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ABSTRACT

Discovering the linguistic structure of a language solely from spo-

ken input asks for two steps: phonetic and lexical discovery. The

first is concerned with identifying the categorical subword unit in-

ventory and relating it to the underlying acoustics, while the second

aims at discovering words as repeated patterns of subword units. The

hierarchical approach presented here accounts for classification er-

rors in the first stage by modelling the pronunciation of a word in

terms of subword units probabilistically: a hidden Markov model

with discrete emission probabilities, emitting the observed subword

unit sequences. We describe how the system can be learned in a

completely unsupervised fashion from spoken input. To improve the

initialization of the training of the word pronunciations, the output of

a dynamic time warping based acoustic pattern discovery system is

used, as it is able to discover similar temporal sequences in the input

data. This improved initialization, using only weak supervision, has

led to a 40% reduction in word error rate on a digit recognition task.

Index Terms— Unsupervised, word discovery, acoustic units

1. INTRODUCTION

Unsupervised language acquisition is the task of acquiring the build-

ing blocks of a language without any supervision. Techniques to

discover these components directly from audio recordings of contin-

uous speech are known under the term zero resource speech tech-

nologies and are currently an area of active research [1]. The prob-

lem may be subdivided in two tasks: the phonetic and lexical dis-

covery. The first aims at discovering the phonetic building blocks

of speech and building an acoustic model for each of them. Since

the acoustic front ends used in standard (supervised) acoustic model

training were not particularly successful in the unsupervised setting,

researchers have come up with alternative acoustic representations

and models, such as a large Gaussian Mixture Model as universal

background model, from which the subword unit models are de-

rived by clustering [2], or hidden Markov Model (HMM) based self-

organizing units [3]. However, the speaker-dependence of the units

remains an important concern [1]. To overcome this issue it has

been proposed to use weak top-down constraints as can be provided

by spoken term discovery techniques [4], which capture the similar

temporal alternation of utterances of the same word even if spoken

by different speakers.

∗The work was in part supported by Deutsche Forschungsgemeinschaft
under contract no. Ha 3455/9-1 within the Priority Program SPP1527 ”Au-
tonomous Learning” and by the NSF grant 1017256.

Errors in this phonetic discovery stage may have detrimental ef-

fects on the second stage, the lexical discovery, whose goal it is to

discover words or phrases. Typically, the output of the phonetic dis-

covery unit is a sequence of tokens and is thus of categorial nature.

This sequence, however, will be noisy, and two utterances of the

same word may result in different token sequences. Techniques for

unsupervised word segementation usually assume an error-free input

character or phone sequence [5] and break down in the presence of

errors.

One way to overcome this is to abandon the two-stage approach

and discover word-sized patterns directly from the input speech [6,

7]. While these techniques have found much success in spoken term

discovery tasks, they lack the insight gained from the two-stage ap-

proach that is closely linked to the notion, that language has a deep

structure: while the observed acoustic signal can be represented as

draws from a finite set of atomic sound units (the phonemes), the

sound units do not directly map to semantics. Only the sequence

of sound units, which make up words, may be given a semantic in-

terpretation. Finally, dynamic time warping (DTW) techniques are

a non-parametric, template-matching approach and may not exhibit

the power and flexibility of parametric statistical models, such as

HMMs.

In this contribution we therefore adhere to a hierarchical, two-

stage approach to reveal the building blocks of a language from spo-

ken input. The approach is rooted in the method proposed in [8] for

audio classification, however extended to better capture the sequen-

tial nature of speech. In the first stage acoustic subword units are

discovered by segmenting the input speech, clustering the segments

and training HMMs on the clusters. These units are meant to capture

acoustically consistent phenomena and are called acoustic unit de-

scriptors (AUD) in the following, as proposed in [9]. The AUD label

sequence is the input to the ”word” discovery stage. Here, repeating

sequences of AUDs are modeled as HMMs whose emission prob-

abilites are multinomial distributions over the AUDs. Unlike [8],

where all states of a HMM shared the same emission probability, we

use state-specific probabilities to capture the temporal struture of a

word. It turns out that this significantly improves recognition per-

formance. The output of this second stage is thus a pronunciation

dictionary, whose entries are discrete HMMs. This probabilistic lex-

icon is able to absorb recognition errors in the AUD discovery stage.

