num-

ber of parameters, but must rather allow the parameter space to grow

with data. We will also assume that words, in a natural setting, fol-

low a power law (Zipf’s law) in their occurrrence. The statistical

model we employ must capture this power-law occurrence of units.

In addition to these, we will also assume that the occurrence of words

is predictable, in a statistical sense, and that this predictability is rea-

sonably well captured by an n-gram model.

The above requirements are well embodied in a nested hierar-

chical Pitman-Yor language model (NPYLM). It has previously been

demonstrated that by employing this language model to predict prob-

abilities, good segmentation results can be achieved for clean (error

free) text [9], as well as for error-free phoneme sequences [9] [10].

Neubig et al. [11], in fact, also extend this to noisy input, represented

by a phoneme lattice, employing Weighted Finite State Transducers

(WFSTs) to obtain an elegant and computationally efficient realiza-

tion. However, as we explain later in the paper, although nominally

designed to employ generic n-gram word models, the approach actu-

ally breaks down for higher-order n-grams, resulting in degradation

of segmentation. In our work, we follow the general approach of

Neubig et al., with modifications to rectify the aforementioned prob-

lem. This, however, results in considerably increased computational

complexity and can, in fact, become intractable if the input consists

458978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

of phoneme or character lattices. To resolve this problem, we pro-

pose a hill-climbing two-stage algorithm, which alternates between

extracting the most probable phoneme sequence from the lattice and

carrying out word segmentation on that phoneme sequence.

The paper is organized as follows. In the next section we specify our

goal and the steps needed to achieve this. In Section 3 we will give a

brief introduction on the NPYLM, followed by a description of how

the parameters for the model can be estimated in Section 4. This also

includes an overview of the WFST-based word segmentation algo-

rithm of [11], its issue, and how it can be solved. In Section 5 we

present our two-stage algorithm for word segmentation on noisy in-

put, followed by experimental results in Section 6. Finally, we draw

some conclusions in Section 7.

2. UNSUPERVISED DISCOVERY AND SEGMENTATION

OF LEXICAL UNITS

Suppose we want to perform a speech recognition for a low or even

a zero-resource language. We will assume that a phonetic inven-

tory, which may itself have been derived in an unsupervised manner,

is available for the language. In that case, when we perform the

phoneme recognition for an utterance (e.g. a recording of the sen-

tence “she had your dark suit”), strong priors (like a dictionary) are

likely to be absent. The hypothesized recognition output will be the

most probable path through a lattice of candidate phoneme hypothe-

ses. Since resources for the language are limited or even not avail-

able, the acoustic model will be inaccurate. Hence, the hypothesis

will contain substitutions, deletions and insertions of phonemes. For

the example, one might end up with ’txeehhedoourdaksoot’. (In this

example we have used characters as an analogue to phonemes. In

general, we will denote the categorical lower-level inputs as “charac-

ters”, although it may be either characters, in case of segmentation

of text, or phonemes, for segmentation of continuous speech. We

will refer to the higher-level structures that are composed from the

characters as words.). Not much more can be gleaned from analyz-

ing the individual recordings by themselves, in the absence of other

information.

But now assume we have a large number of such utterances. We

can now consider the decodes of all the utterances jointly. In such a

consideration, one , then, expects to observe consistency between the

decodes of these utterances. We can reasonably assume the existence

of higher-level units (e.g. words), and that these words manifest very

similarly in most of their occurrences. If one were to search for such

higher-level units, it may be expected that the set of correct paths

through the lattices for the individual recordings will result in more

consistent characterization of these higher-level units than incorrect

ones.

Our goal in this work, therefore, is to use this consistency to

discover these words and find a hypothesis for the path through the

lattices, which will result in fewer errors in the character sequence.

In this work, we further assume that the lattice not only contains a

better hypothesis, but also that the correct one is embedded some-

where in it.

To utilize the consistency between the words, we need to tackle

two tasks:

I. Identify the words by segmenting the character sequence,

II. Find the “correct” spelling for these units in the input lattice.

By “correct”, here, we mean a canonical representation that

results in the lowest error across all instances of the unit.

