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ABSTRACT

Large vocabulary continuous speech recognition (LVCSR) is partic-
ularly difficult for low-resource languages, where only very limited
manually transcribed data are available. However, it is often feasi-
ble to obtain large amount of untranscribed data of the low-resource
target language or sufficient transcribed data of some non-target lan-
guages. Borrowing data from these additional sources to help LVC-
SR for low-resource language becomes an important research direc-
tion. This paper presents an integrated data borrowing framework in
this scenario. Three data borrowing approaches were first investigat-
ed in detail, including feature, model and data corpus. They borrow
data at different levels from additional sources, and all get substantial
performance improvements. As these strategies work independently,
the obtained gains are likely additive. The three strategies are then
combined to form an integrated data borrowing framework. Exper-
iments showed that with the integrated data borrowing framework,
significant improvement of more than 10% absolute WER reduction
over a conventional baseline was obtained. In particular, the gain
under the extreme limited low-resource scenario is 16%.

Index Terms— Data borrowing, Low resource speech recogni-
tion, Articulatory feature, Subspace Gaussian mixture models, Un-
supervised training

1. INTRODUCTION

The performance of speech recognition systems has improved dra-
matically. Training acoustic models for state-of-the-art systems of-
ten require large amount of language-specific transcribed speech da-
ta. However, demand exists for speech recognition systems in lan-
guages which have only limited training data available [1] [2], and
in these cases performance is still quite poor. The expensive cost for
transcribing audio data makes the data sparseness the most pressing
challenges in this scenario and is further exacerbate by the fact that
today’s speech technologies heavily rely on statistical models, such
as hidden Markov model (HMM) and neural network (NN) models.

Obviously there are normally four types of speech data corpus
in the real low-resource environment. As Fig 1 illustrated, the entire
data resource space can be divided into four separated parts:

• Manually transcribed target (low-resource) language data

• Untranscribed target language data
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• Manually transcribed non-target (normally rich-resource)
language data

• Untranscribed non-target language data
These parts are denoted as V1∼V4, and the area of each part in
Fig 1 approximates the real quantity of each data sources. Tradi-
tionally only the V1 part (transcribed target) is used to develop the
speech recognition system. However since the amount of V1 is limit-
ed for the low-resource target language, the constructed system only
using V1 often performs poorly. From Fig 1, there are relatively
tremendous amount of data in the other three parts. Accordingly,
researchers have tried to develop approaches that could make mod-
els particularly elaborate or strategies that could utilize not only the
transcribed target language data but also the data in the other parts.
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Fig. 1. Data corpus distribution in low-resource scenario.

Several strategies have been previously proposed to address
low-resource problems: one main branch can take advantage of
transcribed data from other languages to build multilingual acous-
tic models, including the universal phone based multilingual ASR
method [3] [4], multilingual trained Subspace Gaussian Mixture
(SGMM) modelling [5] [6] and multi-layer perceptron (MLP) based
data-driven approaches with training process in a multilingual or
cross-lingual mode [7] [8]. In addition unsupervised [9] or lightly-
supervised [10] training is another type of popular strategy which
could enlarge the size of target language data quickly and cheap-
ly [11] [12]. The multilingual or cross-lingual approaches borrow
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data from the V2 (transcribed non-target language data), and the
unsupervised training usually develop technologies to borrow data
from the untranscribed target language data, i.e. V3 part of Fig 1.
However, these methods are mostly isolated developed. To our
knowledge, there has not been any efforts to investigate data bor-
rowing strategies systematically in the low-resource scenarios, from
all the parts of the data resources.

In this paper, data is borrowed from all types of resources as
illustrated in Fig 1. First, several data borrowing strategies are re-
visited and investigated, which focus on different modules of speech
recognition system respectively. Three different approaches are pro-
posed to borrow data from target or non-target, transcribed or un-
transcribed data individually (V2 and V3 parts), including feature,
model and data corpus level, to obtain more discriminative feature
or robust models for the low-resource applications.