An important issue is the initialization of the HMM training in

the second stage. In the zero resource setting, both the pronunciation

lexicon and the transcription are not available. As a substitute for

the orthographic word transcription, we adopt the output of a DTW-

based pattern discovery unit. This is in spirit of [4], who showed in
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a proof-of-concept study that the weak top-down constraints gath-

ered from a (perfect) DTW-output are helpful in finding subword

unit models that are more speaker-independent. Here, we run DTW

to find similar segment pairs in the audio data, cluster them and em-

ploy the cluster labels to obtain an initial partial transcription for the

HMM training.

This paper is organized as follows: In the next section an

overview of the hierarchical system for word discovery is presented,

followed by a description of the training of the individual build-

ing blocks, the acoustic unit discovery in Section 3 and the word

discovery in Section 4. Section 5 presents experimental results

demonstrating the effectiveness of temporal constraints and the

DTW initialization. The paper finishes with conclusions drawn in

Section 6.

2. HIERARCHICAL SYSTEM FOR WORD DISCOVERY

Fig. 1 gives an overview of the hierarchical system for the task of

word discovery. It is based on the audio semantic analysis system

proposed in [8] and consists of two levels. On the first level (left box

in Fig. 1), AUDs, i.e., the basic acoustic building blocks, are trained

from the continuous audio recordings. The output of this stage is a

transcription of the input speech in terms of AUD sequences. On the

second level (right box) word pronunciations are discovered by find-

ing consistent sequences of AUDs. To allow for variations in their

realization, word pronunciations are modeled by discrete HMMs.

The switch in each iterative HMM training block is initially in the

left position for initialization, and is turned to the right position for

the iterative training. In the following we describe the system in

more detail.

3. ACOUSTIC UNIT DESCRIPTOR TRAINING

3.1. Segmentation and Custering

First, the speech input is segmented into chunks according to a local

(cosine) distance measure between the mean representative of the

current segment and the next feature vector using a constraint on the

minimum length of a segment. As input MFCC feature vectors were

used.

The goal of clustering is to group the obtained segments accord-

ing to acoustic consistency. Then, to each utterance a sequence of

cluster labels can be assigned which will serve as the initial label

sequence for the iterative training of the AUD models.

As a similarity measure between segments the (length normal-

ized) dynamic time warping distance da,b between two segments Sa

and Sb is employed, using the cosine distance. To avoid the huge

computational effort from computing all pairwise distances the clus-

tering is carried out on a representative subset of the segments. To

find such a subset we adopt the approach from [10], which applies

the k-means++ algorithm [11] to determineK elements of the set of

segments S such that the diversity in the data is well represented:

1. Set k = 1. Choose the first segment S(k) uniformly at ran-

dom from the set S .

2. Compute the DTW distances d(S(k), Si) between the chosen

segment S(k) and all other N − 1 segments in S , and store

the distances in the vector dmin.

3. Increment k and choose the next seed value S(k) ∈ S with

probability proportional to its distance in dmin.

Fig. 1. Block diagram of the hierarchical system for word discovery

(corresponding sections given in braces)
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4. Compute the DTW distances between S(k) and all other seg-

ments and replace an entry in the minimum distance vector

dmin if the computed distance is smaller than the stored value.

5. Go to 3. until K representatives are found.

The idea behind this kind of seed selection is to prevent elements of

S from being drawn which are very close to the set of already drawn

segments. On the other hand, although insignificant outliers in S
may have a great distance to the set of previously drawn elements,

the probability to draw one of them is small, since the overall number

of outliers is by definition small.

