
DEEP MAXOUT NETWORKS FOR LOW-RESOURCE SPEECH RECOGNITION

Yajie Miao, Florian Metze, and Shourabh Rawat

Language Technologies Institute, School of Computer Science, Carnegie Mellon University
{ymiao,fmetze}@cs.cmu.edu, srawat@andrew.cmu.edu

ABSTRACT

As a feed-forward architecture, the recently proposed
maxout networks integrate dropout naturally and show state-
of-the-art results on various computer vision datasets. This
paper investigates the application of deep maxout networks
(DMNs) to large vocabulary continuous speech recognition
(LVCSR) tasks. Our focus is on the particular advantage of
DMNs under low-resource conditions with limited
transcribed speech. We extend DMNs to hybrid and
bottleneck feature systems, and explore optimal network
structures (number of maxout layers, pooling strategy, etc)
for both setups. On the newly released Babel corpus,
behaviors of DMNs are extensively studied under different
levels of data availability. Experiments show that DMNs
improve low-resource speech recognition significantly.
Moreover, DMNs introduce sparsity to their hidden
activations and thus can act as sparse feature extractors.

Index Terms— Deep maxout networks, speech
recognition, low-resource conditions, deep learning

1. INTRODUCTION

Deep neural networks (DNNs) have been applied to
automated speech recognition (ASR) and shown superior
performance over the traditional GMM-HMM models.
Applications of DNNs fall into two categories. In hybrid
systems, DNNs are trained to classify context-dependent
states and estimate their posterior probabilities [1, 2]. In
tandem systems, we use DNNs to generate phone posteriors
or bottleneck features (BNF), and build normal GMM-
HMM models with the discriminative front-end [3, 4, 5, 6].
These acoustic modeling techniques are distinct from the
earlier ANN-HMM systems [7] in the sense that there are
more hidden layers in the DNN topology. Therefore, DNN
based acoustic models tend to have much more parameters
than GMM-HMM. For example, in [8], the hybrid system
with a 5-hidden-layer fully-connected DNN has 12 times
more parameters than its corresponding GMM-HMM
system. When DNNs are fine-tuned on small training sets,
this large parameter space can cause overfitting easily and
degrade the model robustness on unseen decoding data.

Various methods have been proposed to enhance DNNs
under low-resource conditions. A potential solution is to
build sparse DNNs [8], either through regularizing hidden-
layer parameters or through rounding tiny parameters to
zero. Although speeding up model training, sparse DNNs

fail to improve recognition performance significantly.
Meanwhile, dropout is presented as a useful strategy to
prevent overfitting in DNN fine-tuning [9]. Random dropout
is observed to perform effectively on phone recognition [9]
and LVCSR [10, 11], displaying special benefits when
language resources become highly limited. Also, a large
amount of work has been dedicated to training DNNs over
multiple languages, for both hybrid [11, 12] and tandem
systems [3, 5]. Multilingual network training enables cross-
language knowledge transfer and can happen either in pre-
training [13] or in the fine-tuning stage [11, 12].

This paper investigates the utility of maxout networks [14]
in low-resource speech recognition. Maxout networks differ
from the standard multi-layer perceptron (MLP) in that
hidden units at each layer are divided into non-overlapping
groups. Each group generates a single activation via the max
pooling operation. Due to reduced hidden activations,
maxout networks shrink the size of model parameters and
thus are particularly suitable for low-resource conditions.
Also, training of maxout networks can optimize the
activation function for each unit. Used in conjunction with
dropout and convolutional layers, maxout networks set the
state of the art on computer vision benchmark datasets [14].

In this study, we make the first attempt to apply maxout
networks to LVCSR tasks. We extend the maxout model to
the deep maxout networks (DMNs) architecture and use it
for both hybrid and BNF tandem systems. Although DMNs
can be viewed as a special case of DNNs, we distinguish
them to be different types in this paper. Pre-training based
on stacked denoising autoencoders (SDAs) is performed to
initialize DMN parameters and facilitate subsequent fine-
tuning. We evaluate the effectiveness of DMNs on the Babel
Tagalog dataset [6, 15]. Extensive experiments are
conducted to determine appropriate DMN settings such as
number of maxout layers and size of unit groups. Under the
LimitedLP condition with 10 hours of training data, DMNs
outperform the standard DNNs significantly, resulting in
consistent word error rate (WER) reduction. In addition,
DMNs can naturally enforce sparsity on their high-level
hidden activations. The sparse feature representations
extracted from DMNs further improve hybrid setups.

