
DISCRIMINATIVE PIECEWISE LINEAR TRANSFORMATION BASED
ON DEEP LEARNING

FOR NOISE ROBUST AUTOMATIC SPEECH RECOGNITION

Yosuke Kashiwagi1, Daisuke Saito2, Nobuaki Minematsu1, Keikichi Hirose3

1Graduate School of Engineering,
2Interfaculty Initiative in Information Studies,

3Graduate School of Information Science and Technology,
The University of Tokyo, Japan

{kashiwagi, dsk saito, mine, hirose}@gavo.t.u-tokyo.ac.jp

ABSTRACT
In this paper, we propose the use of deep neural net-

works to expand conventional methods of statistical fea-
ture enhancement based on piecewise linear transforma-
tion. Stereo-based piecewise linear compensation for en-
vironments (SPLICE), which is a powerful statistical ap-
proach for feature enhancement, models the probabilistic
distribution of input noisy features as a mixture of Gaus-
sians. However, soft assignment of an input vector to
divided regions is sometimes done inadequately and the
vector comes to go through inadequate conversion. Es-
pecially when conversion has to be linear, the conversion
performance will be easily degraded. Feature enhance-
ment using neural networks is another powerful approach
which can directly model a non-linear relationship be-
tween noisy and clean feature spaces. In this case, how-
ever, it tends to suffer from over-fitting problems. In this
paper, we attempt to mitigate this problem by reducing
the number of model parameters to estimate. Our neural
network is trained whose output layer is associated with
the states in the clean feature space, not in the noisy fea-
ture space. This strategy makes the size of the output
layer independent of the kind of a given noisy environ-
ment. Firstly, we characterize the distribution of clean
features as a Gaussian mixture model and then, by using
deep neural networks, estimate discriminatively the state
in the clean space that an input noisy feature corresponds
to. Experimental evaluations using the Aurora 2 dataset
demonstrate that our proposed method has the best per-
formance compared to conventional methods.
Index Terms: Automatic speech recognition, Noise ro-
bustness, feature enhancement, Deep learning

1. INTRODUCTION
In recent years, Automatic Speech Recognition (ASR)
largely increased its performance in clean speech con-
ditions. However, in low SNR conditions, the recogni-
tion rate drastically degrades. Therefore, it is important
to reduce the mismatches between training and testing
conditions [1]. Feature enhancement approaches, such
as SPLICE [2], Denoising AutoEncoder (DAE) [3], and
so on [4–6] are techniques that can be performed on the
front-end for this aim. They reduce the mismatches by
estimating clean features from observed noisy features.

SPLICE is composed of two steps. First, it mod-
els the input noisy feature space as a mixture of Gaus-
sians (GMM) and calculates the posterior probability of

the component index given a noisy feature. Next, the
clean features are estimated as results of posterior-based
weighted sum of linear transformations. However, divi-
sion of the noisy space and that of the clean space based
on GMM are often different from each other. In addition,
division of the noisy space also depends on the type of
noise.

To mitigate this problem, another approach was pro-
posed, where the clean space is modeled as GMMs.
REgularized piecewise linear mapping with DIscrimina-
tive region weighting And Long-span features (REDIAL)
models the clean feature space by GMMs, and estimates
their component indices that noisy features correspond to
by using a discriminative approach. In REDIAL, GMM
and Linear Discriminant Analysis (LDA) [7–9] are used
together for discrimination. This method achieved high
performance especially in the multi-condition of the Au-
rora 2. However, linearity of LDA is thought to limit the
performance of this method because observed noisy fea-
tures and clean speech states are considered to have a very
complicated structure between them.

On the other hand, DAE was proposed to estimate
clean features from observed noisy features non-linearly
and directly by neural networks. Deep Denoising Au-
toEncoder (DDAE), which is stacked DAE, achieved high
performance. In this case, however, it tends to suffer from
well-known over-fitting problems. Therefore, another ef-
ficient approach should be investigated.

The basic idea of our method uses deep neural net-
works [11] and stereo (clean and noisy) data to realize
a method that can estimate the states in the clean space
only from observed noisy features. First, GMMs of the
clean features are constructed and, by using deep neu-
ral networks, the state that an input feature corresponds
to is estimated in the form of posterior probability. Next,
similarly to REDIAL, linear transformations from the ob-
served features to the clean features are trained using the
above posteriors.

