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ABSTRACT

Building a good Automatic Speech Recognition (ASR) sys-
tem with limited resources is a very challenging task due to
the existing many speech variations. Multilingual and cross-
lingual speech recognition techniques are commonly used
for this task. This paper investigates the recently proposed
Temporally Varying Weight Regression (TVWR) method for
cross-lingual speech recognition. TVWR uses posterior fea-
tures to implicitly model the long-term temporal structures
in acoustic patterns. By leveraging on the well-trained for-
eign recognizers, high quality monophone/state posteriors
can be easily incorporated into TVWR to boost the ASR
performance on low-resource languages. Furthermore, multi-
stream TVWR is proposed, where multiple sets of posterior
features are used to incorporate richer (temporal and spatial)
context information. Finally, a separate state-tying for the
TVWR regression parameters is used to better utilize the
more reliable posterior features. Experimental results are
evaluated for English and Malay speech recognition with
limited resources. By using the Czech, Hungarian and Rus-
sian posterior features, TVWR was found to consistently
outperform the tandem systems trained on the same features.

Index Terms— cross-lingual, decision tree clustering,
context expansion

1. INTRODUCTION

Recently, multilingual and cross-lingual speech recognition
has attracted many researchers due to its challenges and prac-
tical applications. This task is particularly designed to build
an Automatic Speech Recognition (ASR) system with lim-
ited resources, particularly limited transcribed speech data.
Although the number of tied triphone states can be reduced
to provide sufficient training data for each physical state, the
performance could be dramatically decreased due to the poor
modelling of acoustic contexts. When the accuracy of the
ASR system is low, it becomes difficult to utilize massive
un-transcribed speech data. In order to improve the perfor-
mance of an ASR system with limited resources, researchers
began to investigate borrowing the rich resources from other
languages due to the similar acoustic characteristics among
human languages. For convenience, language with limited re-

sources will be named as native (target) language, while oth-
ers as foreign (source) language.

One popular approach is to train a multilingual ASR sys-
tem [1, 2, 3, 4] by pooling resources from all related lan-
guages. The ASR system for a target language can be eas-
ily obtained by defining a new lexicon using the universal
phone set. For a better performance, language adaptation is
also applied by optimizing small number of language spe-
cific parameters. However, the complexity of the resulting
multilingual system may be very high in order to model all
the different contexts and language specific patterns, which
can lead to inefficient decoding. Other researchers have in-
terests in finding a probabilistic phone mapping [5, 6, 7, 8,
9] between the source language and target language. Thus,
it may be applied to adapt the acoustic models before de-
coding [5, 9], or translate the foreign phone sequence after
decoding [6, 7, 8]. The biggest challenge of phone map-
ping is that it is difficult to robustly map context dependent
phone sets given very limited resources. Lastly, tandem fea-
tures [10, 11, 12, 13] based on well-trained foreign-language
neural networks phone recognizers have shown promising re-
sults for cross-lingual speech recognition. However, not all
tandem features from foreign language can outperform the
native acoustic features, e.g. tandem features from Spanish
neural networks for Chinese recognition does not perform as
good as baseline [13].

Temporally Varying Weight Regression [14] was recently
proposed to improve the temporal correlation modelling for
Hidden Markov Models (HMM). It extends the conventional
HMM by incorporating posterior features trained on long-
span acoustic features to model temporally-varying GMM
weights. In this paper, TVWR is applied to cross-lingual
speech recognition by leveraging on well-trained foreign
monophone/state recognizers to produce high quality poste-
rior features. In addition, multi-stream TVWR is proposed
where multiple sets of posterior features are used to incorpo-
rate richer spatial and temporal context information. Finally,
a separate tree-based state-tying is applied to the TVWR re-
gression parameters to better exploit the more reliable foreign
posterior features.

The remainder of the paper is organized as follows. In
Section 2, an overview of the previously proposed TVWR
is given. Multi-stream TVWR is formulated in Section 3.
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Section 4 presents a tree-based state tying algorithm for the
TVWR regression parameters. Lastly, experimental results
are reported in Section 5.