As these approaches work at different levels, they are relatively
independent of each other and the gains may be additive. With this
assumption, a fully integrated data borrowing strategy is proposed to
combine these approaches ideas tightly into one united framework.
Moreover, with the integrated framework, it is possible to extend ex-
isting approaches to borrow data from untranscribed non-target lan-
guages data corpus more easily and flexibly (V4 part of Fig 1). This
reveals new possibilities of data borrowing. As far as we know, this
work may be the first comprehensive attempt to investigate data bor-
rowing strategy using all data resources for the low-resource speech
recognition.

The remainder of this paper is organized as follows. Section 2
describes individual data borrowing approaches, including feature,
model and data corpus level refinement. Then, the integrated data
borrowing framework is proposed in Section 3. In Section 4, exper-
imental setup, results as well as detailed analysis are given. Section
5 concludes the paper and discusses future research directions.

2. INDEPENDENT DATA BORROW STRATEGIES AT
THREE LEVELS

In this section three effective different data borrowing strategies, fo-
cusing on feature, model and data corpus level are reviewed in detail.

2.1. Feature Level: Multilingual Articulatory MLP

The universal phone set is a popular multilingual method [4], how-
ever the phone mapping or clustering across languages induces con-
fusion among models, and it also needs tremendous large quantity
of training languages data to get complete coverage of a universal
phone set. Articulatory features (AF) are alternative modeling units.
Articulatory Features [13] have been demonstrated as more funda-
mental units shared across languages than phones, since they are in-
dependent of the underlying language. Table 1 shows an example of
the mapping between some phones and AFs in English. All phones
can be modeled by a set of articulatory attributes and each attribute
is possessed by a set of phones.

Table 1. Mappings between articulatory features and phones
AFs Phones Phones AFs
Fricative jh ch s sh z f th v dh f Fricative Labial
Nasal m n ng th Fricative Dental
Labial b f m p v w aa Vowel Low Back
...... ...... ...... ......

In the main setup of this work, English is selected as the tar-
get language, and Spanish and German as the non-target languages.
28 AFs for English, 29 for German and 27 for Spanish are used.

The articulatory features across three languages, classified accord-
ing whether it is universal or language-specific, are shown in Ta-
ble 2. There are in total 40 articulatory features (AFs) for the three
languages, of which 24 AFs are common. The number of unique
AFs for each language is small, only 6 for English, 5 for German
and 5 for Spanish. It is found that more than 80% of the articu-
latory features of English are shared with German and/or Spanish.
Accordingly AF mapping across languages is more robust than the
traditional phone mapping and borrowing data from non-target lan-
guages on AFs becomes more reliable than phones.

Table 2. The universal and the unique language-specific ar-
ticulatory features (AF) for English, Spanish and German

Language Articulatory features
Universal Alveolar, Approximant, Back, Bilabial, Cen-

tral, Close, Consonant, Fricative, Front, Glottal,
Labiodental, Middel, Nasal, Open, Palatal, Plo-
sive, Postalveolar, Rounded, Silences, Spause,
Unrounded, Velar, Voiced, Vowel

English Liquid, Obstruent, Semi-vowel, Sonorant, Stop,
Unvoiced

German Diphthongs, Long, Open-mid, Short, Uvular
Spanish Labial-velar, Lateral, Tap, Trill, Voiceless

Based on the articulatory feature units, AF based MLP system
is constructed as Fig 2, similarly to the front-end of the system
in [14] 1. It mainly consists two main blocks:

1. Articulatory NNs, which consist of a bank of speech event
detectors and produce the posterior probability of the articu-
latory attribute.

2. Phone MLPs, which take as input the outputs of the articulatory-
feature detectors, and are trained to classify phones.
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Fig. 2. Articulatory feature based MLPs framework.

Taking advantage of the multilingual articulatory features, mul-
tilingual networks are trained to obtain the universal AF detectors.
During this training, data from both the target and non-target lan-
guages are pooled. Since the AF detectors are trained with much
more data than is available in the target language, they are much
more robust and discriminative for AF classification. Using these
robust estimated detectors, the phone NN classifier also produces
more accurate performance. The normal tandem processing [15] is
then applied on the phone merger outputs to generate the MLP fea-
tures. This AF framework can be further extended to generate more

1Note that in contrast to [14], we are using the articulatory detectors in
the MLP feature extraction phase rather than as probabilities in the model.
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elaborated multilingual MLP features [16]. In this work, the multi-
lingual AFs and NN models are used to borrow data from the tran-
scribed non-target languages to improve the low resource system at
feature level.