This paper is organized as follows. We formulate the
algorithm in Section 2. In Section 3, we compare our
method to the conventional methods in their performance.
Experimental results are given in Section 4. Finally our
paper is summarized in Section 5.

2. ALGORITHM FORMULATION
To gain the speech recognition performance in noisy con-
ditions, feature enhancement approaches attempt to re-
construct clean features from input noisy features. To
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address this problem in this paper, we use deep neural
networks to calculate posterior probability of the clean
speech state given an input noisy feature, and predict its
corresponding clean feature by linear transformations us-
ing the posteriors as weights.

The reason why we use deep neural networks to esti-
mate the state of the clean features is that the conventional
piecewise linear transformation methods do not always
divide a space into such subspaces that local linearity is
satisfied well in conversion. In the training phase, we
can use parallel data of clean and noisy features. So, any
noisy feature has its clean version. By using the clean
feature associated with an input noisy feature, we can
find the clean state that the clean feature belongs to. If
we’re allowed to use a posterior probability of this clean
state as oracle posterior, oracle SPLICE and its transfor-
mation matrices and biases can be obtained. With these
parameters, accurate clean features can be reasonably ob-
tained. Experimental discussion of this oracle SPLICE is
done in the following section. We consider that perfor-
mance degradation from the oracle SPLICE to ordinary
SPLICE can be attributed to a division mismatch between
the noisy feature space and the clean feature space. In
other words, there seems to exist a complicated relation
between both spaces. REDIAL tries to reduce the com-
plexity by LDA, however linearity of LDA will limit the
performance. On the other hand, DNNs are expected to
be able to capture the complexity well.

The simplest way to use DNNs to estimate clean fea-
tures is a direct mapping approach. It estimates the clean
speech features directly using DNNs which are trained
by back-propagation using a minimum mean square error
criterion. This mapping technique can achieve high per-
formance despite its simplicity. However, in open-noise
conditions, the performance tends to decrease. This is
due to the weakness of the restrictions on the proximity
of the output clean speech features in the neural networks.
Therefore, by estimating the state index of clean speech,
it is possible to construct a neural network that holds ex-
plicitly number of classes of the output clean speech fea-
tures.

Let {(xt,yt)} denote a set of stereo data, where xt is
a clean feature at time t and yt is a noisy feature. Both
of them are N dimensional vectors. Fig. 1 shows the
flowchart of our method in the training phase. The first
step of our method is training a probabilistic model of
p(x) for clean speech features. Like REDIAL, GMMs
are adopted for this purpose.

p(xt) =
∑
k

p(k)p(xt|k) , (1)

p(xt|k) = N (xt;µ
x
k ,σ

x
k ) , (2)

p(k) = πx
k . (3)

Posterior probability of the clean state given xt is ob-
tained as follows.

p(k|xt) =
p(xt|k)p(k)∑
k′ p(xt|k′)p(k′)

. (4)

In the testing phase, because we cannot use xt,
p(k|xt) cannot be applied directly. Therefore, DNNs
to estimate p(k|yt) are trained using training data of
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Figure 1: The flowchart of our method (Training phase).

Evaluation data
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Figure 2: The flowchart of our method (Test phase).

{argmax
k

p(k|xt),yt}t=1...T as follows.

p(k|yt) ≃ p(k|dt) = softmaxk(V h(n)(dt) + c), (5)

h(n)(dt) = σ(W (n)h(n−1)(dt) + b(n)) , (6)

h(1)(dt) = σ(W (1)dt + b(1)) , (7)

where σ is a vector sigmoid function, and the weight ma-
trices V and W (n) along with the bias vectors c and
b(n) are parameters of the neural networks. h(n)(y) is
an ouput vector from the n-th hidden layer. dt is a fea-
ture vector after time context expansion as

dt = [y⊤
t−s, . . . ,y

⊤
t−1,y

⊤
t ,y⊤

t+1, . . . ,y
⊤
t+s]

⊤ . (8)

The proposed method adopts deep belief nets, each layer
of which is trained initially by restricted Boltzmann ma-
chine (RBM), and trained subsequently by stochastic gra-
dient descent [11].