2. REVIEW OF DNNS

A DNN is an MLP which consists of many hidden layers
before the softmax output layer [11]. On each hidden layer,
the DNN computes the activations of conditionally

398978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

independent hidden units given the input vector. When
using sigmoid activation, the emission of the l-th layer, i.e.,
the input to the l+1-th layer, can be computed as follows:

1()l l l lσ −= +u Wu b , 1 ≤ l < L (1)

where 0 t=u o , lW is the matrix of connection weights
between the l-1-th and l-th layers, lb is the bias vector at
the l-th layer, 1(1 exp())() xxσ −+ −= is the sigmoid function.

Training DNNs directly with error back-propagation (BP)
may be problematic in that BP easily gets stuck at poor local
optima [11]. A common solution is to initialize DNN
parameters using unsupervised pre-training such as
restricted Boltzmann machines (RBMs) [16] and stacked
denoising autoencoders (SDAs) [17]. A denoising
autoencoder (DA) has the same structure as the traditional
autoencoder, with the only difference of corrupting the input
by adding some form of noise. SDAs can be trained in a
greedy layer-wise manner. Training of each DA involves
reconstructing the clean input from the corrupted version of
it. In our experiments, we observe that SDAs based pre-
training performs comparably with RBMs in terms of the
recognition of DNN acoustic models. However, training of
SDAs is more efficient than training of RBMs. Therefore,
we use SDAs as the pre-training method through this paper.

2.1. Hybrid Systems

When building hybrid systems, we train a DNN with a
softmax output layer to classify the input acoustic features
into classes corresponding to context-dependent tied states.
The DNN output is an estimate of the posterior probability
P(s | to) of each state s given the observation to :

1
1

|
exp()

exp()()
S

t
L LL

L LL
P s −

−

+
+= ∑

W b
W b

u
uo

Hybrid systems share the model structure (phone set,
HMM topology, tying of context-dependent states) coming
from an initial GMM-HMM model that has been maximum
likelihood (ML) trained on the same data. That model is also
used to generate the true class label of each frame through
forced-alignment. During recognition, the emission probabi-
lity of the HMM state s can be computed by converting state
posteriors in Eq. (2) as follows:

|
(|) ()

()()t
t tP P

Ps
s

sP = o oo

where ()P s is the state prior probability which can be
approximately estimated from the training data by simple
counting, the observation probability P(to) is independent
of the word sequence and can be ignored.

2.2. BNF Systems

The BNF front-end can be extracted from a narrow
bottleneck hidden layer in DNNs and used to construct
GMM-HMM tandem systems. In this paper, we turn to the
previously established deep BNF (DBNF) framework [6] for

bottleneck feature generation. The DNN exploited by DBNF
inserts multiple hidden layers between the input data and the
bottleneck layer, and pre-trains these prior-to-bottleneck
layers using SDAs. A hidden layer and the final softmax
layer are added on top of the bottleneck layer. DBNF differs
from other BNF approaches [4, 5] in that its hidden layers
are arranged asymmetrically around the bottleneck layer.

The whole DBNF network is then fine-tuned on the
available training data. BNF training has adopted phones or
context-independent states as frame-level super-vision.
However, we observe that context-dependent states give
BNF systems better recognition results. Thus, we use the
same frame labels as in hybrid systems during DBNF
training. We refer interested readers to [6] for more details.

3. DEEP MAXOUT NETWORKS FOR LVCSR

Deep maxout networks (DMNs) consist of multiple layers
which generate hidden activations via the maxout function.
Figure 1(a) illustrates the l-th layer in a maxout network
where the hidden units are divided into disjunct groups. We
denote the number of unit groups as I and the group size
(how many units each group contains) as g. The maxout
function is imposed on each unit group to generate this
layer’s activations () () () ()

1 2u u u[, , ,]l l l l
I=u . Each element

is computed as
() ()u max h()l l

j
i j= , (1) 1i g j i g− × + ≤ ≤ ×

where ()
1

l
l l l−= +h Wu b represents the linear pre-

activation values. We can see that the maxout function
applies a max pooling operation on ()lh . The maximal value
within each group is taken as the output from the l-th layer.
A DMN can be constructed by connecting multiple maxout
layers consecutively and finally adding the softmax layer.