For our example, this means that we have to segment it (I.: “txee

hed oour dak soot”), and find the correct spelling for each of the

identified words in the lattice (II.: “she had your dark suit”).

In order to do so, we need a statistical model, which is able to as-

sign a probability to every possible segmentation for every possible

character sequence. We also need a way to effectively estimate the

model parameters from the input lattice and to maximize the proba-

bility over the segmentation and spelling.

3. NESTED PITMAN-YOR LANGUAGE MODEL

As outlined in the introduction, the model must be able to assign

a probability to unknown words based on their spelling and handle

an a priori unknown number of already discovered words (e.g. be

non-parametric). It must also capture the only two constraints we

impose:

I. The occurrence of the words follow a power law distribution

II. n-gram structures apply for both, the word, and the character

level

The first assumption has shown to be reasonable for most natural,

and artificial languages [12]. The second one has been shown to be

effective in modeling language data and relies on the fact, that pre-

dictability is the fundamental requirement to differentiate anything

structured from noise.

As already mentioned, one model which meets these require-

ments is the NPYLM. It is backed by the Pitman-Yor (PY) process,

which is a generalized Dirichlet process governed by two parame-

ters – the discount parameter d and the strength parameter θ – and

a base distribution G0, which is defined over a probability space X .

The drawing process for the PY process may be explained through

a Chinese-restaurant analogy: at any time the process has a number

of “tables”, which can grow infinitely large, and each of these tables

has a symbol from X associated with it. This symbol might, for in-

stance, be a word, and X would represent the space of words. In

each draw, the new draw (a “customer”) is either “seated” at an ex-

isting table and assigned the symbol associated with it, or assigned

to a new table. When a new table is selected, the symbol assigned

to it is drawn from G0. The overall process results in draws from a

distribution G:

G ∼ PY (d, θ, G0) . (1)

The parameter θ controls how similar this drawn distribution is to the

base distribution which itself can been seen as a mean distribution of

the drawn ones. Draws from the distribution G obey the power law

and hence incorporate the prior knowledge of Zipf’s law.

The n-gram structure is captured by embedding the above in a

hierarchical structure. At the n-gram level a separate PY process is

instantiated for every n − 1 word context. Each draw employs the

PY process that is specific to the current n−1 context. The base dis-

tribution for each PY process at the n-gram level is a n− 2-context

specific PY process. One can view the entire structure as a tree,

where the root node gives the unigram probability, its children the

bigram probability and so forth. This can be interpreted as smooth-

ing since a certain amount of the probability mass is moved to the

shorter context. The degree of smoothing is controlled by the dis-

count parameter d. So instead of one, there are several distributions,

one for each context:

G (u) ∼ PY (d, θ,G (π (u))) . (2)

The notation π (u) describes the shorter context, e.g. if u =
(wi−1, . . . , wi−n+1) then π (u) = (wi−1, . . . , wi−n+2). To cope

459

with yet unknown words, another tree is built, this time for the char-

acters, which then serves as the base distribution for the word model.

The model and its underlying sufficient statistics Σ, also called

“seating arrangement” in the Chinese-restaurant analogy, are used to

calculate the predictive probability of a word w given its context u

and the parameter vector Φ = (d,θ):

Pr (w|u,Σ,Φ) =
cuw· − d|u|tuw

θ|u| + cu··

+
θ|u| + d|u|tu·

θ|u| + cu··
Pr (w|π (u) ,Σ,Φ) (3)

=: Prlocal (w|u) + Pr (FB|u) Pr (w|π (u))

with the obvious definition for Prlocal (w|u) and Pr (FB|u)1.

Again, a Chinese-restaurant analogy may be used to interpret eq. (3).

cuw· describes the counts of word w in the context u. tuw describes

how many ”tables” are occupied by this word and states the number

of counts which has been added to the shorter context. It is therefore

an indicator of how much smoothing is applied. d and θ are the vec-

tors of discount and strength parameters of the Pitman-Yor processes

at the different levels of the hierarchy and each parameter is shared

along the same context length. The · indicates a marginalization, so

cu·· =
∑

w cuw· is the count of all words in the context u. In the

generative perspective Pr (FB|u) is the probability for assigning a

new table for a new draw. The parameters Φ are sampled after each

iteration as is explained in [13].

