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ABSTRACT

Measures of acoustic similarity between words or other units are
critical for segmental exemplar-based acoustic models, spoken term
discovery, and query-by-example search. Dynamic time warping
(DTW) alignment cost has been the most commonly used measure,
but it has well-known inadequacies. Some recently proposed alterna-
tives require large amounts of training data. In the interest of finding
more efficient, accurate, and low-resource alternatives, we consider
the problem of embedding speech segments of arbitrary length into
fixed-dimensional spaces in which simple distances (such as cosine
or Euclidean) serve as a proxy for linguistically meaningful (pho-
netic, lexical, etc.) dissimilarities. Such embeddings would enable
efficient audio indexing and permit application of standard distance
learning techniques to segmental acoustic modeling. In this paper,
we explore several supervised and unsupervised approaches to this
problem and evaluate them on an acoustic word discrimination task.
We identify several embedding algorithms that match or improve
upon the DTW baseline in low-resource settings.

Index Terms— Fixed-dimensional embedding, segmental
acoustic modeling, query-by-example search, speech indexing

1. INTRODUCTION

Most approaches to speech recognition and related tasks to date have
handled variability in word and phone segment duration by model-
ing short, fixed-length frames. These approaches rely on frame-level
independence assumptions whose limited validity has been well doc-
umented [1]. To account for more acoustic context, many recogni-
tion systems, including recent sparse exemplar models [2], compute
supervectors of concatenated acoustic features over longer (but still
fixed) windows, often followed by dimensionality reduction. Still,
variation in segment duration prevents these fixed-context windows
from always aligning with meaningful linguistic units.

In contrast, template-based and segmental approaches use
variable-length acoustic windows to capture whole units for subse-
quent modeling. Template-based acoustic models typically rely on
dynamic time warping (DTW) to quantify the similarity of phone or
word segments [3, 4]. However, DTW often misestimates word seg-
ment similarity due to, among other factors, oversensitivity to longer
phonetic segments (e.g. vowels). Furthermore, DTW alignment is
polynomial time in the duration of the segments being compared,
which can prove burdensome when comparing test audio to a large
repository of exemplars. This drawback could be avoided by em-
bedding arbitrary-length segments into fixed-dimensional spaces in
which common distances provide estimates of linguistic dissimilar-

ity. Such embeddings would (i) enable the application of standard
distance learning techniques [5, 6] to template-based acoustic mod-
eling and (ii) support a new generation of efficient segment-based
audio indexing algorithms, enabling highly scalable spoken term dis-
covery [7, 8, 9] and query-by-example search [10, 11, 12].

Existing segmental acoustic models use fixed-dimensional rep-
resentations of hypothesized variable-length segments. The various
flavors of segmental models provide several ways of constructing
these representations. These include downsampling [13, 14, 15, 16],
phonetic acoustic model-derived features [17, 18], and convolutional
deep neural networks [19]. These techniques do not necessarily pro-
duce linguistically meaningful embeddings but rather rely on super-
vision in the segmental feature space for linguistic discrimination.
Furthermore, with the exception of basic downsampling, these ap-
proaches do not extend well to zero- or low-resource settings, where
supervised training data is limited or non-existent.

With these motivations, we explore multiple unsupervised and
supervised approaches to extracting fixed-dimensional embeddings
of variable-length audio signals, focusing for the time being on sig-
nals corresponding to individual words. Our goal is to identify em-
beddings that preserve word discrimination under simple cosine or
Euclidean distances. To apply our techniques to large amounts of
speech, we require built-in out-of-sample extension capabilities. We
consider three operational settings in which we have access to vary-
ing levels of information. At one extreme, we assume that we see
each unlabeled speech segment in isolation with no additional train-
ing data. Here we can consider downsampling methods. At the op-
posite extreme, with a training set of word exemplars of known type
we can learn feature maps that maintain word type discrimination.
Finally, in the intermediate case, we have a training set of segments
of unknown types, but we can still exploit the class-independent dis-
tribution of the exemplars. In each case, we explore both linear and
non-linear embeddings and evaluate their effectiveness on a word
type discrimination task in a multi-speaker corpus of conversational
telephone speech. In all cases, we consider only low-resource set-
tings (no more than several hours of speech).