No pre-training is carried out for maxout networks in [14].
When applying DMNs to LVCSR, the networks may
become really deep to fully capture human speech
variability. In this case, pre-training becomes necessary for
initializing network parameters properly. We can pre-train a
single maxout layer with the autoencoder depicted in Figure
1(b). This structure behaves similarly with the normal
autoencoder, except for the maxout activations as the hidden
output. Due to the mismatch of their dimensions, the
encoding and decoding parameter matrices are not tied.
Artificial corruptions can also be added to the input.
Training of this autoencoder tries to minimize the difference
between the reconstruction output and the clean input. The
whole DMN can be pre-trained by stacking autoencoders
corresponding to the maxout layers in a layer-wise manner.

3.1. Application to LVCSR

The application of DMNs to speech recognition is easy to
accomplish. We replace the DNN modules used in LVCSR
systems (see Section 2) with DMNs. In this study we aim at

(3)

(2)

(4)

399

improving LVCSR when only limited training data is
available. We argue that DMNs are particularly suitable for
low-resource tasks because of the following two reasons.

First, compared with standard DNNs, DMNs can reduce
the size of network parameters significantly. Suppose that a
DNN and DMM contain the same number of units at each
hidden layer. Then the size of each connection matrix in the
DMN is 1/g of the size of the connection matrix in the DNN.
This parameter reduction enhances model robustness under
limited data. Second, unlike DNNs, DMNs do not fix the
shape of the activation function for hidden outputs. By
tuning weight vectors of the subsumed hidden units, each
maxout activation is capable of approximating any convex
functions [14] and thus can be optimized towards specific
datasets in hand. This property enables DMNs to capture
speech variability from limited data more effectively.

An important part of DMN acoustic modeling is the
integration of dropout, a technique performing particularly
well for low-resource speech recognition. Maxout networks
are found to maximize the model averaging effects caused
by dropout. Therefore, we impose dropout on each DMN
hidden layer by following the implementation described in
[11]. On each presentation of a training example, maxout
activations from each hidden layer are randomly omitted via
a binomial distribution. This distribution is governed by a
pre-specified probability referred to as drop factor in [11].
Dropout is applied only during training (fine-tuning). For
testing (recognition), network parameters need to be scaled
properly according to the value of the drop factor [11].

3.2. DMNs as Sparse Feature Extractors

In addition to acting as acoustic models directly, a trained
DMN can also be used as a sparse feature extractor. Sparse
outputs are generated from an arbitrary layer by applying a
non-maximum masking operation, rather than max pooling.
Specifically, given each input frame, all the units within
each group have their individual outputs, instead of being
pooled together into one output. However, only the maximal
value in this group is retained, while the other outputs are
rounded to 0. An example is presented in Figure 1(c), where
the group size is 3 and 2/3 of maxout activations are set to 0.
In Section 4.5, we experimentally show that these sparse
outputs pose a useful representation for the raw acoustic
features and can improve the performance of hybrid systems.

4. EXPERIMENTS

4.1. Experimental Setup

We use the Babel corpus that has been collected and
released under the IARPA Babel research program. The
goal of the Babel program is to realize rapid deployment of
speech recognition and spoken term detection systems for
low-resource languages. Up to now, the corpus has covered
Cantonese, Tagalog, Turkish, Pashto and Vietnamese. The
full language pack (FullLP) of each language consists of
around 80 hours of telephony speech for training and 20
hours for system development. Each audio file records
spontaneous conversations lasting approximately for 10
minutes. The data collection attempts to cover a variety of
acoustic conditions (e.g., street, office, inside vehicles),
speaking styles, and various dialects. Also, a notable portion
of the audio data are either non-speech events (e.g., breath,
laugh, cough, lip smack, ring) or non-lexical speech (e.g.,
hesitations, fragments and foreign words). Due to all these
factors, speech recognition on the Babel corpus is a very
difficult task, ending up with much higher WERs than on
other benchmark datasets such as Switchboard [6, 15].