Clustering is now carried out on a sparse distance matrix con-

taining only the distances between the chosen K segments and all

other segments. As a clustering algorithm the graph clustering al-

gorithm by Newman is used, which iteratively maximizes the mod-

ularity of the clustered graph, i.e. the ratio of the edges connecting

vertices within a cluster to the edges connecting vertices of different

clusters [12]. The adjacency matrix is computed from the distance

matrix using e−da,b with diagonal elements and elements with no

distance assigned set to zero. Finally a set of K̂ , where K̂ ≪ K,

clusters is obtained at the maximum modularity.

Thus, through the choice of K representatives, the number of

distance computations is reduced from the order ofO(N2) toO(K ·
N). Also the graph clustering algorithm runs significantly faster on

the resulting sparse distance matrix.

3.2. Iterative AUD HMM Training

The cluster labels are now interpreted to be AUD labels, and the

cluster labels obtained in the last step are used as a initial label se-

387



quence, which we denote as transcription T
(0)
d , d = 1, . . . , D. Here,

d is the index of the training utterance and D is the total number of

training utterances. For each AUDA ∈ Awe define a HMM λA and

refer to the set of all AUD models as ΛA. Every model is a 3-state

left-to-right HMM with Gaussian mixture output densities.

Let T
(i)
d denote the transcription of the d-th training utterance in

the i-th iteration, and let Xd = (xd,1, . . .xd,τd) denote the MFCC

feature vector sequence of the d-th utterance. The maximum likeli-

hood estimation of the HMM parameters ΛA leads to the following

iterative EM algorithm, which alternates between reestimation of the

AUD parameters, eq. (1), and decoding, i.e., reestimation of the label

sequence, eq. (2) [8, 3]:

Λ
(i+1)
A

= argmax
ΛA

D
∏

d=1

p(Xd|T
(i)
d ; ΛA) (1)

T
(i+1)
d = argmax

T

P (T |Xd; Λ
(i+1)
A

). (2)

Here we made use of the Viterbi approximation instead of employing

the Forward-Backward algorithm.

4. WORD PRONUNICIATION DISCOVERY

The Bayesian decision rule applied to ASR asks for finding that

word sequence Ŵ that maximizes the posterior probability given the

acoustic evidence X or, equivalently,

Ŵ = argmax
W

{P (W )p(X|W )} (3)

with the acoustic model p(X|W ) and the language model P (W ).
Usually, the acoustic model of a word is obtained by concatenating

the HMMs of the subword units that make up the word according

to a pronunciation dictionary. With T denoting the subword unit

sequence we have

Ŵ = argmax
W

{

P (W )
∑

T

p(X|T,W )P (T |W )

}

(4)

With a deterministic pronunciation dictionary each word is assigned

a unique subword unit sequence, such that P (T |W ) reduces to a

dirac delta function. Here, however, we allow for multiple transcrip-

tions and train a HMM P (T |W ) for each word W . Note that the

term ”word” refers to a consistent sequence of AUDs which need

not be identical with the linguistic notion of a word.

In principle, the same iterative algorithm for training the HMM

parameters is applied as in the previous section. However, the input

data are now of categorial nature: the AUD token sequences Td,

d = 1, . . . , D, delivered by the first stage. In the following we

first describe the model and how it is trained, before we turn to the

important issue of initialization in section 4.4.

4.1. Language Model

Since in our setting the words are not known in advance one might

wonder if one has any a priori knowledge about them at all. We

assume that the unigram word probabilities adhere to a power law

distribution, the Zipf law, which holds ubiquitously across many lan-

guages [13].

Let w(k), k = 1, . . . , N denote the words, where k denotes

the rank of the word in a probability table ordered according to de-

scending frequency of occurrence, and where N is the lexicon size.

According to Zipf’s law the unigram probabilities are given by

P (w(k); s) =
1/ks

∑N

i=1 1/i
s
. (5)

The parameter s will be estimated on the data. Here we assume that

either the lexicon size N is known or the number N of different

words to be discovered is fixed in advance.

4.2. HMM Topology

The experiments reported later revealed that the Bakis left-to-right

HMM topology, that is commonly used in (supervised) ASR was

too unconstrained and there was a need to limit the flexibility and

guide the training process more. This led us to adopt a strong length

constraint.

