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ABSTRACT

We present a framework for discovering acoustic units and
generating an associated pronunciation lexicon from an ini-
tial grapheme-based recognition system. Our approach con-
sists of two distinct contributions. First, context-dependent
grapheme models are clustered using a spectral clustering
approach to create a set of phone-like acoustic units. Next,
we transform the pronunciation lexicon using a statistical
machine translation-based approach. Pronunciation hypothe-
ses generated from a decoding of the training set are used to
create a phrase-based translation table. We propose a novel
method for scoring the phrase-based rules that significantly
improves the output of the transformation process. Results
on an English language dataset demonstrate the combined
methods provide a 13% relative reduction in word error
rate compared to a baseline grapheme-based system. Our ap-
proach could potentially be applied to low-resource languages
without existing lexicons, such as in the Babel project.

Index Terms— acoustic unit discovery, automatic speech
recognition, grapheme-based speech recognition, pronuncia-
tion learning

1. INTRODUCTION

While the majority of the components of an automatic speech
recognizer are learned from both labeled and unlabeled data,
the lexicon is still largely handmade by experts. The use of
these lexicons inherently limits a system to previously defined
representations. This is especially problematic for languages
that do not have an expert-defined lexicon. With the recent in-
terest in low-resource languages [1, 2], methods for automat-
ically learning lexicons are required. We propose a method
for both discovering acoustic units and building the pronun-
ciation lexicon. To simplify the task, our approach relies on
the assumption that a grapheme-based recognizer can be built
that obtains reasonable performance. While performance may
not be as strong as with a handcrafted phonetic dictionary,
grapheme-based systems have been shown to work in a vari-
ety of languages [3]. Our work consists of contributions to
both acoustic-unit discovery and pronunciation generation.

Previous work in acoustic unit discovery has mainly fo-
cused on the setting where no information is known about
the language [1, 2, 4, 5]. Jansen and Church proposed a
spectral clustering-based approach to learning acoustic units
[1]. Since the clustering is based on HMM states, the result-
ing units correspond more to subphonetic units than actual
phones. Lee and Glass avoid this issue by jointly learning
acoustic units consisting of several states through a nonpara-
metric Bayesian model [2]. Both approaches are able to learn
models from unlabeled data, but neither approach addresses
building a pronunciation dictionary or a complete ASR sys-
tem that can be measured by word error rate (WER). Bac-
chiani and Ostendorf [5] used a joint modeling approach that
produced a complete ASR system, but was also limited to sin-
gle state acoustic units and could not build pronunciations for
words not seen during training.

Pronunciation generation can be stated as the task of
defining an acoustic representation for a word; this can be
either an alternate representation for a known word or a
new representation for a previously unseen word. Many ap-
proaches focus on utilizing what is known about the word—
its lexical representation—to produce possible pronuncia-
tions. Earlier approaches used hand-derived rules to perform
the conversion [6]. More recent approaches automatically
learn a mapping from graphemes to phonemes [7]. Unlike
in this work, these approaches assume the acoustic units are
already known and defined. Automatic methods also assume
a large training corpus. Though work has been done to re-
duce the amount of training data required [8], no training
data exists for mapping graphemes to pronunciations using
automatically discovered units. For deriving pronunciations
from automatically discovered acoustic units, less work ex-
ists. Most approaches focus on the keyword spotting task and
build the acoustic representation from an acoustic example
of the word. Instead of representing a word by a string of
acoustic units, a posteriorgram-like representation is used
[1, 2]. The main limitation of these approaches is that build-
ing a standard ASR system from these representations is not
possible.

Our approach represents a compromise between the task
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of building an ASR system from zero resources [2] and the re-
quirement of expert-defined acoustic units and pronunciation
dictionaries. We assume the training data has been transcribed
at the word-level and that some relationship exists between
the orthography and pronunciation of the language. In Sec-
tion 2 we describe our spectral clustering-based method for
discovering acoustic units from context-dependent grapheme
models. The method is similar to [1], but operates on whole
HMMs instead of individual states. Initially, pronunciations
are generated by directly mapping the original grapheme-
based pronunciations to the new acoustic units. Section 3
presents the transformation process used to improve a pre-
viously defined lexicon. Given a set of pronunciation hy-
potheses for each word, phrase-based rules are learned. We
present a method for scoring the phrase-based rules that leads
to a reduction in WER compared to the original lexicon. The
experimental setup and results are presented in Sections 4 and
5. In Section 6 we provide further analysis, and conclusions
are presented in Section 7.