2.2. Model Level: Multilingual SGMM

The Subspace Gaussian mixture models have a more compact rep-
resentation than GMMs. It is a special case of the canonical state
model framework [17], which combines phone-specific and phone-
independent information in an adaptive training fashion. General
form of the SGMM can be expressed as:

p(x|j) =

I∑
i=1

ωjiN (x;µji,Σi) (1)

µji = Mivj (2)

ωji =
exp(wT

i vj)∑I
k=1 exp(w

T
k vj)

(3)

where p(x|j) is the state output distribution of feature vector x at H-
MM state j. The model is a mixture of Gaussians, but unlike the con-
ventional GMM, the number of mixture components I is the same
for all states and is typically quite large, e.g. several hundred. The
covariance Σi for each Gaussian in the mixture is globally shared
across states (full covariance matrices are used here). The most im-
portant difference is that the mean µji and mixture weights ωji are
not direct parameters of the model, and instead they are expanded
from a state-specific vector vj , via globally shared parameters Mi

and wi, as illustrated in Equations (2) and (3).
A well-tuned SGMM typically has fewer parameters than a well-

tuned GMM system [6]. Moreover, the majority of the parameter
count in a SGMM system consists of shared parameters Mi, Σi and
wi, which can be 8∼10 times larger than the state-specific param-
eters vj . This leads to a natural method of training SGMMs in a
multilingual way: the state-specific parameters are trained as sep-
arate language-specific states, and the common SGMM parameters
are, however, shared across languages. In addition to sharing global
parameters, it has also been shown that it is more advantageous to
also share the state-specific parameters across languages, using an
accurate distance calculation metric with state occupation consider-
ation [18].

With the multilingual intrinsic ability, in this work, SGMM is
used to borrow data from the transcribed non-target languages data
to improve systems at model level.

2.3. Data Corpus Level: Unsupervised Training

Compared to manual transcriptions, raw audio is more easily collect-
ed and relatively much cheaper and less time consuming, so a large
amount of speech data is presented as the V3 part of Fig 1. In this
scenario, unsupervised training will be an effective approach, which
gains more and more popularity [11] [12]. Typical procedure of un-
supervised training includes using a seed model, trained on a small
amount of manual transcribed corpus, to recognize a large quantity
of unlabelled speech data. The recognized hypothesis should be fil-
tered firstly and then pool the chosen hypothesis transcriptions with
manual transcriptions to retrain the acoustic model.

Efficient and effective data selection method is crucial in unsu-
pervised training, due to the fact that there are many recognition er-
ror in the hypothesis transcriptions. Confidence scores are normally
used for data selection. In this paper, in addition to confidence s-
cores, phone frequencies are also used for data selection [19]. When
checking the accuracy of the initial recognized transcriptions, we

will be more inclined to select the data with lower phone frequency
in the limited manually labelled corpus.

Most unsupervised training approaches focus on modifying H-
MM acoustic models [11] [12]. However, it is also possible to ex-
tend the idea to the feature-level. A NN-based unsupervised training
method for robust MLP feature extraction has been proposed [19].
In this approach, an enlarged transcribed speech corpus is used to
train a neural network for feature extraction, rather than retrain the
HMM as usual.

In this paper, the NN-based and HMM-based unsupervised train-
ing approaches are used together [19]. First, data are borrowed from
the unlabelled target languages corpus to unsupervised train NN and
get robust MLP features, then the acoustic model are re-constructed
using MLP feature and hypotheses are re-generated. Finally, the data
from the unlabelled data are borrowed for the second time to retrain
the HMM model and get more improved performance. In summary,
in this paper, refined unsupervised training approach is used to bor-
row data from the untranscribed target language data, i.e. V3 part of
Fig 1.