With the help of eq. (3) we are able to assign a probability to a

hypothesized segmentation and spelling w̃
(i) =

[

w̃
(i)
1 , . . . , w̃

(i)
k

]

of

the sentence s(i):

Pr
(

w̃
(i)

)

=

k
∏

j=1

Pr
(

w̃
(i)
j |uj

)

(4)

In order to give the first words a context, we prepend n − 1 start

sentence symbols.

4. ESTIMATING THE MODEL PARAMETERS

Now, that we have found a model which fits our needs, we need a

way to estimate its parameters from our given input lattice and to

maximize the probability of our segmentation and character string.

4.1. With text input

We first consider the case of a noise-free text input, where the

spelling of every sentence is correct. This is the standard task for

word segmentation. Our goal is to find the most probable seating

arrangement (e.g. segmentation) for the given input: the words, and

the counts and occupied tables for each of them in each restaurant

(PY process). One can imagine that the number of possible seating

arrangements is too large to calculate the probability for all of them.

To overcome this issue, Mochihashi et al. [9] propose to use a

technique called blocked Gibbs sampling to get samples from the

distribution. Each sentence is considered as one block. Now, in

order to get a new segmentation for a sentence s(i), first its statistics

is removed from the language model by decreasing the counts the

1Note that, in the following, we will leave out the dependencies on the
sufficient statistics and the parameters in the notation

Table 1. Comparing the segmentation results for WSJCAM0. (1)

Our results with a bigram word model, (2) Neubig et al. with a

bigram word model, (3) Our results with a unigram word model (4)

Neubig et al. with a unigram word model

(1) (2) (3) (4)

Precision 71, 1% 29, 6% 64.5% 54, 3%
Recall 60, 5% 46, 6% 51.4% 50, 2%

sentence has contributed to. Then, the language model is used to

calculate the predictive probability for every possible segmentation

w
(i) of that sentence. Finally, a sample segmentation for this sen-

tence is drawn and the resulting words are added to the language

model, updating the seating arrangement. To get a sample, forward

filtering/backward sampling is used, which is a dynamic program-

ming approach to allow for efficient sampling. Employing these

techniques, it is possible to estimate the language model parameters

along with the segmentation.

4.2. With a lattice input

In case of a lattice input, the number of possible seating arrange-

ments is even bigger. Instead of every possible segmentation, we

now also have to consider every possible segmentation for every path

through the lattice. To do so, [11] proposes a method based on WF-

STs similar to the ones used in ASR to carry out the task. Again,

blocked Gibbs sampling is used to get samples from the distribution.

But here, after removing the statistics from the language model, not

only every possible segmentation, but also every possible spelling

for a sentence is considered and assigned a probability. Then, a sam-

ple is drawn from this, jointly sampling the segmentation and the

character sequence of the sentence. The method is elegant since it

requires only a minimal amount of changes to a commonly used lex-

icon and language model and can therefore be directly integrated in

a speech recognizer training workflow. Additionally it relies on ef-

ficient graph algorithms. However, implementation itself results in

an implicit restriction: it cannot accurately assign predictive proba-

bilities according to the generative model (3) for higher-order (> 1)

n-grams, resulting in degradation of performance for larger n.

Empirical evidence for this is presented in Tab. 1. The table

compares results obtained with the implementation of [11] (using

their own code from [14]) with an update we propose (described

later in this paper) on text prompts of WSJCAM0, with white spaces

and punctuation removed, under identical parameter settings (100 it-

erations, 8-gram character model). The first and third column show

results of our implementation, while the second and the forth column

are obtained with the software of [14], using a bigram (1st and 2nd

column) and unigram (3rd and 4th column), respectively. As can be

seen, the bigram results of [14] are worse than the results obtained

with our implementation; and they are even worse than the unigram

results obtained with [14]. Also, the results obtained with our up-

date are comparable to those we previously achieved [10] using an

approach which does not rely on WFSTs and has been proposed in

[9].