2. TVWR OVERVIEW

TVWR formulation is motivated from factorizing a standard
HMM system using a long span of observations as features.
The goal is to model the limited temporal information into
the GMM weights and keep the system complexity relatively
low. Technically, the output probability of an HMM state j in
TVWR framework is given as follows:

p(ot, τ t|j) =

M∑
m=1

P (m|j)p(τ t|ot, j,m)︸ ︷︷ ︸
cjmt

p(ot|j,m) (1)

where τ t is the limited acoustic context of the current obser-
vation ot, denoted as τ t = {ot−δ, . . . ,ot−1,ot+1, . . . ,ot+δ},
δ is the context window size, and cjmt is the temporally
varying weight. In order to avoid estimating high dimen-
sional probability density function, p(τ t|ot, j,m) for each
component, the high dimensional components are shared by
introducing a latent variable such as:

p(τ t|ot, j,m) ≈ p(τ t|j,m) (2)

=
∑
i∈R

p(τ t|i, j,m)P (i|j,m) (3)

≈
∑
i∈R

p(τ t|i)P (i|j,m) (4)

≈ Zt
∑
i∈R

p(i|τ t)P (i|j,m) (5)

where Zt = p(τ t)/P (i) is the component independent nor-
malization term, which can be ignored during likelihood cal-
culation, i is the latent discrete variable to partition the context
space,R is a set of these latent variables and P (i|j,m) is the
regression parameter. Three assumptions are made: 1). since
continuous dependency is hard to model and complicates the
model derivation, assumption is made in Eq.2; 2). in order
to reduce the system complexity, the high dimensional com-
ponent, p(τ t|i) is shared by assumption in Eq.4; 3). uniform
prior P (i) is assumed for convenience in Eq.5. Typically, i
is represented by the monophone/state so that its posterior,
p(i|τ t) can be robustly predicted using a neural network.

Although TVWR has shown better performance than the
conventional HMM system, it still suffers from performance
degradation under limited-resource condition. Since TVWR
requires a robust monophone/state predictor using a long span
of observations as input, the lack of training data will lead
to less accurate predictor and hence poorer performance for
TVWR system. However, it is not necessary to represent the
latent variables using the native monophone/state. For cross-
lingual speech recognition, monophone/state from a different

language can also be used to partition the acoustic space. As
such, TVWR can leverage on other well-trained foreign rec-
ognizers to provide high quality posterior features, avoiding
the need to train one with limited resources. In the next two
sections, two modifications will be introduced to the TVWR
system to further enhance its performance for cross-lingual
speech recognition. In Section 3, multi-stream TVWR is pro-
posed where multiple sets of posterior features are used to
incorporate richer context information. In Section 4, a sep-
arate tree-based parameter tying algorithm is derived for the
TVWR regression parameters to improve model complexity
control under low-resource conditions.

3. MULTI-STREAM TVWR

In the previous section, monophone/state is introduced to rep-
resent the latent variable i such that the system complexity
can keep relatively low. Since foreign monophone/state pos-
terior features are used, the performance improvement might
be limited by the language differences. In order to further
improve the performance under limited-resource condition,
multi-stream TVWR is proposed to introduce richer context
information to regress the time-varying weights. Specifically,
i is now a context-rich latent variable. Without losing gener-
alization, i is defined as a structured variable:

i = {i1, i2, . . . ic . . . iC} (6)
R = R1 ×R2 · · ·Rc · · ·RC (7)

where i is now composed ofC context-specific ”sub-variables”
and Rc is the set of the c-th sub-variable, ic. This can be
viewed as employing multiple partition strategies such that a
much higher resolution of the acoustic space can be obtained
for better discrimination. However, even with C = 2 or 3,
the resulting set R can be very large. Therefore, it is difficult
to estimate the joint posterior probability and there will be a
lot of regression parameters to estimate. To circumvent this
problem, the context-specific latent variables are assumed
to be independent such that the joint posterior probabilities,
P (i1, . . . , iC |τt), and the corresponding regression parame-
ters, P (i1, . . . , iC |j,m), can be factorized as follows:

p(i1 . . . iC |τ t) ≈ p(i1|τ t) · · · p(iC |τ t) (8)
p(i1 . . . iC |j,m) ≈ p(i1|j,m) · · · p(iC |j,m) (9)

This assumption significantly reduces the system complexity
and makes the TVWR formulation tractable. This leads to a
multi-stream TVWR where Eq.5 can be rewritten as:

p(τ t|ot, j,m) ≈ Zt
C∏
c=1

∑
ic∈Rc

p(ic|τ t)p(ic|j,m) (10)

Note that multi-stream TVWR is different from multi-stream
HMM system. In multi-stream HMM system, each state has
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multiple stream acoustic features and each stream is repre-
sented by a GMM, while every state in multi-stream TVWR
has only one stream acoustic feature represented by a sin-
gle GMM. In the following subsections, multi-stream TVWR
will be used to incorporate both temporal and spatial contexts.