3. COMBINATION OF DATA BORROWING STRATEGIES

Several state-of-the-art data borrowing strategies have been reviewed
in the previous section. They focus on distinct independent mod-
ules of speech recognition system, and borrow data from transcribed
non-target languages data or untranscribed target-language data re-
spectively, V2 and V3 parts of Fig 1. Due to different working level,
these approaches are relatively independent of each other. It is then
interesting to investigate the combination effect of these strategies.
In this section, the different data borrowing strategies on three levels
are combined into one unified framework to achieve more efficien-
t and effective data borrowing. The final architecture makes data
borrowing more easily and flexibly, and particularly useful for the
low-resource speech recognition. Moreover the integrated frame-
work reveals new possibility to borrow data from all parts of data re-
sources space. For example, the untranscribed non-target languages
data corpus may be exploited (V4 part of Fig 1) in future work.

Multilingual 
Data Corpus

Conventional PLP‐
GMM‐HMM system

MLP feature

Transcription auto‐
generation #1

Multilingual SGMM modeling 
using robust MLP feature

Multilingual NN training and 
MLP feature extraction

MLP‐GMM‐HMM 
system construction

Transcription auto‐
generation #2

MLP‐SGMM‐
HMM system

Pooling data corpus
Decoding on the 
untranscribed corpus

Decoding on the 
untranscribed corpus

Pooling data corpus
SGMMmodel

Training process iteration

Fig. 3. Fully combined data borrowing framework.

The flow chart of the integrated data borrowing framework is
shown in Fig 3. And the detailed algorithm is described in algorith-
m 1. To our knowledge, this is the first attempt to form a unified
framework of borrowing data at all working levels.
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Algorithm 1 DATA BORROWING STRATEGY COMBINATION

1. Initial GMM-HMM system construction:
Build an initial GMM-HMM systems for each target and non-
target language separately using small amount of manually tran-
scribed data. PLP feature is used for all initial systems here.
2. Automatic Transcription Generation #1:
Use the language-specific initial GMM-HMM systems to recog-
nize the unlabelled target or non-target languages speech utter-
ances respectively. The results are denoted as initial hypotheses
#1. Then use the data selection approach in section 2.3 to filter
the hypotheses, and pool the selected hypotheses with the manual-
ly transcribed utterances to form an enlarged target and non-target
languages corpus #1.
3. Multilingual NN training and MLP feature extraction:
Use the enlarged target and non-target languages corpus #1 to train
NN as described in section 2.1, and then extract MLP features.
4. MLP-GMM-HMM system construction:
Use the robust MLP features obtained from procedure 3 to train
an initial MLP-GMM-HMM models.
5. Transcription auto-generation #2:
Use the MLP-GMM-HMM systems in procedure 4 to recognize
the unlabelled target or non-target languages speech utterances for
the second time, and obtain new hypotheses #2. Again use the
data selection method in section 2.3 to filter the new hypothesis,
and pool the new selected hypothesis utterances with the manually
transcribed utterances to form the enlarged target and non-target
languages corpus #2.
6. Multilingual SGMM modeling using robust MLP feature:
Use the enlarged target and non-target languages corpus #2 to train
the SGMMs as described in section 2.2. With the MLP feature ex-
tracted from procedure 3, the multilingual trained MLP-SGMM-
HMM system can be built.
7. Training process iteration:
Go back to step 2 and repeat the whole process to refine the sys-
tem. This step is optional.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Data and Baseline System

In the experiments, Callhome multilingual databases and Switch-
board I English corpus are used. The conversational nature of speech
in these databases along with high out-of-vocabulary rates, the use
of foreign words and the telephone channel distortions make the task
of speech recognition on this database challenging.

In the first part of the experiments, English was selected as the
target language. Two groups of systems with different configurations
were constructed to mimic the realistic low-resource environments,
whose data details are described in Table 3.

Configuration #1 : Extremely low-resource situation. Only 1 hour
of randomly chosen Callhome English were selected as tran-
scribed data and the retained 14 hours as the unlabelled data.

Configuration #2 : Normal low-resource situation. All of the 15
hours of Callhome English were selected as labelled data and
100 hours of randomly chosen Switchboard English as the
untranscribed data.

In both configurations, the entire 15 hours of German and 16 hours
of Spanish training data were used as the non-target language data.
The test set consists of 20 conversations of the Callhome English
evaluation set, roughly containing 2 hours of speech.

From the description, training data resources comprises three
parts:

• Limited transcribed target language data

• Plenty of transcribed non-target language data

• Plenty of untranscribed target language data

These correspond to the V1∼V3 parts of Fig 1. Data borrowing from
the untranscribed non-target language data, V4 part, is not evaluated
here due to lack of data in the current setup. It will be investigated
in the future.