In this paper, we conduct our experiments on Tagalog and
focus on the limited language pack (LimitedLP, version
babel106b-v0.2g-sub-train). This condition only has 10
hours of speech data and the corresponding resources
(dictionary, language model) for system building. As a
comparison with LimitedLP, 40 hours of training data are
selected from Tagalog FullLP (version babel106-v0.2f) to
simulate a 40HrLP rich-resource condition. During
decoding, we select 2 hours of speech from the entire 20-
hour development data as the dev set, and another 2.5 hours
as the eval set. The training, dev and eval sets have no
overlapping speakers. All decoding runs use a trigram
language model built solely from training transcriptions.
The Tagalog LimitedLP and 40HrLP datasets have the
statistics summarized in Table 1.

4.2. GMM and SGMM Systems

On both LimitedLP and 40HrLP, GMM-HMM systems are
built with the same recipe. We first train the initial ML
model based on 39-dimensional PLP+delta+acceleration
features with per-speaker cepstral mean normalization. Then

Wl max
pooling

maxout
activation

maxout
activation Wl

non-maximum
masking

max
pooling

0.5

0.8

0.3

0

0.8

0

(a) (b) (c)

decode
lW

encode
lW

Fig. 1. Maxout architectures in this paper: (a) maxout layer with the group size of 3; (b) maxout autoencoder; (c) sparse feature extractor.

400

Table 1. Statistics of the datasets used in the experiments. The
OOV rate is measured on transcriptions of the 2-hour dev set.

Statistics Conditions
LimitedLP 40HrLP

speakers 132 482
training (hours) 10.7 40.3
dictionary size 8k 35k
OOV rate 9.1% 1.8%

9 frames of PLPs are spliced together and projected down to
40 dimensions with linear discriminant analysis (LDA). A
maximum likelihood linear transform (MLLT) is applied on
the LDA features and generates the LDA+MLLT model.
Finally, to deal with speaker variability, speaker adaptive
training (SAT) is performed using feature-space maximum
likelihood linear regression (fMLLR). On the two datasets,
the numbers of context-dependent triphone states are 1920
and 3066 respectively, with an average of 10 and 16
Gaussian components per state.

On top of the SAT systems, we train subspace Gaussian
mixture models (SGMM) [18] for better recognition
outcomes. Learning of universal background model (UBM)
and SGMM parameters is carried out in the fMLLR feature
space. We adopt the SGMM configurations (e.g., number of
shared Gaussians, subspace dimensions) in [19]. Because of
shared subspace parameters, SGMM can model more tied
states than GMM. On LimitedLP and 40HrLP, the numbers
of tied states are increased to 2851 and 4542, and each state
on average has 3 and 5 substates respectively. Discrimina-
tive training is further performed based on the maximum
mutual information (MMI) criterion. Due to space limit, we
don’t elaborate on our MMI-SGMM setup. More details can
be found in [18, 19] and the Kaldi toolkit [20]. Figure 2
shows the WERs of the resulting MMI-SGMM models.

4.3. Effectiveness of DMNs for Hybrid Systems

Hybrid systems inherit the model structure (phone set,
HMM topology, tying of context-dependent states) from the
SAT models built in the previous section. The class labels
for speech frames are generated by SAT GMM-HMM
through forced alignment. DNN inputs include 9 fMLLR
frames (4 on each side of the current frame) which are
further reduced to 250 dimensions by LDA. These speaker
adaptive features in our experiments perform better than the
uncorrelated PLPs and correlated log filter bank coefficients.

DNN parameters are initialized with SDAs based pre-
training. We follow [6] for SDAs learning with masking
noise and the denoising factor of 0.2. Pre-training of each
layer has the learning rate of 0.01 and runs for 10 epochs.
During fine-tuning, an exponentially decaying learning rate
schedule is used for gradient descent. Specifically, the
learning rate starts from 0.08 and remains unchanged for 15
epochs. Then the learning rate is halved at each epoch until
the cross-validation error on a held-out set stops to drop. A
momentum of 0.5 is used in both pre-training and fine-
tuning for fast converging. The batch size is 128 for pre-

training and 256 for fine-tuning. Each DNN hidden layer
consists of 1024 units, which is observed to perform better
than 512 units and similarly with 2048 units.