3.1. Temporal Context Expansion

In continuous speech, the sound of a phone can be easily influ-
enced by its preceding and succeeding phones, a phenomenon
called co-articulation, this correlation can be modelled by in-
troducing a cross word triphone/state. However, this impor-
tant information is lost when using monophone/state to repre-
sent the latent variable i in TVWR. Therefore, a temporal con-
text dependent latent variable i is introduced by settingC = 3
such that i1, i2, i3 can be used to indicate left, middle and
right monophone/state of current frame, respectively. Since
these “sub-variables” are from the same monophone/state set
but with different position information, X1, X2, X3 are liter-
ally the same without considering context position.

Instead of using three separate recognizers to produce
three sets of posteriors, only one recognizer is used to pre-
dict the middle monophone/state posterior probabilities. The
corresponding left and right posterior probabilities are de-
rived from the sequence of middle monophone/state posterior
probabilities as follows: starting from the current frame,
search left and right until the identity of the monophone/state
with the largest posterior probability changes and use the
corresponding posterior probabilities as the left and right
posteriors. As a results, the left posterior feature, p(i1|τ t) is
given by p(i2|τ t−φ) where:

arg max
i2

p(i2|τ t−φ) 6= arg max
i2

p(i2|τ t) (11)

arg max
i2

p(i2|τ t−k) = arg max
i2

p(i2|τ t) k ∈ [1, φ) (12)

At the same time, the right posterior feature, p(x3|τ t) can
also be obtained in a similar way. Since silence does not
need context, its left and right posteriors are assumed to be
the same as the middle posteriors.

3.2. Spatial Context Expansion

Alternatively, multiple monophone/state predictors from dif-
ferent foreign languages can be applied to build a spatial con-
text. In general, multiple foreign languages with more differ-
ences can lead to a better discrimination, since they are more
likely to be complementary for each other. Spatial context
can be more useful when each individual foreign language
does not provide a good prediction of monophone/state pos-
terior features. Therefore, C in Eq.10 will represent the total
number of foreign languages to be applied, while Rc is the
monophone/state set for c-th language.

3.3. Parameter Estimation

After ignoring independent terms, the auxiliary function w.r.t.
regression parameters can be written as:

Q(Λ, Λ̂) =
∑
t,j,m

γjm(t) log
( C∏
c=1

∑
ic∈Rc

p(τ t|ic)P (ic|j,m)
)

≥
∑

t,j,m,c,ic

γjmic(t)
(

logP (ic|j,m) + log p(τ t|ic)
)

(13)

where the component occupancy is now given as:

γjm(t) = γj(t)
ĉjmtp(ot|j,m)∑M
m=1 ĉjmtp(ot|j,m)

(14)

γj(t) is the state occupancy at time t given the current model
Λ̂, ĉjm(t) is the current time-varying weight of multi-stream
TVWR and

γjmic(t) = γjm(t)
P (ic|j,m, Λ̂)p(τ t|ic)∑

ic∈Rc
P (ic|j,m, Λ̂)p(τ t|ic)

(15)

≈ γjm(t)
P (ic|j,m, Λ̂)p(ic|τ t)∑

ic∈Rc
P (ic|j,m, Λ̂)p(ic|τ t)

(16)

The optimal estimation can be then obtained by using La-
grange multiplier such that:

P (ic|j,m) =

∑
t γjmic(t)∑

ic∈Rc

∑
t γjmic(t)

∀c ∈ C, ic ∈ Rc (17)

Note that this update formula is similar to applying the stan-
dard TVWR estimation (by setting C = 1) to each stream
independently, except that the component occupancy is cal-
culated using the multi-stream TVWR system when perform-
ing forward-backward calculations in the E-step of the Baum-
Welch training.

