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ABSTRACT

Deep neural networks (DNNs) have been shown to outperform Gaus-
sian Mixture Models (GMM) on a variety of speech recognition
benchmarks. In this paper we analyze the differences between the
DNN and GMM modeling techniques and port the best ideas from
the DNN-based modeling to a GMM-based system. By going both
deep (multiple layers) and wide (multiple parallel sub-models) and
by sharing model parameters, we are able to close the gap be-
tween the two modeling techniques on the TIMIT database. Since
the ’deep’ GMMs retain the maximum-likelihood trained Gaussians
as first layer, advanced techniques such as speaker adaptation and
model-based noise robustness can be readily incorporated. Regard-
less of their similarities, the DNNs and the deep GMMs still show a
sufficient amount of complementarity to allow effective system com-
bination.

Index Terms— speech recognition, Gaussian mixture models,
GMM, deep neural networks, DNN, deep structures

1. INTRODUCTION

The acoustic model in a speech recognizer links the observed acous-
tics with the symbolic phonetic representations used in the lexicon.
Speech is produced by modulating a limited number of articulators
over time. A speech signal thus has both a spectral and a tempo-
ral component. Most acoustic models employ a finite state automa-
ton in the form of a hidden Markov model (HMM) to describe the
coarse temporal aspects of the signal. The fine temporal details and
the spectral properties are handled by the observation density func-
tions attached to the HMM states. To allow the modeling of the fine
–within state– temporal structure, the spectral acoustic features (a
single frame) are either augmented with time derivatives or are com-
bined in a short window of frames. In many systems, the task of
fitting a short window of frames to each state in an HMM is per-
formed with Gaussian mixture models (GMMs).

Recently, deep neural networks (DNNs) have been shown to out-
perform GMMs on a variety of speech recognition benchmarks [1].
Several properties of DNNs have been accredited for their outstand-
ing performance. First of all, DNNs are acclaimed to be more effi-
cient at modeling high-dimensional data which is componential [2]
or has a low intrinsic dimensionality [1]. Furthermore, large DNNs
are likely or can even be forced to contain multiple (simple) mod-
els in parallel which are averaged to obtain the predictions [3]. This
pushes the learning towards generalizing from trends instead of over-
fitting (memorizing) the training data. Lastly, deep structures seem
to be better adept at modeling the complex correlations between long
temporal patterns (a window of frames) and the long span symbolic
units (context-dependent phone states) used in the HMMs [1, 4].

In the next section, we explore each of the above listed advan-
tages further and we investigate how the same effect can be obtained

with a GMM-based approach. The proposed ’deep’ GMM setup uses
the maximum-likelihood trained GMMs as a first layer. This assures
that the resulting recognition system can still rely on the vast array of
GMM-based techniques developed in the last decades to cope with
complex tasks such as speaker and environment adaptation [5, 6]
and model-based noise robustness [7, 8, 9]. As secondary consider-
ation, we try to keep the overhead introduced by the modifications
to the GMM-based system low. This assures that, in combination
with existing techniques for fast the evaluation of Gaussians [10],
the recognizer can still be deployed on commodity hardware.

The deep GMMs are evaluated on the TIMIT benchmark test
in section 3. Directions for further improvements are explored in
section 4. The papers ends with some conclusions.

2. SYSTEM DESIGN

In this section, we look at some important aspects of DNN-based
modeling and try to find matching techniques for GMM-based sys-
tems.
Sharing parameters: If one interprets the inputs to neurons as
logarithmic values, the operation performed by a neuron in a DNN
can be interpreted as a “product of experts”. Such models are ef-
ficient at modeling high-dimensional componential data [11]. In a
multi-layer neural network, the lower layers create non-linear man-
ifolds. These intermediate representations then form the “experts”
used to model the complex output distributions. This sharing en-
sures that every output is sensitive to a large fraction of the param-
eters which in turn ensures that each parameter in the model is con-
strained by a large fraction of the training data.