2. METHODS

Our goal is to define a function that maps audio signals of arbi-
trary length to a continuous vector space that parsimoniously en-
codes the underlying linguistic content. Formally, let X denote the
set of all arbitrary-length acoustic vector time series, X = {X =
x1x2 . . . xT | T ∈ Z+, }, with each xt ∈ Rp, where p is the dimen-
sionality of some frame-level acoustic feature representation (e.g.
MFCC, PLP). We would like to learn functions f : X → Rd that
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map acoustic feature vector time series in X to points in Rd such
that f(X) and f(Y ) are similar if and only if X and Y are acous-
tic observations generated by similar linguistic units (e.g., phones,
morphemes, syllables, words). For now we restrict the discussion
and experiments to word segments, but the methods apply similarly
to any meaningful unit. We consider three settings for learning these
functions, relying on varying amounts of available information:

1. (NoTrain) We may access each test word segment X ∈ X in
isolation with no additional information.

2. (UnsupTrain) We have a collection of Ntrain word exemplars
Xtrain = {Xi}Ntrain

i=1 , with each Xi ∈ X .

3. (SupTrain) In addition to a collection of Ntrain word segments
Xtrain ⊂ X , we have the corresponding word labelsWtrain =

{wi}Ntrain
i=1 for those word segments.

In what follows, we define approaches for these three settings.

2.1. Time series downsampling

If no information is available to us aside from a given feature vector
time series, we must adopt strategies to select a fixed-sized set of
observations. The simplest approach is to uniformly downsample so
that any segment is represented by a constant number k of vectors:
given a feature vector time series X = x1x2 . . . xT ∈ X , with
each xt ∈ Rp, we sample vectors from X at intervals of T/k with
suitable interpolation as needed. The downsampled time series is
concatenated into a single vector of dimensionality d = kp. A more
sophisticated approach is to perform non-uniform downsampling of
the time series using HMMs. For a segment X = x1x2 . . . xT ∈ X ,
we train a k-state left-to-right HMM, modeling the acoustics with
a single spherical Gaussian in each state. This approach segments
X non-uniformly into k regions. Concatenating the means of these
regions into a single vector yields an embedding into Rkp regardless
of the length of X . While we restrict our experiments to this HMM-
based approach, other HMM-based techniques may be applicable to
our setting (e.g. see [20]), as may other non-uniform downsampling
approaches (e.g. see [13, 14]).

2.2. Vector of distances to reference set

When we have access to a collection of training word exemplars
Xtrain, we can consider more sophisticated embedding techniques.
Here, we designate a reference set of r exemplars,Xref = {Xmi |1 ≤
mi ≤ Ntrain, i = 1, . . . , r} ⊆ Xtrain, that covers a broad selec-
tion of word types and speakers. Given a feature vector time series
X ∈ X , we form a vector u ∈ Rr with the ith component of u given
by D(X,Xmi), where D(·, ·) is the DTW alignment cost between
pairs of segments. We refer to u as a reference vector for segment
X . Note that this is a special case of a Lipschitz embedding in which
each reference set has cardinality one [21] and that we use the term
reference set in a slightly different sense. We can think of this refer-
ence vector as representing a word in terms of its similarity to a set
of exemplars that forms a “basis” for the space of all words. Thus,
this and similar such representations can be applied even to word
types not seen in the training set.

One of our motivations for deriving fixed-dimensional word em-
beddings is to avoid costly DTW alignments over large collections
of speech. Here, we are explicitly constructing a representation that
requires computing DTW alignment cost against a set of reference
examples. While this is an expensive operation, it is still linear in
the size of the speech collection if the reference set is fixed. In the
context of indexing for search applications, these DTW calculations

need only be performed once offline for the entire search collection,
allowing sublinear-time search using approximate nearest neighbor
techniques [22]. As commonly employed for costly Lipschitz em-
beddings, inducing sparsity would also mitigate the computational
burden (e.g. see [23]). In general, the approaches presented here
replace DTW alignments with simple Euclidean or cosine distance
computations. Thus, letting m and n be the lengths of the vector
time series being aligned and letting p be the dimensionality of the
vectors in the time series, we replace an operation requiring time
O(mnp) with an operation requiring time O(d), where d is the di-
mensionality of our embedding. Thus, when using the techniques
in [22] to search for a query term of length m in a vector time se-
ries of length N , we require only O(logN) time using approximate
nearest neighbor search, rather than O(Nmp) operations required
by DTW-based search.