To understand the reason for this drop in performance, let us

consider the model of [11] more closely. The algorithm is imple-

mented using a WFST that is turn composed of two WFSTs: One

is the lexicon, which is responsible for storing already discovered

words and also for generating yet unseen ones. The transducer can

either transduce a sequence of characters into a known word, or, for

novel words, it can pass the characters through as they are and in-

460

1 1

1

2 2

2

2 2 1

1

1 1

1

2

2

2 2 1

1 1
2

2 2

Fig. 1. Grammar consisting of the word model Ω and the spelling

model Ψ for a bigram case

sert a word-end tag after at least one character has passed. The other

transducer is the language model, or grammar G. Its task is to assign

a probability to a segmentation according to the model. The trans-

ducer may either assign probabilities to already known words (word

model Ω), or employ the character transducer to assign probabilities

to novel character sequences (spelling model Ψ).

Fig. 1 illustrates this for a bigram model. Each node represents

a chinese restaurant. The edges are weighted with the predictive

probability for each input which can be calculated using equation

(3). When no outgoing edge for a given input is available, the path

to the shorter context is taken till a state with an appropriate edge

is reached. Each of these transitions has the fallback probability

Pr (FB|u) assigned to it. To leave the character model, a </unk>

tag is required. This tag is used to mark the end of a new hypothe-

sized word and, seen from a generative viewpoint, enables the char-

acter model to not only produce characters but also words.

Now consider first the case with a unigram language model and

an m-gram spelling model. Suppose we want to calculate the prob-

ability of w1, which consists of the character sequence c1, and we

have seen this word before. From eq. (3) we have

Pr (w1|∅) =
c∅w1· − d|∅|t∅w1

θ|∅| + c∅··

+
θ|∅| + d|∅|t∅·

θ|∅| + c∅··
Pr (c1) (5)

Using the WFSTs, we would get both w1 and c1 from the lex-

icon transducer as the input for the grammar transducer. Hence we

would have two paths and get the probability

P̂r (w1|∅) = Pr (w1|∅) + Pr (FB|∅) Pr (c1) , (6)

where the first contribution is from the word and the second from

the character model. Comparing with eq. (5), the character model

contribution is wrong: since word w1 is known, it need not also be

assigned a probability by the spelling model.

To overcome this issue, Neubig et al. set the base probability

Pr (ci) for each word to zero when calculating the probabilities for

the edges of the word model. Doing so, the probability provided by

the word transducer reduces to Prlocal(w1|∅) and eq. (6) delivers now

the correct probability, eq. (5).

This, however, only holds true for a unigram word model where

both paths end in the same state - the root state. Therefore the base

probability always gets added in the following sampling step. But

for any n-gram model of greater order, the path with a word symbol

will end in a word context node, while the path with the character se-

quence will still end in the root node. Since the states are different,

the base probability will not get added before the multiplication with

the probability of the next word, leading to false predictive probabil-

ities. As a consequence, already discovered words are assigned a

higher probability than the one the model proposes. As we see in the

results, this leads to an oversegmentation of the text, resulting in a

smaller vocabulary, containing often-used sub-word units.

5. UNSUPERVISED WORD SEGMENTATION FROM

LATTICE INPUT

For our work, we follow the basic paradigm of [11], however we

propose an alternate design for the lexicon to avoid the issues men-

tioned in Section 4.2. Unfortunately this is not a trivial task. Our

goal is to get a lattice which represents all possible segmentation

with all possible spellings of an input sentence using both, known

and unknown words, without hypothesizing an already known word

again. This task cannot be carried out by a generic transducer since

we need to know the string of a potential word in advance and cannot

decide whether it is going to be a new or a known word just by the

character at the beginning. Therefore our algorithm analyses each

possible string and uses a hash table to decide if it is a known or a

new word. The lexicon transducer is then built such that it transduces

an unknown character string and appends the end word symbol only

if it is not an already known character string.