The length n of a realization of the word w(k) (in number of

AUDs) is modelled to be a draw from the Negative Binomial (NB)

distribution with word-specific parameters (rk, pk), where the Neg-
ative Binomial distribution is a generalization of the Poisson distri-

bution, which is often used to model lengths:

n ∼ PNB(n; rk, pk), where (6)

PNB(n; rk, pk) =

(

n+ r − 1
n

)

pn(1− p)r. (7)

Fig. 2 depicts the HMM topology. The transition probabilities

can be readily computed from the NB distribution, e.g.: a1,out =
NB(1; r, p), a1,2 = 1− NB(1; r, p), etc..

S1 S2 SN

a1,in a1,2

a1,out

a2,out

aNs,outa2,3

Fig. 2. HMM topology of word model.

The emission probabilities are modeled as multinomial proba-

bilities: Φk,l,m, where k = 1, . . . , N and l = 1, . . . , Lk , m =
1, . . . ,M , is the probability that AUD m is emitted by state l of
word wk.

4.3. Iterative Training

Let Td = (Td,1, . . . , Td,t, . . . , Td,Nd
) be the observed AUD se-

quence of the d-th utterance of length Nd AUDs. Here, Td,t ∈ A =

{A(1), . . . , A(M)} will be called the t-th observation.
In the E-step, the posterior probability γt(qk,l) of being in the

l-th HMM state of word wk for the t-th observation, given the whole
observed sequence Td, is computed by the Forward-Backward algo-

rithm:

γt(qk,l) =
αt(qk,l) · βt(qk,l)

∑

m,n
αt(qm,n) · βt(qm,n)

, (8)

where αt(qk,l) is the forward probability, the probability of being

in state qk,l at time t and having observed (Td,1, . . . , Td,t), and
βt(qk,l) denotes the backward probability of being in state qk,l at
time t given the future observations (Td,t+1, . . . , Td,Nd

).
In the M-Step the multinomial emission probabilities are reesti-

mated as follows

Φk,l,m =

∑D

d=1

∑Nd
t=1 γt(qk,l)δ(Td,t = A(m))

∑M

m′=1

∑D

d=1

∑Nd
t=1 γt(qk,l)δ(Td,t = A(m′))

, (9)
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for all k = 1, . . . , N , l = 1, . . . , Lk , m = 1, . . . ,M . Here δ(·)
denotes the Kroneker delta symbol which takes the value one if the

argument is true and zero else.

The NB parameters (rk, pk) for each word wk are estimated by

maximizing the word dependent likelihood

Lk =

mk
∏

i=1

PNB(ni; rk, pk); k = 1, . . . , N. (10)

Here,mk denotes the number of occurrences of wordwk in the train-

ing corpus, and ni the length of the i-th occurrence.
Finally, the parameter s of the Zipf distribution is estimated as

the slope of the best fit line between the log-expected frequencies

y = (lnEw1
, . . . , lnEwN

)T , where Ewk
= mk∑

j mj
, and its log-

rank x using linear regression:

s = −x
+
y. (11)

In eq. (9) word and state dependent multinomial distributions

are estimated. As an alternative one could use tied states, where all

HMM states of a word model share the same emission probability.

This results in the bag-of-AUD model that was proposed in [8]. To

achieve this, eq. (8) is replaced by

γt(k) =

∑

l
αt(qk,l) · βt(qk,l)

∑

m,n
αt(qm,n) · βt(qm,n)

(12)

where the additional summation is over all HMM states of word wk.

The reestimation formula for the multinomial emission distribution

then becomes

Φk,m =

∑D

d=1

∑Nd

t=1 γt(k)δ(Td,t = A(m))
∑M

m′=1

∑D

d=1

∑Nd
t=1 γt(k)δ(Td,t = A(m′))

, (13)

where Φk,m is the probability of observing AUD A(m) in word wk .

4.4. Initialization by Pattern Discovery

In the unsupervised setting neither the pronunciation dictionary nor

the transcription of an utterance in terms of a word sequence is given.