2. ACOUSTIC UNIT DISCOVERY

Our approach to acoustic unit discovery assumes that an ini-
tial context-dependent HMM-based system has been trained
using a grapheme-based lexicon. As in other work [9], we
assume the context-dependent grapheme models represent in-
formation similar to phonemes. We propose to cluster the
context-dependent models into a set of acoustic units using
spectral clustering [10].

Spectral clustering operates on a graph where the nodes
are data points and the edges are similarities between the
points. The specific implementations of spectral clustering
algorithms can vary widely. We use the method described in
Algorithm 1, originally proposed by Ng et al. [11], with two
minor changes. Instead of using a fully connected similarity
graph, we use a k-nearest neighbor graph, as recommended
in [10], where k is chosen to be the smallest value that still
maintains a strongly connected graph. The final step in spec-
tral clustering is the k-means algorithm. In [11], they claim
that only a single clustering is necessary using their method
for initialization, but we found better performance with using
random restarts and selecting the clustering with the mini-
mum within-class variance.

The spectral clustering approach hinges on the definition
of similarity between data points—in our case, HMMs. Many
approaches for measuring the similarity between HMMs ex-
ist, but most are computationally expensive. Since we needed
to compute the similarity for several million pairs of HMMs,
an efficient strategy was required. Our method is similar to
the approach presented in [12], but we have adapted it for
use with the left-to-right HMMs used in ASR—the original
method requires the computation of the stationary distribu-
tion, which does not exist for the HMMs used in ASR.

Algorithm 1 Spectral clustering algorithm adapted from Ng
et al. [11]
Input: number k clusters to create, similarity matrix S ∈
Rn×n.
Let W be the k-nearest neighbor adjacency matrix built
from S.
Let D be a diagonal matrix where di,i =

∑n
j=1 wi,j .

Compute graph laplacian: L = I −D−1/2WD−1/2.
Let U ∈ Rnxk be the matrix consisting of the first k eigen-
vectors of L.
Unit normalize the rows of U .
For i = 1, . . . , n, let yi ∈ Rk be the ith row of U .
Using k-means, cluster the points yi into clusters
C1, . . . , Ck.

Output: clusters C1, . . . , Ck.

The similarity between two HMMs is defined as

HMMsim(h,h
′) =

A∑
a=1

B∑
b=1

αa,b

CSD(ha, h′b) + 1
(1)

where h and h′ are HMMs with A and B number of states
respectively. The occupancy matrix, α ∈ RA×B , defines the
probability of any state ha being occupied at the same time
as state h′b over any sequence less than N time steps; in this
work, we use N = 100, a value greater than the expected du-
ration of any of the three-state HMMs considered. We cannot
calculate α for all possible sequences, but using sequences
less than N time steps provides a good approximation.

For measuring the similarity between two states, ha and
h′b, we use the inverse of their divergence. In [12], the KL-
Divergence was used, but we have chosen to use the Cauchy-
Schwarz divergence (CSD) because it has a closed form so-
lution and has been shown to perform comparably to the KL-
Divergence [13]. CSD is defined as

CSD(p,q) = − log

∑
i piqi√∑

i p
2
i

∑
i q

2
i

. (2)

Once the new acoustic units have been created, the lexicon
needs to be defined in terms of them. Each acoustic unit is a
cluster of context-dependent graphemes. A simple method of
generating pronunciations using the new acoustic units is to
map the original graphemes to the new acoustic units based
on their surrounding context. This will result in a lexicon
where each entry contains the same number of units as the
original grapheme-based lexicon. New acoustic models are
then trained based on the new lexicon. In the next section, we
present a method for improving the pronunciations based on
the new acoustic units.
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Source Target p(t|s) Change in LLH
a c k a k 0.19 -13.05
c h s c x s 0.13 48.25
c e s s a s e s e 0.36 63.28
f o r d f r d 0.17 -81.47
a u g h t o t 0.25 87.39

Table 1. Example phrase table from Moses [16]. Each row
shows a translation from the first column to the second col-
umn. p(t|s) is the probability of translating the source into the
target. The final value is the average change in log-likelihood
as determined by our rule scoring procedure. Note that the
phrase table produced by Moses contains additional values.