Mixture models such as GMMs, by default, do not share pa-
rameters over “components”. A simple and well known technique
to achieve some amount of parameter sharing is to split the input
features into multiple streams which are treated (more or less) in-
dependently. This approach will be further explored in the “going
deep” subsection.

The individual mixture components can also be shared (tied)
across outputs. One such technique, applied to the GMMs used
in speech recognition, was presented in [10]. The approach starts
with making output (state) specific Gaussians and then allowing
the sharing of those Gaussians between the states. The subsequent
training then reduces the amount of sharing (Gaussian tying) by
zeroing those weights for which little support is seen in the training
data.

Feature conditioning: DNNs are in theory insensitive w.r.t. linear
transformations of the input space: any linear feature transformation
can be counteracted by transforming the linear weights in the first
layer with the inverse transform. In practice however, the learning
algorithm still requires well conditioned features. The generative
pre-training by means of contrastive divergence [11] used in deep
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belief networks (DBN) for example thrives on correlations to find
more compact and robust internal representation of the signal. This
is demonstrated in [2]: when using Mel spectra instead of cepstra
(no truncation of the cepstra), the error rate decreases from 22.3% to
20.7%. In the Mel spectrum case, the pre-training will see correla-
tions both along the spectral and the temporal dimensions, resulting
in more informative internal representations than when only time
correlations are visible (cepstral features).

GMMs require well conditioned features: the feature set must
be compact –typically around 40 components– and the individual
feature components must be decorrelated. Several techniques have
been devised to achieve both goals. Linear discriminant analysis
(LDA) is a basic feature reduction technique [12]. A problem with
LDA is that it condenses all information concerning the classes to
be discerned (means and variances) into two scatter matrices only.
This is appropriate if all classes have the same covariance and if
the distribution of the class means can be adequately described by
a single Gaussian distribution. Heteroscedastic discriminant anal-
ysis (HDA) [13, 14] improves upon LDA by taking the individual
class covariances into account. The mutual information based dis-
criminant analysis (MIDA) proposed in [15] takes both the individ-
ual class means and covariances into account. As was shown in [16],
the approximations make by LDA and HDA do hurt the performance
when context-independent phone states are used as classes. If a large
set of context-dependent phone states are available, LDA becomes a
competitive and computationally far less taxing alternative to MIDA.

Once a suitable low-dimensional sub-space has been selected,
the features can be decorrelated using least squares [17] or
maximum-likelihood techniques [18]. Sub-space selection and
decorrelation can be combined in one operation by employing HDA
with a single semi-tied covariance matrix.

Going wide: Both the optional pre-training with contrastive diver-
gence and the later training with error back propagation will initially
focus on the most salient input-to-output relations. In combination
with the random initialization of the DNNs, this leads to the parallel
discovery of more or less the same solution with minor variations in
different parts of the network. Given that DNNs for speech recog-
nition invariably take a window of frames as input, including both
static and dynamic features, even makes that the same input infor-
mation is present multiple times. The overall effect is that DNNs
are likely to contain multiple (simple) models in parallel which are
averaged to obtain the final predictions. The ’dropout’ technique pre-
sented in [3] even forces the existence of multiple parallel encodings.
This pushes the learning towards generalizing from trends instead of
overfitting (memorizing) the training data.

Statistical model combination and multi-stream approaches are
well known techniques in speech recognition. See for example [19]
for an overview of some recent examples. In our approach, we want
to combine the multiple streams (GMMs) into a single acoustic
model. This can be accomplished by training multiple GMMs that
model the same set of outputs (the context-dependent states used by
the HMM). This is similar in concept to what is proposed in [19].
However, the focus in this paper is not on harvesting the comple-
mentary information present in different feature sets. We combine
GMMs for two main reasons. Firstly, system combination improves
the robustness of the system. Compared to a large monolithic
GMM, a combination of multiple smaller GMMs has less chance of
overfitting the training data. The second reason is the handling high
dimensional input data. As was mentioned in the section “feature
conditioning”, GMMs for speech recognition typically limit the
input dimensionality to 40. Feature selection techniques invariably

lose some information. Splitting a high dimensional input vector
into (more or less) independent streams is the most appropriate way
to handle high dimensional (componential) data efficiently with
GMMs.