Table 3. Data resources for two experimental configurations
Lang Trans Corpus Amount (hr)

Configuration #1

Target English manual CHE 1
none CHE 14

Configuration #2

Target English manual CHE 15
none SWB I 100

Common parts
Non-target #1 German manual CHG 15
Non-target #2 Spanish manual CHS 16
Test set English manual CHE 2

The baseline GMM-HMM systems were built using 39 dimen-
sional PLP features with energy, first and second derivatives, plus
per-speaker mean and variance normalization. After state-clustering,
there are 550 tied states with 4 Gaussians per state in config #1; 1930
states with 16 Gaussians per state in config #2. The SRILM tool-
s [20] were used to build a trigram language model with a word-
list of 62K words. The trigram model is an interpolated model,
where the individual components were respectively trained on En-
glish Callhome corpus, the Switchboard corpus and the Gigaword
corpus. HDecode and Kaldi decoders were used to decode the GM-
M or SGMM model respectively.

In this study, only Maximum Likelihood (ML) parameter esti-
mation is considered because the main focus is the evaluation of data
borrowing strategies. The proposed methods could also be extended
to discriminative training.

The first line of Table 4 show the performance of baseline sys-
tems which only use the labelled target language data, and it is com-
parable to other people’s work [5] [7]. It is clear that the ASR sys-
tems built with low resource perform poorly. The conventional ap-
proach relies on the amounts of labeled target language data heavily.
The proposed strategies aim to relieve the demanded data quantity,
and improve system performance for low resource scenarios.

4.2. Performance of Individual Data Borrowing Strategies

Systems using the distinct data borrowing strategy as described in
Section 2 were first built, including the multilingual AF based MLP
method, multilingual SGMM based method and unsupervised train-
ing approach. As the Table 4 illustrates, all the three data borrowing
strategies obtained large improvement on each level of speech recog-
nition system (more than 10% relative improvement). The AF-based
and SGMM-based methods borrow data from the cross-lingual non-
target languages, and the unsupervised approach generates new data
from the untranscribed target language data.

4.3. Performance of Data Borrowing Strategy Combination

Finally, the data borrowing strategies on different levels were com-
bined as described in section 3. Only one iteration of combination
was used in this experiment for simplicity. The last line in Table 4
shows that the integrated data borrowing framework obtained more
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Table 4. Performance comparison (WER) of individual data
borrowing strategies

System Data Borrowing Conf#1 Conf#2
Baseline – 72.6% 55.2%

S1 Feature 64.1% 49.7%
S2 Model 60.0% 45.9%
S3 Untranscribed Tgt Data 64.3% 48.6%

Combination S1⊕S2⊕3 56.5% 43.1%

than 10% absolute WER reduction. Particularly in the extreme lim-
ited low-resource environment (Conf#1), the gain is even larger than
absolute 16%. This is much better than the recently reported results
using the similar configuration in [5] and [8]. Based on GMM-HMM
systems, the proposed combination approach even achieved the same
performance improvement of using the DNN technology [21].

Fig 4 shows a performance comparison of all the data borrowing
methods investigated in this paper. Compared to traditional system-
s, the proposed approaches show substantial improvements. More-
over the gains from the individual strategy are additive, and the fully
combined data borrowing approach achieves the best overall perfor-
mance, with significant improvements over individual strategy.
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Fig. 4. Performance comparison of the proposed data borrow-
ing strategies investigated in this paper.

4.4. Resource Saving Evaluation

To easily evaluate that how much resource could be saved when
using the paper proposed methods, conventional PLP-GMM-HMM
systems with different amounts of transcribed target language train-
ing data were built. The data are randomly chosen from Callhome
and Switchboard I English corpus. The performance of the baseline
systems and the proposed methods in Configuration #2 are illustrat-
ed in Fig 5.