To obtain an appropriate initialization we employ a dynamic time

warping (DTW) approach. In [4] it has been argued that word-level

patterns are fairly stable across speakers. Thus acoustic pattern dis-

covery techniques, such as DTW, are suitable to discover word or

phrase sized patterns even if uttered by different speakers.

Here, the segmental DTW algorithm of [6] was employed. It

delivered a collection of segement pairs and a similarity measure for

each pair. Then, the found segment pairs were clustered using the

same graph clustering algorithm as in Section 3.1 and a predefined

number of the N biggest clusters was returned.

DTW, however, is usually unable to find all occurrences of a

word in a corpus. Thus there will be parts of the acoustic signal for

which no similar pattern has been found and which will therefore

not be assigned a cluster label. Also, the speech may contain more

words/phrases than one is able to discover by DTW.

Thus the output of the clustering is unable to deliver a complete

transcription of the audio data. Instead of initializing by a label se-

quence, the HMM training is initialized with an initial model: For

each segment found by DTW, the AUD sequence within this segment

was extracted, and a multinomial emission probability was estimated

from the AUD sequences of all segments belonging to the same clus-

ter. By this, an initial model is estimated and the iterative training

can start.

5. EXPERIMENTS

We performed our experiments on the TIDIGITs Database, down-

sampled to 16 kHz, both in a speaker-dependent (SD) and speaker-

independent (SI) setting. The training set comprises 112 speakers

and 77 digit sequences per speaker. The dataset contains 11 dis-

tinct words, the numbers ’oh’ and ’zero’ to ’nine’. We used the

ETSI standard front-end to extract 13 Mel-frequency cepstral co-

efficients (MFCC) from the audio data and additionally the first and

second order derivatives, resulting in a 39 dimensional feature vector

per 10 ms frame. Finally cepstral mean and variance normalization

(CMVN) was done on the full feature vector.

5.1. AUD Discovery Performance

First we evaluated the performance of the AUD extraction algorithm

by calculating the average purity (AP) and precision-recall break-

even (PRB) as proposed by [14] on the AUDs and, for comparison,

on the MFCCs extracted from the TIDIGITS database. The average

purity is a measure of how well a representation is able to capture

the (desired) variability between different subword units while be-

ing insensitive to variations due to different realisations of the same

subword unit. It has been shown that AP has a high correlation with

the phoneme recognition rate [14].

Table 1 shows the results for the AP and PRB for the speaker

dependent and speaker independent setups. We extracted K̂ = 128
AUDs and used K = 1024 seed values in the clustering step. The

Table 1. AP and PRB in SD and SI case for AUDs and MFCCs

extracted form TIDIGITs database in %
AP PRB

Setup AUD MFCC AUD MFCC

SD 94.7 92.6 83.3 85.9

SI 64.6 61.7 60.0 57.5

discovered AUD sequences were compared with the ground truth

(GT) word transcriptions that were obtained from a forced alignment

on the MFCCs. As the distance measure between AUD sequences

we used the length normalized edit distance.

As a reference, Table 1 also shows the AP and PRB when using

MFCCs and the length normalized cosine distance. It can be seen

that the AP and PRB of the AUDs is comparable to the MFCCs.

The results show that the AUD extraction algorithm in fact delivers

meaningful features which allow to discriminate between words. It

can also be seen that the AP and PRB in the SD case are higher than

in the SI case because of the lower variability in words uttered by the

same speaker.

Table 2 shows the average duration of the AUDs extracted in the

SD and SI case. For comparison the average duration of a phoneme

as given by the ground truth labels is shown as well. It can be seen,

that the average length of the AUDs is about half as long as the av-

erage length of a phoneme. This indicates that AUDs may not be

directly be equated with a phoneme.