Going deep: Instead of coping with the full complexity of the
speech signal in a single step, DNNs distribute the classification
task over successive layers where each layer handles some of the re-
maining complexity (undesired variability). Hence, the classification
task becomes increasingly more manageable as the signal propagates
through the layers [20]. This approach seems to be an excellent fit
for the acoustic modeling which must make the complex mapping
from long temporal patterns (a window of frames) to the context-
dependent phone states in the HMM. To mimic this DNN-property,
we propose to add one (or more) extra layers to a GMM-based sys-
tem as follows. First, the state likelihoods at frame t are converted to
posterior probabilities by multiplying the likelihoods with the state
priors and normalizing them to sum up to 1.0. The posterior state
probabilities over a range of L=2R+1 frames are then combined in
a log-linear model, i.e. the posteriors p(s)t for state s on frame t are
derived from the posteriors q(s

′)
t derived from the GMMs as follows:

p
(s)
t =

1

Zt
exp

 ∑
s′,δ=−R...R

λs′,δ log
(
q
(s′)
t+δ

)
with Zt a normalization constant to assure

∑
s p

(s)
t = 1. Note that

we convert the posterior probabilities p(s)t back to values that behave
like conditional state likelihoods by dividing away the state priors
before using them in the Viterbi decoding.

This setup is consistent with the gradual, layer-wise, decompo-
sition strategy we assume DNNs use: the GMMs provide posteriors
based on a short window of frames; each log-linear layer expands
this view with 2R frames; the log-linear layers can build upon the
intermediate representations made by the lower layer(s).

The connections of the log-linear model can be pruned easily by
only retaining those connections that are supported by a high corre-
lation between the target values of p(s)t (the labeling of the training
data) and the observed values of q(s

′)
t+δ . The log-linear model can also

be initialized trivially by setting λs′=s,0 to 1.0 and all other connec-
tions to 0.0.

Log-linear models are not new to the world of speech recogni-
tion. They have been introduced before in the form of hidden condi-
tional random fields [21], flat direct models [22], dynamic Bayesian
networks [23], and as the soft-max final layers in MLPs. Likewise,
the combination of log-linear models to form deep structures has
been investigated before [24].

The introduction of the log-linear layer transforms the genera-
tive GMM-based model to a discriminative model. Unlike the dis-
criminative training of HMM-GMM based systems which uses the
extended Baum-Welch (EBW) algorithm to work out the inter-frame
dependencies and hence employs training targets that are better re-
lated to the speech recognition accuracy, our current setup –similar
to standard DNNs– still treats every frame independently. See sec-
tion 4 for pointers of how EBW can be integrated in the setup.

Given that the resulting deep GMMs employ (frame-by-frame)
discriminative training, one could opt to update the Gaussian means,
covariance and mixture weights as well. For this work, we delib-
erately choose to not update the GMM parameters: by keeping the
generative character of the GMMs, maximum likelihood (ML) adap-
tation techniques such as (f)MLLR [5] and other techniques that as-
sume a generative model are expected to be still applicable.
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System N-gram
#layers 1 2 3 4

baseline GMM systems
base0 0 26.29 24.01 22.94 22.17
base1 0 25.94 23.86 22.62 22.24
base2 0 25.54 24.08 22.87 22.17
base3 0 25.77 24.31 23.05 22.47
base4 0 25.34 23.76 22.73 22.47