Additionally, we now include the base probability for every

word when calculating the probabilities for the edges of the word

model. This is due to the fact, that we don’t represent a known word

with its character sequence in the input of the grammar anymore.

Therefore, we don’t get the additional term in eq. 6 and can use the

eq. 3 without any modification.

However, this is computationally more costly compared to the

implementation by Neubig et al. since the lattice with every pos-

sible segmentation is much wider and has significantly more states.

Therefore the composition with the grammar is much more time con-

suming. Nevertheless it is necessary in order calculate the probabili-

ties according to the underlying model and we will use this approach.

To estimate the model parameter along with the segmentation

and spelling, we have to consider every possible segmentation and

spelling. Even when using blocked Gibbs sampling, we still need

to consider every possible segmentation and every possible spelling

for a sentence. Since the possibilities grow exponentially with every

alternative character, this becomes computationally overwhelming

with the presented correction. We therefore choose a different ap-

proach, which does not sample the segmentation and the character

sequence jointly. Instead, we alternate the following steps each iter-

ation:

I. Given a single character sequence at the input, conduct unsu-

pervised word segmentation and learn the word and spelling

model alongside segmentation

II. Given the spelling model of step I, compute the most probable

character sequence from the input character lattice.

5.1. Step I: Estimating the segmentation and the language

model

The input for this step is the current most likely character sequence

ĉ
(i) for every sentence s(i) where i = 1, . . . , N indicates the sen-

tence number. We now want to draw a sample segmentation for each

461

Best shot input:

POWEYFSNKNZIMLCIAFBNCNUINLSVIVAHEVGGVCE

OQRPHBOISSRXTHHIZBUQSIENASELDBYPMUMRTOR

YIRTTIONRTJAGNFAATDNTRZTPBATEKTLDINGOMI AJV

Proposed after 25 iterations:

POWER FINANCIAL IS A FINANCIALSERVICES CONCERN

THAT IS SIXTY NINE PERCENT HELD BY POWER COR-

PORATION OF CANADA A MONTREAL BASED HOLDING

COMPANY

[14] after 25 iterations:

POWER FINANCIAL CS C FI NANCIAL SERVIC ES CONC

ERN THAT IS SIX TY NINE PERCENT HEL DBY POWER

CORPOR ATION OF C ANAD A A MONT REAL BA SED HOL

DING COMPANY

Fig. 2. The best shot input at the beginning and the output after 25
iterations for the proposed method and the implementation [14]

sentence and, by doing so, update our estimation of the language

model parameters. Since the input is a single character string, we

only have to consider all possible segmentation. We can use the

same techniques as described in [9] or, for a WFST implementation,

in [11] to get a sample segmentation and update our language model.

5.2. Step II: Maximizing the probability of the character se-

quence

In this step we aim to find the best character sequence ĉ
(i) for each

sentence given our current knowledge of the spelling model.

Therefore we consider all possible segmentation for every char-

acter sequence for the sentence s(i). Since we will only use the

spelling model here, we don’t need to mark any string as a known

word. This makes the process much faster while still giving a good

estimate as we will see later on in the results section.

In order to compute the predictive probabilities, we remove the

statistics from sentence s(i) from the spelling model. After that, we

use it to approximate the probabilities for every possible segmenta-

tion for every possible character sequence, choosing the most likely

sequence as the input for the next iteration.

Note that by using the spelling model we use our knowledge

about the current segmentation and therefore implicitly incorporate

higher level units, e.g. words. This would not be the case if we used

statistical models just based on the possible character sequences.

6. RESULTS

We evaluated our model and compared its performance with the im-

plementation from Neubig et al. [11].