3. PRONUNCIATION TRANSFORMATION

We assume that we have an initial dictionary which contains
systematic errors; this initial dictionary could be a hand-
crafted dictionary, a grapheme-based lexicon, or based on
the discovered acoustic units described in the previous sec-
tion. To simplify the discussion, we describe the approach in
terms of graphemes, but the discovered acoustic units from
Section 2 can also be used. Our goal is to transform the pro-
nunciations such that acoustic models trained using the new
lexicon will be improved and result in reduced WER. Our
approach is similar to statistical machine translation (SMT)-
based approaches to grapheme-to-phoneme (G2P) conversion
[14, 15]. Since our transformation approach uses the same
label set for input and output, we will refer to the system as
a grapheme-to-grapheme (G2G) system. An initial grapheme
decoder generates pronunciations hypotheses for every word
in the training set. An SMT-based G2G system is trained
based on the hypothesized pronunciations. The rules used in
the G2G system are pruned and scored. Finally, the improved
G2G system is used to transform the original pronunciation
dictionary.

Using a previously defined lexicon, a set of context-
independent models—one model per grapheme—is trained;
due to the smaller number of models compared to a context-
dependent system, we use 128 mixtures per GMM. While a
context-dependent model would likely produce more accurate
grapheme recognition in terms of the original pronunciation
lexicon, our purpose is to transform the original lexicon.
Also, the sequence of possible graphemes would be artifi-
cially restricted by the contexts seen during training.

Each pronunciation hypothesis becomes a training exam-
ple for the SMT-based G2G system. The canonical pronunci-
ation is used as the source language and the hypothesis is used
as the target language. For our experiments, we use the Moses
[16] toolkit. Moses builds a phrase translation table based on
the aligned training data. For our purposes each phrase would
represent the translation of a sequence of graphemes into an
alternate sequence of graphemes. Examples are shown in Ta-

ble 1. The third column represents the probability of translat-
ing the source language into the target, one of several proba-
bilities automatically calculated by Moses.

It is important to note that the training data we provide to
Moses is very noisy; many of the rules would result in signif-
icantly worse performance for the recognition system. Typi-
cally, the next step is to tune Moses on a held-out dataset using
discriminative training. Unfortunately, we do not have access
to such data as there is no gold standard for the transformation
we are computing. Instead we propose an alternative method
for scoring each individual rule based on its effect on the like-
lihood of the training data. The intuition is that we can con-
sider the original lexicon as being generated by a phrase table
with only identity rules. We only want to introduce new rules
that will improve over this original lexicon.

Each rule is evaluated individually. A new pronunci-
ation dictionary is generated that differs from the baseline
dictionary only by the application of a single phrase-based
rule. Using the new dictionary, we force align the train-
ing data—using the context-independent models previously
mentioned—and measure the average effect on the likelihood
of each sentence. The average change in likelihood becomes
the score for the rule. Note that a phrase table could con-
tain over one million rules and scoring each rule individually
would be prohibitively expensive. We first prune the phrase
table by only scoring rules that are both common—the source
phrase appears at least ten times in the training corpus—
and contain between three and five graphemes on the source
side; phrases with less than three graphemes likely do not
contain enough context information to be useful and phrases
with more than five graphemes may not generalize to unseen
words. Returning to Table 1, the final column shows exam-
ples of scores generated by the just described procedure. In
this sample, as in the remainder of the phrase table, there is
no correlation between the probabilities generated by Moses
and the scores based on the change in likelihood. This is not
a fault of Moses, but an indication of the level of noise seen
in the training data.

Once the rules have been scored, we only keep rules
which surpass a certain threshold—chosen to maximize per-
formance on the development set. This subset of rules be-
comes the final phrase translation table. Using Moses, the
original pronunciation dictionary is transformed by the rules
in the phrase table. New models are trained using the trans-
formed pronunciation dictionary and are used for the final
recognition system.