4. TREE-BASED STATE CLUSTERING

Typically, the complexity of a triphone system is controlled
using the decision tree state tying technique [15]. When train-
ing a system with limited resources, the number of distinct tri-
phone state clusters is kept small to ensure robust estimation
of all the parameters associated with the tied states. However,
this may limit the potential of the TVWR system where the
regression parameters cannot take full advantage of the high
quality posterior features. To alleviate this problem, a sep-
arate tree-based tying algorithm is applied to the TVWR re-
gression parameters so that the model complexity with respect
to the regression parameters can be controlled independent of
the regular GMM parameters.

Due to the limited training data, state tying algorithm will
be performed on the system with only one mixture per state.
The essence of the tree-based state tying algorithm is the
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derivation of the likelihood increase as a result of splitting a
state cluster into two. This allows the appropriate questions
to be chosen for each node when constructing the decision
tree. The following state-tying derivation for the TVWR re-
gression parameters is largely based on the framework given
in [16]. The auxiliary function to be maximized with respect
to the TVWR regression parameters can be written as:

Q(Λ, Λ̂) =
∑
t

∑
j∈J

γj(t) log
(∑
i∈R

p(τ t|i)P (i|j)
)

(18)

≥
∑
t

∑
j∈J

∑
i∈R

γji(t)
(

logP (i|j) + log p(τ t|i)
)

(19)

=
∑
t

∑
j∈J

∑
i∈R

γji(t) logP (i|j) +K(J ) (20)

where γj(t) is the state occupancy at time t given the cur-
rent model Λ̂ and transcription, J is a state cluster including
all triphone states, γji(t) can be similarly obtained by setting
m = 1 and C = 1 in Eq.16, and

K(J ) =
∑
t

∑
j∈J

∑
i∈R

γji(t) log p(τ t|i) (21)

the optimal solution of P (i|j) can be similarly found by set-
ting m = 1 in Eq.17. Assuming that the alignment, γji(t) is
unchanged during state tying, the auxiliary likelihood func-
tion for a state cluster S can be obtained as:

Q(S) =
∑
i∈R

∑
j∈S

βjP (i|j) logP (i|S) +K(S) (22)

where βj =
∑
t,i γji(t) is the state occupancy, and the re-

gression parameter for cluster S is given as

P (i|S) =

∑
j∈S βjP (i|j)∑

i∈R
∑
j∈S βjP (i|j)

(23)

the question is selected to maximize the following function:

∆Qq = Q(Sy(q)) +Q(Sn(q))−Q(S) (24)

where S is the initial state cluster, Sy(q),Sn(q) are the split
state clusters for “yes” and “no” answers, respectively. Given
the fact that

K(Sy(q)) +K(Sn(q))−K(S) = 0 (25)

the objective function, ∆Qq will only depend on the re-
gression parameters of each cluster, P (i|S), P (i|Sy(q)) and
P (i|Sn(q)). Although the above state tying algorithm is de-
scribed for a TVWR system without context expansion as in
Section.3, it can be easily extended to support multi-stream
TVWR by replacing the objective function Eq.18 with Eq.13
and setting m = 1.

5. EXPERIMENTS

The experiments are conducted for two native (target) lan-
guage recognition tasks: 1) 5k close vocabulary English
speech recognition, 2) 22k open vocabulary Malay speech
recognition. The full English dataset (WSJ0) contains 7k+
utterances (15 hours) with 84 speakers for training, and 330
utterances with 8 speakers for testing, while the full Malay
dataset contains 35k+ utterances (74.5 hours) with 28 speak-
ers for training, and 600 utterances with 6 speakers for testing.
Both English and Malay corpora are reading speech recorded
in clean environments. 39-dimension MFCC features are
used for both corpora, including 13 static parameters and first
two derivatives as dynamic parameters. A 3-state left-to-right
HMM is applied as the acoustic model for each triphone, and
tree based state tying is applied to cluster triphone states. To
perform the recognition, both use full bigram decoding and
trigram lattice rescoring, while four-gram lattice rescoring is
additionally employed for Malay recognition.