The experiments were conducted with lattice generated from

text input. We used the text prompts of the WSJCAM0 [15] acous-

tic model training data, which is a subset of 5612 unique sentences,

containing a total of 95453 words (10660 unique ones), of the Wall

Street Journal (WSJ0)[16] acoustic model training database. First,

all word delimiters and punctuation were removed from the text

prompts and then all characters were transformed to upper case. This

resulted in the error-free character input. To generate a lattice, the

procedure described in fig. 4 was used. An extract of such a lattice

is shown in Fig. 5. Note, that this way, among the many charac-

ter string alternatives the lattice describes there is also the true, i.e,

error-free character string.

0 5 10 15 20 25
40

60

80

100

F
-m

ea
su

re
 c

h
ar

ac
te

rs
 [

%
]

(1)

(2)

(3)

(4)

0 5 10 15 20 25
0

20

40

60

F
-m

ea
su

re
 w

o
rd

s
[%

]

iteration

Fig. 3. F-measure for the characters and words over iterations for

different strength of noise: (1) [11] with X = 50 , (2) [11] with

X = 100, (3) proposed with X = 50, (4) proposed with X = 100

1: procedure GENERATEINPUTLATTICES

2: for each c in X% of the correct characters do

3: p ∼ unif ([0 . . . 1])
4: c̃ ∼ unif ([c1, . . . , cn, ins, ǫ])
5: if c̃ == ins then

6: ĉ ∼ unif ([c1, . . . , cn])
7: add c with weight p

8: add [cĉ] with weight 1− p

9: else

10: add c with weight p

11: add c̃ with weight 1− p

12: end if

13: end for

14: end procedure

Fig. 4. Procedure to generate the input lattices

The two-stage iterative word segmentation algorithm was now

applied to the input lattice. All experiments were carried out with a

bigram word model and an 8-gram character (spelling) model. We

let the algorithm run for 25 iterations, which are enough for the al-

gorithm to converge. The improvements afterwards were barely no-

ticeable. As for the error measure, we use the F-measure on both,

the word, and the character level. The first one reflects the quality

of the segmentation and the spelling, counting only correctly spelled

words as true positives, while the later one gives an impression of

the overall spelling, counting all correct characters as true positives,

while ignoring the segmentation. To take deletions and insertions

into account, we used the minimum edit distance for alignment be-

fore calculating the F-measure.

Fig. 2 depicts an example. The first string is the most probable

character string (’best shot’) in the input lattice at the beginning of

the iterations, while the second and the third depict the output after

25 iterations gained with our implementation and [14] respectively.

While both methods are able to recover the true character sequence

462

A:A/p

A:C/1-p

C:C/p

C:F/1-p

B:B/p

B:�/1-p

�:C

Fig. 5. Example for the input lattice with substitution, deletion and

insertion

nearly perfectly (the flaw does not affect the spelling model after

all), there is a noticeable difference regarding the words. While our

implementation is able to recover most of them correctly, the one by

Neubig et al oversegments it into smaller sub-word units.

Fig. 3 presents the quantitative evaluation results for the pro-

posed algorithm and the algorithm from [11] for two different de-

grees of the severeness of the noise. For X = 100, for every correct

character, there is an alternative randomly chosen incorrect entry,

while for X = 50 this holds for every other character. These results

confirm the previous statements. Both methods are able to retrieve

the correct character sequence nearly perfectly. But our algorithm

outperforms the other one in terms of word discovery / segmenta-

tion, reaching an F-measure of 64, 6% versus 30.69% for X = 100.

The ability to recover the character sequence confirms the results

reported by Neubig et al, that the phoneme error rate can be signifi-

cantly improved [11].

We also conducted some experiments with a unigram word model to

evaluate our approximation. Surprisingly, our algorithm achieves a

word F-measure of 50, 1% (98, 8% on the character level), while the

program from Neubig et al. [14] achieves 41, 0% (96, 0%). Both

experiments were conducted with X = 100 and an 8-gram spelling

model. While the exact reasons for this remain unclear for now, it

is a good indication, that the losses utilizing an alternating optimiza-

tion versus a combined optimization are not very big. These results

also confirm that the segmentation can be significantly improved by

using a higher order word model, justifying our efforts to find a so-

lution to apply a higher order model in the case of uncertainties in

the input data.