2.3. Linear embedding techniques

Linear dimensionality reduction techniques use a collection of la-
beled or unlabeled data to derive a linear map from the original fea-
ture space to a space of lower dimensionality. Applying such tech-
niques to the reference vectors defined in Section 2.2, we obtain a
projection matrix P ∈ Rd×r , where d < r. Given a new segment
X ∈ X , we project its reference vector u ∈ Rr to u′ = Pu ∈ Rd.
In the absence of word type information, we may derive P using
principal components analysis (PCA). If word labels are available,
supervised techniques such as linear discriminant analysis (LDA)
can be used. Note that if we use Euclidean distance to compare
embedded segment pairs, then operating in the linear embedding
space defined by projection matrix P is equivalent to using a Maha-
lanobis distance parametrized by matrix M = PTP in the original
r-dimensional space.

2.3.1. PCA and LDA

PCA is a well-established unsupervised dimensionality reduction
technique. Given Xtrain ⊂ X , we construct the reference vector of
each Xi ∈ Xtrain. The d < r top (largest-magnitude eigenvalue)
eigenvectors of the resulting covariance matrix form a basis of lower
dimensionality that best preserves the variance of the data.

When we have word type labelsWtrain = {w1, . . . , wNtrain} for
the training exemplars, multi-class LDA can be used. Multi-class
LDA finds a set of vectors pointing along the directions in which
between-class variability is maximized while within-class variabil-
ity is minimized. Specifically, we form a basis of the first d largest-
eigenvalue non-trivial solutions v to the generalized eigenproblem
ΣBv = λΣWv, where ΣB and ΣW are the between- and within-class
covariance matrices of the training data, respectively. In our im-
plementation, we regularize the within-class covariance matrix with
shrinkage by adding a scaled identity matrix.

2.3.2. Metric learning to rank (MLR)

Another supervised option is to use one of many existing techniques
for discriminatively learning a Mahalanobis distance, given by a pos-
itive semidefinite matrix M , with distance between vectors u1, u2

defined as
√

(u1 − u2)TM(u1 − u2). Here we use MLR [24], as
it optimizes a criterion closely related to our task. MLR is a large-
margin approach that aims to separate vectors that are similar to a
given query vector from those that are dissimilar by a margin given
by a ranking loss, which in our case is mean average precision Given
the learned matrix M , we find a matrix U whose ith row is

√
|λi|vi,
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where vi is the ith eigenvector of M with corresponding eigenvalue
λi. We obtain projection matrix P by retaining only the first d rows
of U .

2.4. Nonlinear graph embedding techniques

Numerous non-linear dimensionality reduction techniques are avail-
able for consideration (e.g. [25, 26]). We use Laplacian eigen-
maps [27], including a variant proposed in [28] that defines an out-
of-sample extension. In the supervised setting, we can encode word
type information by adding graph edges that reflect word identity.

2.4.1. Laplacian eigenmaps

We begin by constructing a graph G with one vertex per train-
ing example and edges reflecting the nearest neighbor structure
under DTW alignment cost. The binary-valued adjacency matrix
Ann ∈ RNtrain×Ntrain has Ann

ij = 1 if and only if example i is one
of the k nearest neighbors of example j or vice versa. Given ma-
trix Ann, the normalized graph Laplacian operator is defined as
Lnn = I−S

1
2AnnS

1
2 , where S is diagonal with Sii =

∑
j A

nn
ij . Fol-

lowing [27], we wish to find a set of d projection maps {h1, . . . , hd},
where hi : V (G) → R, such that vertices near one another under
the topology of G are mapped to similar locations in Rd. Since the
graph Laplacian operator acts as a measure of smoothness of func-
tions defined on the graph, the desired set {hi} is defined implicitly
by the eigenvectors of Lnn with the d smallest eigenvalues (after dis-
carding the first trivial eigenvector, which has eigenvalue 0). Each
eigenvector encodes the image of the vertex set under a map in {hi}.