For cross-lingual experiments, an 1.2 hours of English
subset are extracted, including 500 utterances with 5 speak-
ers. 6 hours of Malay subset are extracted, including 3k ut-
terances with 6 speakers. Three foreign (source) language
resources are employed, including Czech (CZ), Hungarian
(HU) and Russian (RU). Specifically, three foreign phone rec-
ognizers [17] well trained by respective telephone speech data
are employed. For clarification, English, Malay, CZ, HU, RU
have 40, 33, 45, 61, 52 monophones, respectively. In order
to use these three foreign phone recognizers, all speech wave-
form files were down-sampled to 8kHz, which are also used to
extract acoustic features for consistency. In our experiments,
phone recognizers were used to generate respective mono-
phone/state posterior features instead of monophone/state se-
quence.

5.1. Baseline Mono-lingual Recognition

English HMM fullset baseline system is obtained with 3151
tied states and 16 mixtures per state; Malay HMM fullset
baseline is estimated with 5043 tied states and 16 mixture
per state. Due to limited data, English HMM subset base-
line contains only 445 tied states and 8 mixtures per state,
while Malay HMM subset baseline contains 1178 tied states
and 4 mixtures per state, which will be the default number
of components for all subsequent experiments if not men-
tioned explicitly. Performance degradation was observed by
further increasing the number of mixtures using Maximum
Likelihood criterion. In order to build a TVWR subset base-
line, two neural networks are estimated to predict English and
Malay monophone posterior features. Both neural networks
are obtained by training a 3-layer neural network using the
subset and quicknet 1 with δ = 4 and 1000 hidden units.

1ICSI quicknet software package, http://www.icsi.berkeley.
edu/speech/qn.htm
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TVWR subset baseline is estimated by starting from respec-
tive HMM subset baseline and using respective monophone
posterior features. As shown in Table.1, dramatical perfor-
mance degradation was observed on both HMM and TVWR
subset baseline systems. Although TVWR obtained consis-
tent improvements over respective HMM subset baseline, its
performance is still far from the HMM fullset baseline. These
results clearly show that the performance of both HMM and
TVWR is sensitive to the amount of available training data.

Tgt HMM full HMM sub TVWR sub
English 6.9 24.3 22.1
Malay 13.1 24.4 23.1

Table 1. WER(%) performance of HMM and TVWR
fullset/subset baseline systems for English and Malay speech
recognition.

5.2. Tandem Cross-lingual Recognition

To obtain tandem features, three foreign phone recognizers
were used to generate respective monophone-state posterior
features for the English and Malay subset. Log posterior
features are then obtained for a more Gaussian-like distribu-
tion [18]. Principle Component Analysis (PCA) was applied
to obtain 13-dimension features, which was concatenated to
the original 39-dimension MFCC features. Tandem systems
using 52-dimension features were estimated using two-model
re-estimation and 4 iteration ML estimation. The best per-
formance on English subset was found on the tandem sys-
tems with 8 mixtures per state, while Malay subset was with
12 mixtures per state. As shown in Table.2, different tan-
dem system performs slightly differently but generally ob-
tained significantly improvements over the HMM baseline.
For English speech recognition, tandem systems using single
foreign phone recognizer achieved 7-9% absolute improve-
ments, while Russian language with best performance proba-
bly has more commons to the target English language. How-
ever, for Malay speech recognition, the absolute improve-
ments is only 4% by using single foreign recognizer, while
Hungarian seems more similar to the target Malay language.
After combining three tandem systems, further 2-3% abso-
lute improvements are observed for both English and Malay
languages. These results show that tandem features using for-
eign language phone recognizers can help improve the perfor-
mance of these two target languages with limited resources.

Tgt CZ HU RU CZ⊗HU⊗RU
English 16.7 16.3 15.4 14.1
Malay 20.4 19.9 20.1 17.2

Table 2. WER(%) performance of various tandem systems
with limited resources for target English and Malay speech
recognition.

5.3. TVWR Cross-lingual Recognition

As shown in Table.3, all TVWR systems using foreign pos-
teriors outperformed both HMM and TVWR subset baselines
in Table.1. When no context expansion is performed, 6-7%
absolute improvements for English speech recognition over
HMM subset baseline are observed using single stream of
posterior features, while 3-4% are observed for Malay speech
recognition. This tells that using a well trained foreign phone
recognizer can provide a better partition for the acoustic space
for TVWR. However, when compared to tandem systems in
Table.2, TVWR without context expansion is consistently in-
ferior to tandem systems. This may be because TVWR de-
pends more on unreliable GMM by MFCC features.