When applying DMNs to hybrid systems, we start with
400 unit groups at each hidden layer and with the group size
of 3. This setting gives DMNs approximately the same
number (1200 vs. 1024) of hidden units as DNNs. Fine-
tuning of DMNs has the identical configuration as that of
DNNs. However, with the introduction of dropout, fine-
tuning for DMNs must start from a larger learning rate 0.1
[14]. Figure 2 makes a comparison between the DNN, DNN
with dropout and DMN models on the 2-hour dev set.
Similarly with [11], dropout applied in DNNs and DMNs
has the drop factor of 0.2 on each hidden layer. We can see
that under LimitedLP, DNN+dropout performs better than
DNN with the same pre-training. This confirms the
effectiveness of dropout in improving DNNs with limited
training data. The DMN model outperforms both DNN and
DNN+dropout consistently, resulting in better performance
than MMI-SGMM. In contrast, under 40HrLP, the three
methods perform comparably as shown in Figure 2(b).
These results demonstrate the advantage of DMNs when
applied to low-resource LVCSR. Under the LimitedLP
condition, Table 2 lists WERs corresponding to the best
settings discovered in Figure 2(a). Compared with the DNN
baseline, the DMN achieves 1.8% absolute improvement on
the dev set and 2.0% on the eval set. In the following
experiments, we only work on the LimitedLP condition.

Note that these gains are obtained when the parameters of
DMNs are randomly initialized. Now we perform SDAs
based pre-training as discussed in Section 3. In this case, the
network initial values come closer to the optimum. Thus, we
use smaller learning rates for DMN fine-tuning, reducing
the starting value from 0.1 to 0.06. The last row of Table 2
shows that SDAs pre-training brings additional improve-
ment to the DMN model, i.e., 0.4% absolute on the dev set
and 0.2% on the eval set.

With 400 unit groups and the group size of 3, the DMN
has around half as many parameters as its DNN counterpart
which has 6 hidden layers and 1024 units at each layer. We
also examine how DMNs behave when their topology
changes. We fix the number of maxout layers to 6 and the
number of hidden units at each layer to 1200. LimitedLP
hybrid systems are constructed with different combinations
of group number and group size. Their results on the dev set
are shown in Table 3. For a fair comparison, no pre-training
is performed for the various DMNs architectures. We can
see that continuing to decrease the number of unit groups

Table 2. WERs (%) of LimitedLP hybrid systems on the dev and
eval sets. The last row shows the DMN with SDAs pre-training.

Model Pre-training Dev WER% Eval WER%
DNN SDAs 68.8 72.0
DNN+dropout SDAs 67.8 70.9
DMN Random 67.0 70.1

DMN SDAs 66.6 69.9

401

causes degradation on the WER. This is partly because the
aggressive reduction of model parameters hurts DMN's
modeling capacity. Further, we verify whether similar gains
can be achieved simply by shrinking the size of DNNs. The
parameters of the 6-hidden-layer DNN are reduced by half,
using 512 units at each hidden layer. On the dev set, this
smaller DNN gives the WER of 70.0% with dropout,
performing worse than both the original DNN and the DMN.

4.4. Effectiveness of DMNs for BNF Extraction

Now we investigate the performance of DMNs in extracting
BNF features. In the DBNF architecture, totally 4 hidden
layers are inserted prior to the bottleneck layer. The softmax
output layer classifies context-dependent tied states. When
using a DNN as the building block of DBNF, the bottleneck
layer has 40 hidden units while each of the other hidden
layers has 1024 units. When a DMN is used, the group size
is set to 3 for every hidden layer and each non-bottleneck
layer has 400 unit groups as in hybrid systems. The
bottleneck layer consists of 40 unit groups to ensure the
same BNF dimensionality as the DNN. For both types of
networks, the 4 prior-to-bottleneck hidden layers are pre-
trained with SDAs.

When the DBNF network, either a DNN or DMN, has
been trained, we build an LDA+MLLT tandem system using
the BNF front-end. We observe that a critical variable for
BNF system building is the size of the resulting LDA
features. We compare BNF systems with different LDA
feature dimensions in Figure 3 and show the results
corresponding to the best configurations in Table 4. In
generally, BNF systems get notable gains over the SAT
model built in Section 4.2. The BNF system based on DMN
achieves better WERs than the system based on DNN,
resulting in 1.2% and 0.9% absolute improvement on the
dev and eval sets respectively.