It can be seen that the three level approaches achieved the same
performance of baselines with about 50 hours, 100 hours, and 50
hours training data respectively (borrowing data on feature, model or
data corpus), and our fully combined data borrowing strategy, which
utilizes only 15 hours transcribed target language data, achieved bet-
ter performance than the conventional system using 150 hours, and
even approached the performance of the 200 hours baseline. The
resource saving percentage is larger than 90%.
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Fig. 5. Performance comparison of conventional systems us-
ing different amounts of training data and the data borrowing
strategies proposed in this paper

4.5. Cross-Languages Validation

To validate that the methods proposed here are language-independent,
the target language is changed from English to other languages. In
this paper, Spanish, German and Uigur were chosen as the target lan-
guages. The entire Callhome English, Spanish, German corpus and
the authors’ lab collected Uigur data were used as the transcribed
data. Each language has roughly 15 hours training data and 2 hours
test set.

As in English, language-specific conventional baseline PLP-
GMM-HMM systems were built for each language using the limited
transcribed target language data. The model size was tuned to ob-
tain the best performance for each language. Maximum Likelihood
criterion was also adopted as before.

Due to lack of word-level transcriptions and language models,
phone recognition was performed for the four languages. Since
the work mainly focus on acoustic modelling, not the language
modelling, we believe phone recognition is sensible for our pur-
pose. Phone reference transcripts were obtained using forced align-
ment performed with the language-specific baseline systems. The
language-specific phone bigram language models were trained on
forced aligned phone transcripts of acoustic training data.

In the multilingual validation, each language was selected as the
target language in turn, and the other three as the non-target lan-
guages. In the experiments, only MLP feature level and SGMM
model level were performed because there were no untranscribed
data in Spanish, German and Uigur. The procedures in section 3
was slightly modified to remove the unsupervised training proce-
dures and firstly train to obtain multilingual MLP features and then
use these features to build the multilingual trained SGMM model.
Data from the transcribed cross-lingual non-target languages data
were borrowed.

Table 5 lists the phone error rate (PER) of different systems on
the four languages. It can be seen that data borrowing strategies
achieved consistent improvements on the four languages in low-
resource scenarios. Compared to the single level refinement, com-
bination of data borrowing strategies obtained larger improvement,
which is the same as the English case.

It can also be observed that the improvement on Uigur is rela-
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tively smaller than the other three. This is because all the other three
languages belong to the Indo-european family, and Uigur belongs to
the Altaic family. Different language families will influence the ef-
fectiveness of data borrowing. Even with this inferiority of Uigur,
the improvement is still clear compared to the baseline system. The
four languages validation experiments showed that the proposed ap-
proaches are language-independent. They can be extended to other
languages easily.

Table 5. Phone error rate (PER) comparison of systems for
four target languages

Data Borrowing English Spanish German Uigur
— 56.4% 47.3% 57.6% 73.5%

MLP 49.9% 44.8% 54.2% 71.8%
SGMM 50.4% 44.2% 53.3% 71.4%

MLP⊕SGMM 48.4% 42.7% 52.1% 70.7%

5. CONCLUSION AND FUTURE WORK

In this paper, an integrated data borrowing strategy framework is
proposed for low-resource speech recognition. Three types of data
borrowing approaches at different levels are reviewed, including fea-
ture, model and data corpus. Then these data borrowing strategies
are combined into an unified framework to make the data borrow-
ing more efficiently and effectively. The integrated strategy enables
researcher to borrow data from all the parts of data space more eas-
ily and flexible. Experiments showed that the combination obtained
more than 10% absolute WER reduction for the low-resource speech
recognition.

Moreover the consistent performance improvement on the oth-
er four languages also illustrate that the proposed methods are
language-independent. They can be extended to other languages
easily. The results on the Uigur experiment also indicates that it is
important and effective to select linguistically close languages to
borrow the data for the low-resource scenario.

When applying the proposed fully integrated data borrowing s-
trategy, it is possible to use only 15 hours transcribed target-language
data to exceed the traditional system using 150 hours manually tran-
scribed speech corpus. The result is even approaching the baseline
using 200 hours of data, in which case the resource saving percent-
age is larger than 90%. It demonstrated that using the novel combi-
nation of data borrowing strategies can significantly reduce the man-
ual effort of transcribing speech data, save costs and accelerate the
development for low-resource speech recognition.

In the future we hope to combine these ideas with the recen-
t popularized deep neural network technique [22], and use several
hundreds of hours of multilingual data and more untranscribed data
to get a better system.
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