Table 2. Average AUD length in SD and SI case compared to aver-

age phoneme length on GT labels extracted from TIDIGITs database

SD SI GT

74 ms 62 ms 126 ms

389



5.2. Word Discovery Performance

Next the performance of the word discovery method presented in

Section 4 was evaluated. This was done by comparing the decoding

result with the ground-truth word transcription, where the HMMs

were given that word as label that led to the overall smallest word

error rate. We set our algorithm to extract N = 11 words. The Zipf

parameter s was estimated to be s ≈ 0.5 by the algorithm. For the

digit recognition task under investigation, with equal probability of

all words, the true value is s = 0. Setting s = 0 did not change the

discovery performance considerably in our case.

Table 3 lists the word discovery results for three different HMM

setups: The first two columns show the word accuracy (ACC =
1−WER) for the HMM topology of Fig. 2 with Ns = 7 states in

the SD case and Ns = 11 states in the SI case. The column heading

’tied’ indicates that all states of a HMM share the same multino-

mial emission probability, while ’untied’ corresponds to the training

of different emission probabilities for each HMM state. As a fur-

ther comparision, a Bakis left-to-right (’l-r’) HMM topology with

Ns = 7 states in the SD case and NS = 8 states in the SI case and

untied emission probabilities was also tested.

Table 3. ACC (in %) for SD and SI case and for different setups

Setup tied untied l-r

SD 74.5 62.5 12.5

SI 57.3 67.9 15.4

We can draw several conclusions from these results. First we can

observe that the use of state-specific emission probabilities increases

the performance in the speaker independent case significantly from

57% to 68%, while the performance in the speaker-dependent case

suffers compared to using tied emission probabilities. Not surpris-

ingly, the temporal order of subword units is an important character-

istic of a word, which is lost when using a bag-of-AUD model as is

done in the ’tied’ case. This information can only be taken advantage

of if the models can be trained reliably, as the reduced accuracy in

the SD case is most likely attributed to the lack of sufficient training

data. This precludes the reliable esimation of state-specific probabil-

ities in the SD case.

Second we can observe that a simple left-right HMMmodel does

not give useful results. This indicates that the modelling strength of

the left-right model is weak with respect to pattern discovery. The

proposed models do incorporate more stringent word length con-

straints which helps in guiding the training process and discrimi-

nating between different words.

5.3. DTW Initialization

The initialization of the parameters in an EM learning algorithm is

well known to have significant impact on the quality of the learnt

models. The simplest option is to initialize the parameters uniformly

at ramdom, as it was done for the previous experiments reported in

Table 3.

For the results of Table 4 the word pronunciation training was

initialized with the help of a DTW based pattern discovery algorithm

as described in Section 4.4. We present the results for the speaker

independent case only, using state-specific emission probabilities, as

this is the most relevant setup.

For DTW, only a subset of the whole database was employed,

which contained all 112 speakers but only 7 randomly selected ut-

terances per speaker. On this dataset DTW was run to find similar

segment pairs. A high acceptance threshold was chosen to make sure

that the segments found indeed showed high similarity. Doing this

the selected segments made up only 3.5% of the whole dataset.

For each segment in a cluster, its start and end points were used

to extract an AUD label sequence that was used for the initial estima-

tion of the emission probabilities of the word model corresponding

to the cluster.

The assignment of a word label to a DTW cluster is necessary

to carry out an evaluation w.r.t. word error rate. A cluster was given

the word label of that word that was most often represented in the

segments of the cluster. This resulted in a high cluster purity of

98%. Note that this resembles a weakly supervised setup where the

segments and clusters are discovered in an unsupervised manner and

only the class labels have to be assigned using some other knowledge

source.

There is, however, an issue with this assignment. The number

of clusters obtained from DTW has been set to equal the number of

words N for which models are to be developed. However, it turned

out that no clusters corresponding to the digits ’two’, ’eight’ and ’oh’

had been found. Because of the three missing classes we only initial-

ized N − 3 = 8 clusters according to the extracted AUD sequences

while the remaining three clusters were still initialized using random

values.