4. EXPERIMENTAL SETUP

We use the HMM toolkit (HTK) [17] for our recognition sys-
tem. The acoustic model consists of cross-word triphones;
each triphone has three states, modeled by a mixture of 16
Guassians per state. Transition probabilities are tied across
all models with the same center symbol. Individual states are
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Unit Type # Units Direct Transformed
Grapheme 26 15.8 14.5
Discovered 39 15.0 13.9
Discovered 50 15.2 13.9
Discovered 60 14.4 13.8

Table 2. Results for both grapheme-based acoustic units and
automatically discovered acoustic units (Section 2) in terms
of WER (%). Direct are the original pronunciations while
Transformed refers to our proposed pronunciation transfor-
mation approach (Section 3).

clustered across models, resulting in approximately 2000 tied
states. For a standard phone-based system, state clustering
is based on questions relating to phonetic classes. This in-
formation does not exist for the grapheme and automatically
discovered models, so we use singleton questions (one ques-
tion per grapheme) as is used in other work [3]. Decoding is
performed with a bigram language model.

All evaluations are performed on the WSJ0 corpus, an En-
glish language 5000 word closed vocabulary task. The train-
ing set consists of 7,138 utterances from 83 speakers for a
total of 14 hours of speech. The test set consists of 330 ut-
terances from 8 speakers not seen during training. In this
work, English was chosen because it allows for a compari-
son against using a hand-crafted dictionary and it is a difficult
language for grapheme-based speech recognition [3].

The previously described acoustic unit discovery pro-
cess is applied to the grapheme-based HMM models. Pro-
nunciation hypotheses are generated from a separate set of
context-independent models with 128 Gaussians per state.
These hypotheses are separated into word pronunciations by
using the word boundaries obtained from force aligning the
training data with the baseline grapheme-based system. In to-
tal, about 100k pronunciation hypotheses are generated. The
Moses system produces approximately 500k phrase-based
rules, which are pruned down—as described in the previous
section—to 25k rules.

5. RESULTS

Recognition results are presented in Table 2 in terms of WER.
While the performance of the baseline grapheme-based sys-
tem is significantly worse than a comparable phone-based
system (8.0% WER), it is similar to previously published
results on this dataset [3]. The first results column displays
WER when using pronunciation dictionaries without the pro-
nunciation transformation. The second column shows the
improvement from using the pronunciation transformation
(see Section 3).

The pronunciation transformation alone provides a reduc-
tion of 8% relative WER over the baseline grapheme-based
system—row 1 in Table 2. Note that if the hypothesized pro-

nunciations were used to directly train a standard G2P sys-
tem [7], it would significantly decrease performance (18.7%
WER). Results using the automatically discovered units (with
k = 39, 50, and 60) are also shown in Table 2. Note that the
value of 39 was chosen to match the number of units used in
the phone-based dictionary. Using the new acoustic units does
provide some improvement—Direct column in Table 2—but
the best result is obtained when combining the discovered
acoustic units with the pronunciation transformation for a rel-
ative word error reduction of 13%. We should also emphasize
that all systems use the same number of tied states, so the im-
proved performance of the discovered acoustic units cannot
be attributed to an increase in the number of parameters.

6. DISCUSSION

In this section we further analyze the performance of the
acoustic units and pronunciation lexicons. We show how the
learned acoustic units compare to phonetic units and how
the pronunciation transformation improves the correlation.
Since our metric for scoring the phrase-based rules uses
context-independent models, we also analyze the relative
performances of using context-independent models. Finally,
computational considerations of our approach are addressed.

6.1. Comparison to Phonetic Units

Comparisons between phonetic units and the graphemic and
discovered units used in this work are shown in Figure 1.
Each subfigure shows the phones on the y-axis and either
graphemes or discovered units on the x-axis. Since the plot is
normalized by row, each point shows the percentage of frames
a particular model corresponds to each phone. Graphemes
appear to be only weakly correlated with phonemes. In par-
ticular, no strong relationships exist between any grapheme
and any vowel. As expected, certain graphemes correspond
to several phones (e.g., ‘q’ with /k/ and /w/, and ‘c’ with /ch/,
/k/, and /s/). The automatically discovered units appear to
have a stronger correlation—in large part due to the increased
number of units. Certain phones (e.g. /ch/ and /sh/) that did
not have models associated with them in the grapheme-based
system have discovered acoustic units associated with them.
Also, several models emerge to represent vowels in partic-
ular contexts; however, some vowels never see any models
strongly associated with them (e.g. /ay/, /uh/). Note that
while the pronunciation transformation improved overall per-
formance, it did not visibly affect the plots in Figure 1.