7. CONCLUSIONS AND OUTLOOK

In this paper we have presented an unsupervised word segmentation

algorithm that is able to cope with errors in the input label sequence.

To this end, the input sequence is expanded to a lattice to allow for

alternative character sequences, among which the true, error-free se-

quence is assumed to be. Then an iterative WFST-based word seg-

mentation algorithm is proposed where in each iteration one alter-

nates between estimating the most probable character sequence for a

given language model and estimating the word segmentation, and the

language model given the most probable character sequence. Signif-

icantly improved word segmentation performance was observed on

a noisy text input compared to a method from the literature. In future

we will apply the algorithm to the lattice output of a phoneme rec-

ognizer to enable lexicon discovery and language model estimation

from continuous speech. We further plan to investigate if the overall

system can be improved if the results of the word segmentation are

fed back to the phoneme discovery stage.

8. ACKNOWLEDGMENTS

This work was in part done at and in cooperation with the Language

Technologies Institute of Carnegie Mellon University, supported by

Deutsche Forschungsgemeinschaft under contract no. Ha 3455/9-1

within the Priority Program SPP1527 “Autonomous Learning” and

partially funded by NSF grant 1017256

9. REFERENCES

[1] A. Park and J. Glass, “Unsupervised pattern discovery in

speech,” Audio, Speech, and Language Processing, IEEE

Transactions on, vol. 16, no. 1, 2008.

[2] L. ten Bosch and B. Cranen, “A computational model for un-

supervised word discovery.,” in INTERSPEECH, 2007.

[3] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudan-

pur, K. Church, N. Feldman, H. Hermansky, F. Metze, R. Rose,

et al., “A summary of the 2012 jhu clsp workshop on zero re-

source speech technologies and models of early language ac-

quisition,” in Proceedings of ICASSP, 2013, vol. 2013.

[4] James Glass, “Towards unsupervised speech processing,” in

Information Science, Signal Processing and their Applications

(ISSPA), 2012 11th International Conference on. IEEE, 2012.

[5] J. Schmalenstroeer, M. Bartek, and R. Haeb-Umbach, “Unsu-

pervised learning of acoustic events using dynamic time warp-

ing and hierarchical k-means++ clustering,” in Twelfth Annual

Conference of the International Speech Communication Asso-

ciation, 2011.

[6] Sourish S. Chaudhuri and B. Raj, “Unsupervised structure dis-

covery for semantic analysis of audio,” in Advances in Neural

Information Processing Systems 25, 2012.

[7] D Harwath, T Hazen, and James R Glass, “Zero resource spo-

ken audio corpus analysis,” in Proc. of the IEEE Inter. Conf.

on Acoust., Speech and Signal Proc.(ICASSP), 2013.

[8] J. Driesen and H. Van Hamme, “Improving the multigram al-

gorithm by using lattices as input,” 2008.

[9] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsu-

pervised word segmentation with nested pitman-yor language

modeling,” in Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP:

Volume 1-Volume 1, 2009.

[10] O. Walter, R. Haeb-Umbach, S. Chaudhuri, and B. Raj, “Un-

supervised word discovery from phonetic input using nested

pitman-yor language modeling,” ICRA Workshop on Au-

tonomous Learning, 2013.

[11] G. Neubig, M. Mimura, and T. Kawaharak, “Bayesian learning

of a language model from continuous speech,” IEICE TRANS-

ACTIONS on Information and Systems, vol. 95, no. 2, 2012.

[12] C. Manning, Christopher D, and H. Schütze, Foundations of

statistical natural language processing, MIT press, 1999.

[13] Yee Whye Teh, “A bayesian interpretation of interpolated

kneser-ney,” 2006.

[14] G. Neubig, “latticelm,” Apr. 2013.

[15] J. Fransen, D. Pye, T. Robinson, P. Woodland, and S. Younge,

WSJCAMO corpus and recording description, Citeseer, 1994.

[16] D. Paul and J. Baker, “The design for the wall street journal-

based csr corpus,” in Proceedings of the workshop on Speech

and Natural Language, 1992.

463