A problem arises when we wish to project a segment with no
corresponding vertex in G into this d-dimensional space. Like mul-
tidimensional scaling, without some procedure for out-of-sample ex-
tension, this technique has little practical utility. An out-of-sample
solution for Laplacian eigenmaps is given in [28] and is summarized
below. We construct matrices Ann and Lnn as described above. Our
new optimization problem takes the form

h∗ = arg min
h∈HK

hTLnnh + ξ‖h‖2K , (1)

where HK is the reproducing kernel Hilbert space for some pos-
itive semi-definite kernel function K : X × X → R, h =
〈h(X1), . . . , h(XNtrain )〉

T is the vector of values of h computed on
the vertices of the graph, and ξ is a non-negative regularization term.
All reported experiments used a kernel function of the form

K(Xi, Xj) = exp

{
− [max(0, D(Xi, Xj)− η)]2

2σ2

}
,

where D(·, ·) is DTW alignment cost and η, σ ∈ R. By the RKHS
representer theorem [28], the j th component of our projection map is

h∗j (X) =

Ntrain∑
i=1

α
(j)
i K(Xi, X), (2)

where the {α(j)
i } are given by solutions to the generalized eigenvec-

tor problem (LnnK + ξI)α = λKα, with K being the Gram matrix
with entries Kij = K(Xi, Xj) for Xi, Xj ∈ Xtrain.

Intuitively, this eigenproblem is trying to find mappings from
Xtrain to R such that word exemplars that are connected in graph G
take similar values. In the out-of-sample extension, the kernelization
performs a sort of interpolation such that a test exemplar “similar”
to a vertex in G takes a similar value. Given the d eigenvectors
with the smallest eigenvalues (ignoring the trivial one, as above), we
can map an arbitrary segment X ∈ X to a point v ∈ Rd given by
v = 〈h1(X), . . . , hd(X)〉T according to Equation 2.

2.4.2. Supervised graph embedding

When available, it is desirable to incorporate class label informa-
tion into the Laplacian eigenmaps approach. Notable recent algo-
rithms for this problem include locality preserving discriminant anal-
ysis [29], locality sensitive discriminant analysis (LSDA) [30], and
marginal Fisher analysis [31]. In our approach, we construct kernel
matrix K and matrix Ann as described above. Additionally, we con-
struct a matrix Asup such that Asup

ij = 1 if i 6= j and wi = wj , and
Asup

ij = 0 if wi 6= wj or if i = j. Thus, Asup captures our knowledge
of which pairs of words ought to be adjacent to one another in an
“ideal” graph reflecting the true class labels. We can combine our
supervised and unsupervised information into a single graph Lapla-
cian L = Lnn + βLsup, β ∈ R is non-negative and Lnn and Lsup

are the normalized graph Laplacians of Ann and Asup, respectively.
L captures both acoustic similarity and true word label information
in a single operator. This is analogous to LSDA, but where we lin-
early combine the normalized Laplacians of within- and between-
class graphs rather than the adjacency matrices. Replacing Lnn with
L, we proceed as in the previous algorithm, constructing a subspace
from the first d non-trivial solutions to Equation 1.

2.4.3. LDA applied to graph embeddings

We again assume that we have a labeled set of vector time series,
which we use to learn an embedding into Rd′ using Laplacian eigen-
maps as described above. This map is applied to the training set ex-
emplars and an LDA projection is learned from the resulting vectors
and their labels to produce a final embedding into Rd. This two-
step process provides an alternate means of introducing supervision
into the graph embedding framework. We note that other supervised
projections could also be used here, e.g. via Mahalanobis distance
learning as in Section 2.3.2, but here we limit ourselves to LDA.