Tgt: English w/o temporal w/ temporal
CZ 17.7 13.0
HU 17.8 11.9
RU 17.9 13.4

spatial context 12.1 9.8

Tgt: Malay w/o temporal w/ temporal
CZ 21.9 18.1
HU 20.8 17.7
RU 18.0 16.7

spatial context 16.2 14.5

Table 3. WER(%) performance of TVWR systems with
or without context expansion for target English and Malay
speech recognition.

After applying temporal/spatial context expansion, multi-
stream TVWR consistently outperformed both conventional
TVWR systems and tandem systems. When compared to
TVWR without context expansion, 4-6% absolute improve-
ments over respective TVWR using single foreign posteriors
are observed for English language, while 3-4% absolute im-
provements are observed for Malay language. This shows
that temporal context expansion can significantly improve
TVWR system performance without suffering over-fitting
issue despite introducing many regression parameters. When
compared to the individual tandem systems in Table.2, 2-4%
absolute improvements are shown for English, while 2-3%
absolute improvements for Malay. Particularly, TVWR us-
ing single HU for English and single RU for Malay already
shows better than multiple stream tandem systems. These
results show that multi-stream TVWR with temporal context
expansion can learn more information from single stream of
posterior features. TVWR with spatial context expansion by
three languages performs similar to the best temporal context
expansion based TVWR, i.e. HU for English and RU for
Malay, which shows spatial context expansion may have a
more robust acoustic partition, while temporal context expan-
sion is more sensitive to the difference between source and
target languages. After combining both temporal and spatial
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context, another 1-2% absolute improvements are observed,
which tells that temporal and spatial context are different and
complementary.

5.4. State Tying for TVWR Parameters

Last, multi-stream TVWR with a second state tying method
is evaluated. In order to obtain strong Gaussian bases for
TVWR system, the number of tied states for GMM param-
eters is reduced to about 330 for English (8 mix per state)
and 900 for Malay (4 mix per state), while the number of tied
states for TVWR parameters increased to about 1.2-1.3k for
English and 3.0-3.4k for Malay. When combining both tem-
poral and spatial context, 1.9k and 4.8k tied states for TVWR
parameters are used for English (8 mix per state) and Malay
(8 mix per state), respectively. Recognition results for vari-
ous TVWR systems are reported in Table.4. First, after intro-
ducing a second state tying method, consistent improvements
are found for all TVWR systems. However, the amount of
improvements varies as foreign language. Generally speak-
ing, foreign posteriors with better performance in Table.3 can
gain more by introducing more tied states. Since the ratio-
nal of introducing more tied states for TVWR parameters is
that posteriors are more reliable than acoustic features, this
method may not work well if foreign posteriors are not re-
liable enough. Finally, combination of temporal and spatial
context with more tied states achieved very close performance
to the HMM fullset baseline, i.e. 1-2% difference. However,
it is important to note that discriminative training is applied
to obtain posterior features for TVWR, which can definitely
lead to a better HMM baseline.

Tgt w/ temporal spatial temporal
CZ HU RU +spatial

English 11.7 11.3 12.6 10.6 8.7
Malay 18.0 16.9 15.6 14.9 13.9

Table 4. WER(%) performance of various multi-stream
TVWR systems with a second state tying and limited resources
for target English and Malay speech recognition.

6. CONCLUSIONS

In this paper, the recently proposed TVWR is investigated
for cross-lingual speech recognition under limited resources.
First, various foreign monophone/state posterior features are
employed to replace the native unreliable features so that
a better acoustic partition can be obtained. Second, multi-
stream TVWR is proposed by incorporating much richer
temporal and spatial context information for a better repre-
sentation of the context variable. Third, a separate state tying
algorithm for the TVWR regression parameters is proposed
to introduce more distinct triphone state with reliable regres-
sion parameters. Various TVWR systems were evaluated for
English and Malay speech recognition with limited resources.

TVWR systems using foreign monophone/state posterior fea-
tures have shown significant improvements over both HMM
and tandem systems. Introducing multi-stream TVWR and
more tied states can obtain further improvement, which re-
sults in less than 2% inferior to respective English and Malay
HMM fullset baselines.
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