single deep GMM systems
deep0 1 23.82 22.66 21.30 20.84
deep1 1 23.55 22.02 21.07 20.77
deep2 1 23.02 22.50 21.55 21.06
deep3 1 23.40 22.51 21.86 21.06
deep4 1 23.51 22.54 21.59 20.78

deep+wide GMM systems
x1: comb. b0. . . 4 0 24.14 22.53 20.93 20.29
x2: x1→deep 1 22.24 20.70 19.87 19.76
x3: x2→deep 2 22.28 20.93 20.28 19.81
y1: comb. d0. . . 4 1 21.37 20.78 19.45 19.36
y2: y1→deep 2 21.66 20.51 19.57 19.34
z1: d0+d1 1 22.26 21.27 20.43 19.98
z2: d0+d4 1 22.17 20.99 20.09 19.43

fMLLR, MLP, combination
f1: b1+fMLLR 0 24.71 22.42 21.57 21.31
f2: d1+fMLLR 1 21.85 20.85 20.10 20.14
f3: y2+fMLLR 2 20.16 19.66 18.82 18.83
m1: MLP 2 23.18 22.65 22.11 22.06
m2: y2+MLP 2 20.85 20.25 19.12 18.71

Table 1. Phone error rates on the TIMIT core test set

3. EXPERIMENTAL VALIDATION

The deep GMMs were evaluated on the TIMIT corpus [25], a
database specifically designed for phone recognition experiments.
The absence of higher level linguistic resources such as lexicon and
language model in combination with its small size make TIMIT
an excellent choice for the development and evaluation of new ap-
proaches to acoustic modeling.

TIMIT contains recordings of 630 native American speakers,
438 males and 192 females. The data of 462 speakers were used
to train the acoustic models. The test set contains 24 speakers (the
so called core test set). The remaining 144 speakers were set aside as
development data and were used to tune hyper parameters such as the
weight of the phone N-gram. Each speaker reads 8 phonetically rich
sentences and 2 calibration sentences (the SA sentences). The SA
sentences were not used. TIMIT provides detailed manually verified
acoustic-phonetic transcriptions for all sentences using an alphabet
containing 61 symbols. The 61 symbols were mapped back to 51
symbols for the acoustic modeling and, as was proposed in [26],
39 symbols for the evaluation. The phone recognizer uses a Viterbi
search in combination with an N-gram derived from the labels of
the training utterances. Given that deep systems can learn phono-
tactic constraints by itself when being fed with a large window of
frames [4, 27] while HMM+GMM systems commend a more strict
separation between acoustics modeling (GMMs) and phonotactics
(phone N-gram), we compare the systems over a range of phone N-
grams.

SPRAAK [28] was used to create the baseline generative
HMM+GMM systems. The acoustic features consist of 22 vocal

tract length normalized (VTLN) and mean normalized Mel Spectra.
The VTLN employs two GMMs to distinguish between male and fe-
male speech on a sentence by sentence base [29]. The seed HMM
system <base0> was trained using the standard recipe in SPRAAK.
The 22 Mel Spectra φ are augmented with their first and second or-
der time derivatives ∆,∆2. This vector is reduced to 39 dimensions
by means of MIDA [15] using the context-independent phone states
as classes, after which the features are decorrelated [17]. The result-
ing HMM system uses a shared pool of 5710 Gaussians to model
the observations in 589 context-dependent tied triphone states, using
GMMs containing 135 Gaussians on average per state. This seed
model provides the phonetic descision tree and hence the context-
dependent phone states and a corresponding labeling of all training
data.

Four derivative acoustic models <base1. . . 4> were created us-
ing the techniques described in section 2. These additional systems
differ in their input features only. The following feature combina-
tions were used to represent frame t:
• <b0,b1>: [φt,∆t,∆

2
t ]

• <b2>: [φt,∆t−2...t+2]
• <b3>: [φt,∆t−2,t,t+2]
• <b4>: [φt,∆t−3,t−1,t+1,t+3]

LDA with the context-dependent states as classes was used to
reduce each of these feature vectors to 39 features. After feature
decorrelation, state-specific Gaussians were made. The number of
Gaussians per state was set proportional to the amount of data, with
a maximum value to prevent an excessive amount of silence Gaus-
sians. The total number of Gaussians was set to 5833, a value close
to that of the seed system. The Gaussians were allowed to be shared
across the states using the approach described in section 2.