Based on the relationship between orthography and pho-
netics in English, some phones would be nearly impossible to
separate with our approach. For instance /dh/ and /th/ share a
single model. Since both phones are typically represented by
the same series of graphemes, the spectral clustering method
has no means of separating them. Vowels can also be diffi-
cult because their pronunciation is not always determined by
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Fig. 1. Correlation between phone models and graphemes, and between phone models and discovered models. In each case the
phones are listed on the y-axis. Note that each column is normalized by its sum. (a) Grapheme. (b) Discovered 60. Please see
Section 6.1 for discussion.

Unit Type # Units Direct Transformed
Grapheme 26 39.9 31.4
Discovered 39 34.3 26.7
Discovered 50 31.6 25.8
Discovered 60 29.3 23.3

Table 3. Results for context-independent models in terms of
WER (%). Note that in this case, the transformed pronuncia-
tions still use the originally trained models; only the pronun-
ciation dictionaries have changed.

their immediately surrounding graphemic context. Consider
the vowels /ae/ and /ey/ in the words fat and fate respectively;
both phones are represented by the same context-dependent
model. In Figure 1, any model associated with /ae/ is also
associated with /ey/.

6.2. Context Independent Performance

Table 3 shows results using the same pronunciation dictionar-
ies and acoustic units as Table 2, but recognition is performed
with context-independent models. The gap between the base-
line grapheme-based system and the learned acoustic units
with transformed lexicons is much greater. Our approach ap-
pears to create acoustic units that are more stable across con-
texts. These large improvements are decreased when context-
dependent models are used. At least part of the gain seen
through using the discovered units in the context-independent
results can be attributed to the increased number of total mod-
els, but that does not explain the further improvements pro-
duced by the pronunciation transformation.

As has been noted previously [18], context-dependent
models do a good job of capturing phonetic variation. Since

our approach to acoustic unit discovery started from context-
dependent models, the new units may have been clustered
around variations that were already well captured by the
context-dependent graphemes. The improvements provided
by the pronunciation transformation may have largely been
due to deleting acoustically unrealized units (e.g. the silent
‘e’ in ice) or inserting additional units, situations that are not
well handled by context-dependent models.

6.3. Computational Considerations

The computation required for the acoustic unit discovery con-
sists of two main components, computation of the similarity
matrix and performing spectral clustering. Due to our effi-
cient formulation for computing the similarity between two
HMMs, it takes only two hours to compute the pairwise sim-
ilarity between 4000 HMMs on a single 2.0 GHz processor.
Performing spectral clustering on the similarity matrix takes
an additional 30 minutes on the same processor.

Computing the pronunciation hypotheses requires a single
decoding pass through the training data and can be performed
in parallel. With approximately 100k total hypotheses, the
time required by Moses to compute the phrase table is trivial.
The majority of the computation required by our approach
is in scoring the phrase-based rules. We increase the speed
by only force-aligning sentences where a pronunciation for a
word has changed and limiting the total number of sentences.
Scoring each rule takes at most 30 seconds, and the process
can be sped up through parallelization.

7. CONCLUSIONS

We have presented a method for discovering acoustic units
and learning a corresponding pronunciation lexicon from an
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initial grapheme-based lexicon. Both the acoustic unit dis-
covery and the pronunciation transformation individually pro-
duce a significant improvement over a grapheme-based base-
line; combined, they further reduce the WER. As opposed
to prior work, our clustering approach works on full HMM
models instead of individual HMM states. Our pronuncia-
tion transformation method demonstrates a method for intro-
ducing acoustic-based scores that does not exist in other ap-
proaches.

While our results are presented on an English dataset,
we believe our framework could be used with low-resource
languages without an existing lexicon, such as in the Babel
project. In the future, we will work to improve both the acous-
tic unit discovery and pronunciation transformation compo-
nents of our framework. In addition, we will apply our meth-
ods to low-resource languages.
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