Using the DNNs trained above, given any input noisy
feature, posterior probability of its corresponding clean
state p(k|yt) can be estimated. Finally, clean speech fea-
ture xt is predicted as x̂t through weighted sum of linear
transformations using p(k|yt) (See Fig. 2).

x̂t =
∑
k

p(k|yt)Aket . (9)

where Ak is an affine transformation matrix which cor-
responds to the k-th state and et is an expanded vector
as

et = [1,y⊤
t−u, . . . ,y

⊤
t−1,y

⊤
t ,y

⊤
t+1, . . . ,y

⊤
t+u]

⊤.

(10)
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Table 1: Performance gap between ordinary SPLICE and
the oracle SPLICE. The difference between the two lies
in how to estimate posteriors. In the former, it is done
using input noisy feature yt and in the latter it is obtained
by using xt, which is paired with yt. ‘Average’ shows
averaged results over the range of SNR20 to SNR0.

SPLICE SPLICE (Oracle)
clean 0.57 0.69
SNR 20 1.08 0.76
SNR 15 1.99 0.70
SNR 10 4.65 0.77
SNR 5 16.76 0.93
SNR 0 49.96 0.95
SNR -5 81.46 1.13
Average 14.89 0.82

Ak can be trained using the following weighted mini-
mum mean square error (MMSE) criterion

Âk = argmin
Ak

∑
j

p(k|yj)||xj −Akej ||2. (11)

This equation can be solved analytically as follows

Âk = XPE⊤(EPE⊤)−1, (12)

where X ∈ RN×T is [x1, . . . ,xT ] and E ∈
R(N(2u+1)+1)×T is [e1, . . . , eT ] and P ∈ RT×T is a
diagonal matrix whose elements are p(k|yt).

3. COMPARISON TO CONVENTIONAL
STATISTICAL FEATURE MAPPING

APPROACHES
This sections compares theoretically our method to
conventional statistical feature mapping approaches of
SPLICE, REDIAL and DAE.

3.1. SPLICE
SPLICE is a speech enhancement method, which esti-
mates clean speech features from noisy speech features
with piecewise linear transformations as

x̂t =
∑
i

p(i|yt)Ai

[
1
yt

]
. (13)

In SPLICE, GMMs are adopted to model the probability
p(y) of the noisy speech features as follows

p(yt) =
∑
i

πy
i N (yt;µ

y
i ,σ

y
i ) . (14)

Therefore, posterior p(i|yt) is calculated as

p(i|yt) =
p(yt|i)p(i)∑
i′ p(yt|i′)p(i′)

. (15)

Equation 14 shows that the GMMs in SPLICE are
trained only with noisy features available in the training
phase and used as they are in the testing phase. We can
say that this is not good because those GMMs tend to be

overfitted to the noisy features in training data. There-
fore, it is better to model GMMs using clean features.

Table 1 shows averaged word error rates which are
experimental results in the test set A (closed-noise condi-
tion) of the Aurora 2 dataset. The oracle SPLICE weights
linear transformations using posterior p(i∗|xt), where i∗

is an state index in the clean space.

x̂t =
∑
i∗

p(i∗|xt)Ai∗

[
1
yt

]
, (16)

p(i∗|xt) =
p(xt|i∗)p(i∗)∑
i∗′ p(xt|i∗′)p(i∗′)

. (17)

The oracle results clearly show that, if p(i|yt) can be
estimated accurately, it definitely leads to large per-
formance improvement. The fundamental implementa-
tion of NMN-SPLICE is somewhat similar to the oracle
SPLICE. NMN-SPLICE subtracts from input features,
weights linear transformations with posteriors estimated
from obtained quasi-clean features [2].