Table 3. DMNs on the dev set with various settings. Model size is
measured by the ratio of parameter size between DMN and DNN.

unit groups group size Dev WER% model size
400 3 67.0 0.46
300 4 67.6 0.36
240 5 68.4 0.30

4.5. DMNs as Sparse Feature Extractors

Both DNNs and DMNs can be used to extract high-level
representations from the raw acoustic features. One
advantage of DMNs is to naturally introduce sparsity in the
learned representations. Since our focus is on low-resource
tasks, we study feature extraction in the context of cross-
lingual speech recognition [12]. Our goal is to improve
speech recognition on LimitedLP Tagalog, with the
presence of auxiliary languages including LimitedLP
Cantonese, Turkish and Pashto also from the Babel corpus.
To achieve this, we firstly follow the recipe in [11, 12] to
learn a multilingual DNN or DMN. The hidden layers are
shared and collaboratively trained on all the auxiliary speech
data, while the softmax output layers are specific to indivi-
dual auxiliary languages. Training data for multilingual
networks should have minimum mismatch across languages.
As a result, no language-specific transformations such as
LDA and fMLLR can be applied to the raw features [12]. In
this subsection, our experiments take the 30-dimensional log
filter banks generated on each frame as DNN and DMN
inputs. Both types of networks in this multilingual setting
have 6 hidden layers. Each DNN hidden layer contains 1024
units while each DMN layer has 400 unit groups with the
group size of 3. Multilingual fine-tuning of the DNN and
DMN is performed in the same manner as in the
monolingual scenario. Each epoch needs to traverse data
from multiple languages instead of one single language.

The shared layers are then applied to LimitedLP Tagalog
as a language-universal feature extractor. With the
multilingual DNN, 1024-dimensional features can be
generated from the last hidden layer. When using the
multilingual DMN, we can extract the maxout activations
from the last maxout layer into 400-dimensional features.
Alternatively, sparse features with 1200 dimensions are
generated in the way described in Section 3.2.

Table 4. Comparison between DNNs and DMNs for BNF
extraction. WERs (%) are reported on the dev and eval sets.

System Dev WER% Eval WER%
SAT GMM-HMM 71.1 73.8
DNN BNF tandem 67.7 70.8
DMN BNF tandem 66.5 69.9

65

66

67

68

69

70

4 5 6 7 8# hidden layers

DNN
DNN+dropout
DMN
MMI‐SGMM

55

56

57

58

59

60

4 5 6 7 8# hidden layers

DNN
DNN+dropout
DMN
MMI‐SGMM

Fig. 2. WERs(%) for MMI-SGMM and hybrid systems on the dev set. DNN and
DNN+dropout are pre-trained with SDAs while DMN is randomly initialized.

(a) The LimitedLP condition (b) The 40HrLP condition

65

66

67

68

69

70

42 46 50 54 60
LDA dimension

BNF_DNN
BNF_DMN

Fig. 3. WERs(%) for LimitedLP BNF
systems on the dev set. Comparison is made
between DNNs and DMNs.

402

Table 5. Comparison of hybrid systems built on various feature
types. WERs (%) are reported on the 2-hour dev set.

Feature type (dimension) Dev WER%

log filter banks (330, ± 5 frame context) 71.3

Multilingual DNN (1024) 70.2
Multilingual DMN (400) 69.2
Sparse Multilingual DMN (1200) 67.5

On LimitedLP Tagalog, we adopt the identical DNN

topology to build hybrid systems over various feature types.
This DNN has 4 hidden layers each of which has 1024 units
and is randomly initialized. Table 5 evaluates these feature
types by comparing the WERs of their hybrid systems. Note
that the numbers here are not in the same range as the ones
in Table 2 simply because we are switching to a different
base front-end (fMLLR vs. log filter banks). We can see that
deep features, either from the multilingual DNN or DMN,
outperform the original log filter banks. Among all the
feature types, sparse representations extracted from the
multilingual DMN achieve the best WER. This confirms the
effectiveness of DMNs acting as sparse feature extractors.