Systems <b0> and <b1> start from the same features, but em-
ploy different techniques for feature dimension reduction (MIDA on
context-independent states versus LDA on context-dependent states)
and for the initialization and tying of the Gaussians (on context-
independent states versus context-dependent states). Hence, when
looking at the combination of systems based on <b0> and <b1>
solely, we look at how much one can gain be combining two differ-
ent encodings of the exact same input space. Systems <b2> and
<b3>+<b4> on the other hand expand the scope of the input space
by adding the ∆ features from surrounding frames. Since the ∆ fea-
tures are computed using a 5 frame window themselves, the input
of these systems span up to a 110ms of data. By adding only the ∆
features and removing the ∆2 features from the central frame, we
prevent duplication of data which would have been problematic for
both the LDA-dimension reduction and the diagonal covariances in
the GMMs. As discussed in section 4 and shown in [19], system
combination provides better results when the contributing systems,
starting from the input features, are complementary. However, in the
scope of this work, we preferred a fair comparison with DNNs and
hence assured that all four feature combinations are a sub-set of the
features typically used by DNNs.

Once all derivative GMMs were created, a consensus segmen-
tation was obtained by combining all 5 systems. Two additional
Viterbi re-estimation iterations were performed on each system us-
ing this consensus segmentation. All system combinations employ a
“product of expert” combination rule, i.e. we make a weighted aver-
age of the log likelihoods. The weights are frame independent and
add up to 1.0. Systems <b3> and <b4> should be regarded as
the two components from a larger system which takes a window of
110ms of data as input. Therefore, systems <b3> and <b4> are
assigned halve the weight of the others when combining systems; all
other systems receive an equal weight.
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Deep variants of these systems (<deep0. . . 4>) and of the com-
bined system were trained using a basic MLP back-propagation al-
gorithm (no momentum term). The input of the additional log-linear
(soft-max) layer consist of L = 11 frames of log state posteriors.
Overfitting was avoided by reducing the number of connections to
250 per output node (context-dependent states); see section 2 for
more details. The order of the frames was randomized. The batch
size was set to 100 frames. To obtain convergence, the learning rate
was gradually decreased.

All results are listed in table 1. Going ’wide’ (<b0. . . 4> vs.
<x1> and <d0. . . 4> vs. <y1>) gains approximately 1.5% abso-
lute. Going ’deep’ (<b0. . . 4> vs. <d0. . . 4> and <x1> vs. <x2>)
gains approximately 1.0% absolute for the 3-gram case and is largely
complementary to going ’wide’. Given that the ’deep’ variants au-
tomatically consider a larger window of frames and hence can learn
more phonotactics, the gains are more pronounced for the lower or-
der N-grams. Comparing <x2> with <y1> shows that keeping the
system wide for at least one log-linear layer gives somewhat bet-
ter results, at the cost of more parameters and a slower acoustic
model. Going ’deeper’ (systems <x3> and <y2>) show little to
no improvements. These 3-layer systems integrate information over
310ms: 110ms of data given as input and an additional 50ms to the
left and right with each log-linear layer. A more gradual increase
of the ’window size’ over the layers, as done in [4] may give better
results overall. Also note that the first layer, the GMMs, correspond
to two layers in a DNN, namely the Gaussian-Bernoulli restricted
Boltzmann machine (RMB) used to handle the real-valued input data
and the subsequent binary-valued RMB which makes the linear com-
bination and the soft-max.