3. EXPERIMENTS

To evaluate the techniques described above, we use the task in [32],
designed to evaluate the word discrimination performance of acous-
tic front ends and acoustic models that do not explicitly model
phones. An evaluation set of presegmented words Xtest is pre-
sented. For each pair (Xi, Xj)∈Xtest×Xtest for i 6= j, we compute
D(Xi, Xj) under the representation and distance D being evalu-
ated. We set a threshold τ such that we declare words Xi and Xj

to be the same if D(Xi, Xj) ≤ τ and declare them to be differ-
ent otherwise. Discriminative power is then quantified by the aver-
age precision (AP), the area under the precision-recall curve, which
characterizes discrimination performance at all possible settings of
τ . LetNSW(τ) denote the number of same-label word pairs with dis-
tance less than or equal to τ under the model. We define the model’s
precision PSW(τ) and recall RSW(τ) at operating threshold τ as

PSW(τ) =
NSW(τ)

N(τ)
RSW(τ) =

NSW(τ)

NSW
, (3)

where N(τ) denotes the total number of word pairs in the corpus
whose distance under the model is less than or equal to τ (i.e., the
number of hypothesized same-word pairs) and NSW is the number
of true same-word pairs in the corpus. Thus, to evaluate one of our
candidate algorithms, we embed the test set according to that algo-
rithm, compute all pairwise distances between the embedded points
and compute the area under the precision-recall curve.

We assembled two collections of words from the Switchboard
English corpus, Xtrain and Xtest, containing Ntrain = 10383 and
Ntest = 11024 words, respectively. Both sets were constrained to

412



Table 1. Average precision scores achieved by our baseline algo-
rithms in the NoTrain condition, by feature type (all scores are given
as proportions).

Ave. Prec.
Algorithm PLP FDLP

Baseline DTW 0.198 0.226

Uniform Downsampling

n = 5 0.036 0.040
n = 10 0.062 0.069
n = 25 0.072 0.081
n = 50 0.074 0.082

Non-uniform Downsampling

n = 5 0.050 0.033
n = 10 0.086 0.080
n = 25 0.081 0.088
n = 50 0.076 0.086

include only words of 6 or more orthographic characters and to be at
least 50 frames in length (0.5 s). The train and test sets contained
5539 and 3392 word types, respectively, with 6971 unique word
types in all. The train set was constructed to have a broad sampling
of word types, with at most 5 tokens of any given word type and with
each token of a given type taken from a different speaker. The result-
ing word set covered 360 conversation sides and 156 unique speak-
ers. The test set was identical to that in [32]. It was constructed to
reflect a content word distribution encountered in a typical conversa-
tional speech setting. It consisted of all words meeting the above
length criteria from 360 conversation sides covering 236 unique
speakers, none of whom appeared in the train set. To investigate the
effect of acoustic front end on this task, we performed this evaluation
using vector time series of 39-dimensional perceptual linear predic-
tion (PLP) feature vectors and 15-dimensional truncated frequency-
domain linear prediction (FDLP) feature vectors [33]. Previous work
has indicated that truncating the spectrum from 13 to 5 dimensions
yields a gain in this task relative to front ends with more detailed
spectral content [34]. Cosine distance, defined for vectors a, b as
1−aT b/‖a‖‖b‖, generally outperformed Euclidean distance for the
embedding techniques described in this paper. The basic reference
vector and PCA experiments used Euclidean distance between em-
bedded points. All other experiments used cosine distance.

3.1. Baselines (the NoTrain condition)

Using DTW alignment cost as an interword distance measure estab-
lishes a baseline for our task. A successful algorithm will be one that
can improve upon this result or maintain comparable performance
without supervision while being computationally less expensive. Ta-
ble 1 shows the performance of this baseline approach on both PLP
and FDLP acoustic features. Also listed in Table 1 are the results
using uniform and nonuniform downsampling approaches outlined
in 2.1, where we consider target sample sizes of n ∈ {5, 10, 25, 50}
and use cosine distance to compare the resulting supervectors. As
is the case for the DTW baseline, the downsampling results using
FDLP are consistently comparable to or better than PLP. The gains
of nonuniform sampling over uniform are marginal, with the best
downsampling APs roughly 1/3 that of the baseline DTW perfor-
mance for n ≥ 10.

3.2. Unsupervised embeddings (the UnsupTrain condition)

Next we evaluated the reference vectors described in Section 2.2. A
drawback of this approach (and the approaches that depend on it)
is that constructing an acoustic segment’s reference vector requires
computing |Xref| = r DTW alignment costs. Lower-dimensional

Table 2. Average precision scores achieved by our basic reference
vectors in the UnsupTrain condition, by feature type (all scores are
proportions).