Table. 4 shows that the DTW-based initialization improved the

word accuracy from 67.9% to 81.9% compared to random initializa-

tion, a reduction in error rate by more than 40%. As a comparision,

the ACC is given for perfect initialization, i.e. given the correct tran-

scription in terms of word labels and the correct word boundaries for

the whole database (denoted ’ground truth’ (GT)). It can be seen that

the DTW initialization comes close to the ground truth even though

it uses much less segments for initialization and even though only 8

of 11 clusters were initialized using discovered segments. The algo-

rithmwas also able to successfully recover the 3 remaining randomly

initialized words. The Zipf parameter s was estimated to be s ≈ 0.3
when using DTW initialization and s ≈ 0.1 when using the GT ini-

tialization which is closer to the true value s = 0 compared to the

case without initialization.

Table 4. ACC (in %) for different initialization strategies

random DTW GT

67.9 81.9 88.1

5.4. Automatic Speech Recognizer Training

In a last step we used the discovered transcriptions of the word dis-

covery algorithm as initialization for a automatic speech recognizer

training. We trained whole-word HMMs with Gaussian Mixture

emission probabilities on MFCC input features for each discovered

cluster. We used the discovered label sequence of the word discov-

ery algorithm as the transcription for the acoustic model training and

again alternated between decoding and model estimation. In each it-

eration we used the decoding result of the previous iteration as the

new transcription.

Table 5 shows the results of the iterative training in terms of

word accuracy for the different iterations using random and DTW

initialization. Iteration 0 is the result delivered by the word discov-

ery algorithm. The further iterations are the results of the iterative

training.

The results show that the discovered transcriptions can in fact

be used for an automatic speech recognizer training. The iterative
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Table 5. ACC (in %) for iterative speech recognizer training over

iterations and for different initialization strategies on training set.

Iter. 0 1 3 5 7

random 67.9 80.8 82.9 84.4 84.7

DTW 81.9 96.6 98.4 98.5 98.5

training improves the accuracy from iteration to iteration. The im-

provement from the 0th to the 1st iteration is a result of cleaning the

transcriptions and especially removing insertions in the recognition

result. For the completely unsupervised transcriptions we achieve

an accuracy of 84.7% after 7 iterations. For the transcriptions dis-

covered using the DTW based initialization, which uses weak super-

vision as was explained in Section 5.3, we achieve an accuracy of

98.5% which comes close to the accuracy of 99.4% using a com-

pletely supervised training.

To test if the trained acoustic models generalize on unseen test

data, we used the acoustic models to decode the up to now unused

test set of the TIDIGITS database. Table 6 shows the results.

Table 6. ACC (in %) using trained acoustic models on test set.

random DTW

84.3 98.3

It can be seen that the automatic speech recognizer delivers al-

most the same results on the test data set as during the discovery step

using the training data.

6. CONCLUSIONS

We presented a hierarchical system for unsupervised word discovery

consisting of acoustic unit and lexical unit discovery. We learned

phone like acoustic unit descriptors (AUDs) in an unsupervised man-

ner and evaluated the performance of the learnt AUDs in terms of

AP and PRB showing that they deliver a comparable performance

to MFCCs. The lexical unit discovery operated on the sequence of

AUD labels and learnt HMMs with multinomial emission probabili-

ties for each word. Doing this in a completely unsupervised fashion,

a word accuracy of 68% was achieved, where the use of temporal

information and a length constraint are important features of the pre-

sented algorithm. Further we employed DTW to initialize the word

discovery algorithm using segments and clusters discovered in an

unsupervised manner and using weak supervision to assign a word

identity of each cluster. This led to an improved word accuracy of

82%. Finally, the transcriptions obtained from the word discovery al-

gorithm were used for the training of an automatic speech recognizer

delivering an accuracy of 85% in a completely unsupervised setup

and close to ideal 99% accuracy in the weakly supervised setup.

For the future we are planning to use the proposed system on

large vocabulary tasks. Then AUD based acoustic models instead

of whole-word models will be trained for the speech recognizer. To

this end, a canonical transcription of a word in terms of AUDs will

be derived from the probabilistic lexicon or by clustering the AUD

sequences found for a given word. Coupling the AUD discovery,

the speech recognizer training and using a canonical transcription is

expected to lead to more robust and speaker independent AUDs and

therefore also better word discovery results.
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