Comparing <d0>, <y1>, <z1>, and <z2> shows that most
of the gain obtained by going ’wide’ can already be achieved with
two systems, even if they use an identical prepreprocessing (<z1>).
The combination of the two most complementary deep systems as
done in <z2> even get very close to the full ’width’ combinations
(<y1>, <y2>).

Given that the deep GMMs retain the maximum-likelihood
trained Gaussians as first layer, model-based adaptation techniques
such as fMLLR [5] for speaker adaptation should still work. This is
investigated in the <f1. . . 3> setups. The target labels for the fM-
LLR adaptation were obtained with a first recognition pass on all
8 sentences for each speaker. Given the low amount of adaptation
data and the use of full transformation matrices (LDA-features can-
not be readily separated in three more or less independent streams),
we opted to use all data instead of discarding the phone segments
with the lowest confidence scores. Both for the normal GMMs as
for the deep and wide GMMs, applying fMLLR results in tangible
improvements (on top of the VTLN).

A final experiment verifies whether the combination with a deep
MLP, using the same features, is still beneficial. The deep MLP
<m1> was designed identical to the <y2> system: two MLPs with
a single hidden layer containing 2500 nodes and taking [φt,∆t,∆

2
t ]

and [φt,∆t−5...t+5] as input features were converted to deep struc-
tures by adding a log-linear layer (cf. section 2, L= 11) to each of
them. After combining the two scores, an extra log-linear (L= 11)
layer was added. The fact that the combination still improves the
results substantially indicates that, despite their similarities, deep
GMMs and deep MLPs do intrinsically behave differently.

The results in table 1 can also be compared to the best pub-
lished results. A result of 19.7% is reported in [3] for a large DNN
with 4 hidden layers containing 4000 nodes each and trained using
’dropout’. Since this system does not use any information about
speaker identity, it should be compared with <y2> and <m2>. Us-

ing discriminative features, speaker adaptation and the combination
with a discriminatively trained HMM [27] lowers the error rate to
19.3% when using a 3-gram. This result should be compared with
<f3> or <m2>. In both cases, the deep GMMs return compara-
ble or better results. Furthermore, the <y2> and <m3> systems
contain only 3.4mio free parameters, which is more than an order of
magnitude less than the DNN systems they are compared with.

4. FUTURE WORK

Although reasonable design choices were made during the design of
the deep GMM systems, more advanced options are known for most
of the stages.

First of all, the complementary of the parallel models (streams)
in the first layer(s) can be increased. A straightforward technique
to attain this is to start with different acoustic features [19]. Given
the use of a log-linear model for combining the streams, the concept
of boosting as presented in [30] can be applied as well. Boosting
can be accomplished for example by modifying the linear discrimi-
nant analysis criterion when adding a second or later streams [31] so
that more weight is given to those features dimensions which carry
complementary information.

Another simple modification would be the use of speaker adap-
tive training [32] to increase the efficiency of the speaker adaptation.
Next to the Gaussian mean and variances, the GMM weights can be
adapted as well [33].

Despite the fact that the acoustic models must relate sequences
of frames (short windows of frames) to context-dependent phone
states, they were still trained with a frame-based cross-entropy error
criterion in this work. As was show in [34, 35, 36], substantially bet-
ter results can be obtained when using appropriate sequence-based
criteria such as minimum phone error or maximum mutual informa-
tion. The resulting extended Baum-Welch (EBW) algorithm takes
into account the inter-frame dependencies and hence provides train-
ing targets that are more directly related to the speech recognition ac-
curacy. EBW can be readily applied to log-linear models and neural
networks, either in the form of on-line training [37] or batch train-
ing [38].