5. CONCLUSIONS AND FUTURE WORK

This paper studied deep maxout networks (DMNs) for low-
resource speech recognition. Following experiments on the
challenging Babel corpus, we are able to draw the following
principal conclusions: 1) Compared with DNNs, DMNs can
improve the performance of both hybrid and BNF systems
under the LimitedLP condition; 2) SDAs based pre-training
performs effectively for DMNs initialization and brings
gains when DMNs become really deep; 3) DMNs can be
used as sparse feature extractors to generate hierarchical
high-level representations. For our future work, we are
interested to study RBMs for DMNs initialization in which
probabilistic pooling strategies are required to realize a fully
generative model. Also, we would like to extend the sparse
feature extraction idea to BNF and generate sparse
bottleneck features for tandem systems.

6. ACKNOWLEDGMENTS

This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of
Defense U.S. Army Research Laboratory (DoD / ARL)
contract number W911NF-12-C-0015. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of IARPA, DoD/ARL, or the U.S. Government.
This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.

7. REFERENCES

[1] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large vocabulary speech
recognition,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 20(1), pp. 30-42, 2012.
[2] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in
context-dependent deep neural networks for conversational speech
transcription,” in Proc. ASRU, pp. 24–29, 2011.
[3] F. Grezl, M. Karafiat, and M. Janda, “Study of probabilistic and
bottle-neck features in multilingual environment,” in Proc. ASRU,
pp. 359-364, 2011.
[4] J. Gehring, W. Lee, K. Kilgour, I. Lane, Y. Miao, and A.
Waibel, “Modular Combination of Deep Neural Networks for
Acoustic Modeling,” in Proc. Interspeech, pp. 94-98, 2013.
[5] K. Vesely, M. Karafiat, F. Grezl, M. Janda, and E. Egorova,
“The language-independent bottleneck features,” in Proc. SLT, pp.
336-341, 2012.
[6] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep
bottleneck features using stacked auto-encoders,” in Proc. ICASSP,
pp. 3377-3381, 2013.
[7] H. Franco, M. Cohen, N. Morgan, et al., “Context-dependent
connectionist probability estimation in a hybrid hidden Markov
model-neural net speech recognition system,” Computer Speech
and Language, vol. 8(3), pp. 211-222, 1994.
[8] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in
deep neural networks for large vocabulary speech recognition,” in
Proc. ICASSP, pp. 4409-4412, 2012.
[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv:1207.0580, 2012.
[10] G. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep
neural networks for LVCSR using rectified linear units and
dropout,” in Proc. ICASSP, pp. 8609-8613, 2013.
[11] Y. Miao, and F. Metze, “Improving low-resource CD-DNN-
HMM using dropout and multilingual DNN training,” in Proc.
Interspeech, pp. 2237-2241, 2013.
[12] J. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-
language knowledge transfer using multilingual deep neural
network with shared hidden layers,” in Proc. ICASSP, 2013.
[13] P. Swietojanski, A. Ghoshal, and S. Renals, “Unsupervised
cross-lingual knowledge transfer in DNN-based LVCSR,” in Proc.
SLT, pp. 246-251, 2012.
[14] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio, “Maxout networks,” arXiv:1302.4389, 2013.
[15] J. Cui, X. Cui, B. Ramabhadran, et al., “Developing speech
recognition systems for corpus indexing under the IARPA Babel
program, ” in Proc. ICASSP, pp. 6753-6757, 2013.
[16] G. E. Hinton, “A practical guide to training restricted
Boltzmann machines,” UTML TR., 2010.
[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.
Manzagol, “Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising criterion,”
Journal of Machine Learning Research, vol. 11, 2010.
[18] D. Povey, L. Burget, M. Agarwal, et al., “The subspace
Gaussian mixture model-a structured model for speech recognition,”
Computer Speech and Language, vol. 25(2), pp. 404-439, 2011.
[19] Y. Miao, F. Metze, and A. Waibel, “Subspace mixture model
for low-resource speech recognition in cross-lingual settings,” in
Proc. ICASSP, pp. 7339-7342, 2013.
[20] D. Povey, A. Ghoshal, G. Boulianne, et al., “The Kaldi speech
recognition toolkit,” in Proc. ASRU, 2011.

403