Ave. Prec.
r PLP FDLP

100 0.041 0.078
500 0.089 0.137

1,000 0.089 0.142
5,000 0.094 0.149
10,000 0.096 0.150

reference vectors, if still effective in distinguishing words, would
allow us to maintain similar performance with fewer DTW calcula-
tions required to embed a given word. To examine this possibility,
we selected reference sets Xref ⊆ Xtrain of various sizes r. Reference
sets were selected randomly, but biased to favor selecting clusters of
same-word tokens. As reflected in Table 2, these results fall short
of the baseline DTW scores, but they do demonstrate that we can
safely shrink the size of our reference set by as much as a factor of
20 without paying too large a penalty in performance. We leave the
problem of optimal reference set design for future work.

We constructed train set reference vectors using a reference set
of size r =10,000. We applied PCA to these reference vectors, and
applied the learned projection to the test set reference vectors for
evaluation. To apply Laplacian eigenmaps to our data, we first cal-
culated all pairwise DTW alignment costs for words in Xtrain and,
based on those costs, assembled the adjacency matrix Ann and Gram
matrix K as described in Section 2. Laplacian eigenmaps require
setting certain parameters in addition to the target space dimension-
ality. Performance was reasonably stable for the number of near-
est neighbors (k), the regularizer weight (ξ), and the kernel func-
tion parameters (η,σ) in the ranges k ∈ [7, 30], ξ ∈ [0.001, 0.1],
η ∈ [0.01, 0.05], and σ ∈ [0.15, 0.04]. We report results for the
best-performing parameter settings, leaving the challenge of auto-
matic selection for future work.

Figure 1(a) shows the performance of the unsupervised tech-
niques outlined in Section 2 for varying target space dimension-
alities. We find that using PCA, we can reduce dimension from
10,000 to 100 without substantial loss in performance, but overall
performance falls short of the DTW baseline. Laplacian eigenmaps
matches the DTW baseline for target dimensionalities d > 100 and
greatly surpasses PCA at all target dimensionalities, indicating a
more efficient use of dimensions than is possible with unsupervised
linear methods.

3.3. Supervised embeddings (the SupTrain condition)

Analogously to PCA, multi-class LDA and MLR were performed on
the train set reference vectors with word types as class labels. 1 The
resulting linear projections were applied to the test set reference vec-
tors for evaluation. We used a reference set of size r = 10, 000, ex-
cept for MLR applied to FDLP features, where we used r = 5, 000.
LDA performance depended moderately on the shrinkage scale fac-
tor, observing a change of up to 0.1 AP as we varied the scale factor
from 0 to 5. All reported results used a scale factor of 1. MLR re-
sults depended moderately on the slack parameter, with typical good
values in the range [103, 105]. Supervised graph-based embeddings
were obtained using the procedure described in Section 2.4.2. Using
the optimal parameter settings for Laplacian eigenmaps and vary-
ing β, we found that performance was stable for β ≥ 1, indicating

1We used Brian McFee’s implementation of MLR, available at
https://github.com/bmcfee/mlr/
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Fig. 1. Average precision as a function of target space dimensionality for (a) unsupervised embeddings (UnsupTrain) and (b) supervised
embeddings (SupTrain), and (c) as a function of reference set size.

that the utility of supervision dominates that of the nearest neigh-
bor graph structure. Finally, LDA was also applied to the Lapla-
cian eigenmaps embeddings, with the projection again learned on
the training set and evaluated on the test set.

Figure 1(b) shows the performance of the supervised techniques
from Section 2 for varying target space dimensionalities. We find
that LDA and MLR greatly improve upon the DTW baselines, with
AP stable down to 50 dimensions. Interestingly, with supervision
the 39-dimensional PLP features usually outperform the cepstral-
truncated 15-dimensional FDLP, indicating that increased spectral
detail is useful even when supervision is provided indirectly at the
word level. Our supervised variant of Laplacian eigenmaps posts
significant gains over its unsupervised counterpart, but falls short of
direct application of LDA and MLR to the reference vectors. This
indicates that supervised discriminative training of a linear embed-
ding is better than nonlinear embedding learned with implicit super-
vision. This suggests that discriminative nonlinear graph embedding
techniques such as marginal Fisher analysis [31] may succeed in our
setting. LDA applied to the output of unsupervised Laplacian eigen-
maps outperforms LDA on its own, indicating that nonlinear graph
embedding improves the linear separability of word types.