In the current setup, overfitting is prevented by making the con-
nection weights sparse and by having fixed model mixing weights.
As was proposed in [19], one may make the model mixing weights
state dependent, i.e. instead of combing the streams and then stack-
ing L frames of log state posteriors, one may keep the individual
state posteriors of the S streams and let the training algorithm devise
a good weighting. This increases the number of trainable parameters
S fold and hence will require some form of regularization to prevent
overfitting. In a Bayesian framework, regularization corresponds to
imposing certain prior distributions on model parameters. Since we
can infer reasonable initial values for the parameters, it must also be
possible to devise sensible parameter specific regularization costs.
Another strategy would be to inject noise into the training. Noise,
for example in the form of ’dropout’, acts as a powerful regulariza-
tion by preventing complex co-adaptations [3].

Next to improving the systems, the approach should be evaluated
on different data and more tasks, with the extension to large vocabu-
lary continuous speech recognition being the first objective. Similar
to DNNs, the deep GMMs are designed to effectively correlate the
acoustic information present in relatively long (200ms) windows of
speech with the phonetic sub-units used by the decoder. DNNs seem
to be able to learn this complex relation even for very challenging
conditions where the observed acoustics may deviate substantially
from the canonical phone transcriptions found in the lexicon such as
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spontaneous speech and speech by non-natives [39, 1]. Given the
common design principles, we expect that deep GMMs will exhibit
the same potential.

Noise robustness is another interesting aspect. Since the
deep GMMs retain the maximum-likelihood trained Gaussians as
first layer, model-based noise robust techniques such as VTS [7],
SPLICE [8] or joint uncertainty decoding [9] should still be applica-
ble. Furthermore, the use of a relatively long window of frames in
combination with training schemes that employ some form of noise
injection [3] may push the system to learn some from of island-
parsing [40, 41] automatically.

5. CONCLUSIONS

The deep Gaussians mixture models proposed in this paper borrow
several ideas from deep neural networks: an efficient use of the pa-
rameters by sharing intermediate representations (tied Gaussians),
having multiple smaller systems in parallel to obtain less noisy pre-
dictions, and the layer-wise decomposition of a complex problem
into smaller sub-tasks.

On other aspects, the two approaches could be regarded as an-
tipodes. A typical DNN for TIMIT consists of 3 or more fully in-
terconnected hidden layers containing 4000 nodes each. The lay-
ers are homogeneous, except for the use of a Gaussian-Bernoulli
restricted Boltzmann machine (RMB) instead of a binary RBM as
first layer. A random initialization is followed by a potent (and de-
manding) learning phase consisting of generative pre-training and
discriminative training. The end result of this is a large homoge-
neous structure which relies on an effective training scheme to im-
plicitly divide the task over the layers and nodes (sharing represen-
tations, modeling spectral versus temporal aspects, keeping multiple
parallel sub-models, etc.). As such, DNNs are exceptionally well
suited as a generic black-box technique. The proposed deep GMM
scheme on the other hand is more a task-specific technique which
combines various compact representations (tied Gaussians, sparse
connection weights) over multiple heterogeneous layers. The role
of the layers (focus on spectral versus temporal aspects) is assigned
manually. Given the specific role of each layer, simple but effective
procedures can be devised to initialize the parameters in each layer,
reducing the chance of getting stuck in a bad local minimum.

Black-box methods such as DNNs are appealing since they re-
quire little task-specific expert knowledge and obviate the need for
tuning the layers and interconnections or the conditioning of the in-
put features. A well-tuned task-specific architecture on the other
hand requires more work to set up but can be expected to perform
better or at least offer a more compact solution. The degrees of free-
dom in designing and interconnecting each layer in the proposed ar-
chitecture also make it easier to incorporate and/or use expert knowl-
edge such as speaker adaptation and phonotactic constraints into the
system. This paper shows, at least for the TIMIT task, how such a
well-tuned task-specific architecture can be built using existing tech-
niques and expertise. The resulting system runs much faster than
real-time on commodity hardware (no GPUs needed) and yet per-
forms as well as the best DNN systems published. Moreover, as was
discussed in section 4, better design choices can be devised for many
of the stages, leaving ample opportunities open to further improve
the setup.
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