3.4. Discussion

Representative average precision scores for all of our methods are
summarized in Table 3, organized according to the settings described
in Section 2, along with the target dimensionalities that yielded the
listed scores. For comparison, we include the setting in which an un-
supervised Laplacian eigenmap embedding is learned from the test
set (UnsupTest). This yields the best FDLP performance (0.416 AP)
reported in this paper while using only d = 20 dimensions. Unfor-
tunately, since it lacks an out-of-sample extension, this embedding
is of limited practical utility.

Unsurprisingly, downsampling techniques, even nonuniform
ones, fall short of the exhaustive alignment search performed under
DTW. Embedding each speech segment with respect to a reference
set encodes substantially more duration variability than downsam-
pling, but still does not match the DTW baseline. PCA applied to ref-
erence vectors yields good word discriminability with fewer dimen-
sions, but only with supervised embedding (LDA or MLR) do lin-
ear methods exceed the DTW baseline. Nonlinear embedding using
Laplacian eigenmaps matches DTW using no supervision whatso-
ever, a significant result for zero-resource applications. Introducing
supervision into this algorithm produces substantial gains, but falls
short of the linear supervised embeddings produced by LDA and

Table 3. Representative average precision scores attained for each of
the embedding schemes using r =10,000 reference examples (when
applicable).

Ave. Prec.
Setting Algorithm d PLP FDLP

1. NoTrain Baseline DTW – 0.198 0.226
Unif. Downsamp. 25 · p 0.072 0.081

Nonunif. ” 25 · p 0.081 0.088
2. UnsupTrain Ref. Vector 10,000 0.096 0.150

PCA 200 0.081 0.139
LapEig w/ OOS 200 0.195 0.236

3. SupTrain Sup. LapEig 200 0.284 0.290
LDA 50 0.346 0.293
MLR 100 0.328 0.318

LapEig + LDA 50 0.365 0.302
UnsupTest Unsup. LapEig 20 0.253 0.416

MLR. This indicates that nonlinearity is most important in the un-
supervised setting. Combining Laplacian eigenmaps with LDA im-
proves upon LDA alone, suggesting that Laplacian eigenmaps pre-
serves or perhaps magnifies the information that makes LDA effec-
tive on its own. While different supervised methods produce the best
performance at different operating points – the best performance on
PLPs results from LDA applied to Laplacian eigenmaps while MLR
posts the best FDLP results – the supervised methods all outperform
the baselines and unsupervised methods.

Finally, the reference vectors required by some of our methods
are expensive to construct. Table 2 shows that reference set size can
be reduced with negligible loss in word discriminability. Figure 1(c)
shows how reference set size affects task performance, with LDA tar-
get dimensionality chosen optimally for each condition. LDA beats
the DTW baseline with as few as 1000 reference examples, a promis-
ing result, though the large gains in Table 3 require several thousand.

4. CONCLUSION

We have presented several fixed-dimensional embeddings of
variable-length word segments appropriate for zero- and low-
resource settings and investigated their performance on a word dis-
crimination task. We find that with a limited unlabeled training set,
unsupervised non-linear embeddings match the performance of a
DTW baseline while embedding word segments in a space of 200
or fewer dimensions. When training data labels are known, we can
greatly improve upon baseline performance with either linear (LDA,
MLR) or nonlinear (supervised Laplacian eigenmaps) embeddings
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of dimension 50-200. In some supervised and unsupervised training
cases, we use reference vectors, which are related to Lipschitz em-
beddings, to define the initial fixed-dimensional space. Some natural
directions for future work include selection of optimal reference sets,
additional supervised distance learning approaches, and application
of the ideas in downstream tasks such as query-by-example, spoken
term discovery, and template-based speech recognition.
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