3.2. REDIAL
REDIAL is one of the approaches to estimate the clean
feature state from noisy speech features. In REDIAL, this
estimation is implemented by integrating GMMs with
LDA. First, the dimensionality reduction matrix L of
LDA is trained using {{p(k|xt)}k=1···K ,dt}t=1···T as
soft labels,

L = argmin
L

L⊤ΣwL

L⊤ΣbL
, (18)

where

Σw =
∑
k

∑
j

{
p(k|xt) (dt − µw

k ) (dt − µw
k )

⊤
}
,

(19)

Σb =
∑
k

∑
j

p(k|xt)

(µd − µd
k)(µ

d − µd
k)

⊤ ,

(20)

µd =

∑
j dt

J
, (21)

µd
k =

1∑
j p(k|xt)

∑
j

p(k|xt)dj . (22)

Analytical solution of (18) is obtained by solving the
eigenvalue problem related to (Σw)−1Σb. Next, the K∗-
component GMMs of the compressed feature vectors,
vj = Ldj , are trained as

p(vt) =
K∗∑

k∗=1

πv
k∗N (vt;µ

v
k∗ ,σv

k∗) . (23)

Then, posterior p(k∗|yt) is approximated as p(k∗|vt),

p(k∗|yt) ≃ p(k∗|vt) =
p(vt|k∗)p(k∗)∑

k∗′ p(vt|k∗′)p(k∗′)
. (24)
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Figure 3: The performance of deep denoising autoen-
coder varying the number of hidden layers in Aurora 2
dataset.

REDIAL estimates the clean speech features by weighted
linear transformations as

x̂t =
∑
k∗

p(k∗|yt)Ak∗et . (25)

et = [1,y⊤
t−u, . . . ,y

⊤
t−1,y

⊤
t ,y⊤

t+1, . . . ,y
⊤
t+u]

⊤.

(26)

Since Ak∗ has a large number of parameters, REDIAL
calculates it based on the weighted MMSE criterion using
regularization.

In theoretical comparison between our method and
REDIAL, the difference is found only in how to esti-
mate posterior of the component index from noisy fea-
tures. Because LDA is linear transformation, linearity of
LDA will not be adequate to capture the complex rela-
tionship between the clean states and the noisy features.

3.3. DAE
DAE is a neural network which attempts to reconstruct
clean features from input nosy features directly. DDAE
has a multilayer structure and it can estimate clean fea-
tures as

x̂t = Uh(n)(dt) + c , (27)

h(n)(dt) = σ(W (n)h(n−1)(dt) + b(n)) , (28)

h(1)(dt) = σ(W (1)dt + b(1)) , (29)

where U is a weight matrix. In this paper, we compared
our approach to DDAE which is pre-trained with RBM
in all layers and fine-tuned by back-propagation based
on the MMSE criterion. Fig. 3 shows word error rates
(WERs) as a function of the number of hidden layers.
Those results were obtained using the Aurora 2 dataset.
Set A and B were closed-noise and open-noise settings,
respectively. The number of hidden nodes in each layer
was fixed to 1024. From the results, the structure of
multilayer improved the recognition performance in the
closed-noise condition, however it was not effective in
the open-noise condition.

Since DDAE has a large number of model parameters,
it tends to be over-fitted to training data used. In contrast
in our approach, the number of model parameters to es-
timate can be kept as constant against variety of the kind
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Figure 4: The performance of the proposed method vary-
ing the number of hidden layers in Aurora 2 dataset.

of environmental noises. This is because our neural net-
work is trained whose output layer is associated with the
states in the clean feature space, not in the noisy feature
space. This strategy makes the size of the output layer
independent of the kind of a given noisy environment.

Recently, a complex denoising autoencoder using
deep recurrent neural networks was proposed in [12]. Al-
though It seems that the topology of DNNs is a key topic
to optimize DNN-based methods, in the following sec-
tion, we do not use recurrent networks. We consider that
the network topology is independent of the main theme
of this paper, where DNN is tested as posterior estimator
and compared to a GMM-based estimator.

4. EXPERIMENTAL EVALUATION
The performance of the proposed method was evaluated
using Aurora 2 database under the task of continuous dig-
its recognition in noisy conditions. The database con-
tains connected digits recorded in a clean environment
and some types of noises are added to the utterances.
Therefore, parallel data sets can be used for training. The
database defined two training conditions (clean condition
and multi condition) for acoustic models. In the clean
condition, the HMMs were trained with only clean data.
Further, the HMMs trained using clean data and noisy
data were also provided and they are referred to as multi-
conditioned HMMs. The database also defined three sets
of utterances for testing, sets A, B, and C, according to
the type of noise. Three test sets are defined against noise
types (sets A, B and C). Set A contains the utterances in
the noise conditions which were used in recording train-
ing utterances. Set B contains the noise conditions which
are not found in training utterances. In set A and set B,
the same microphone and channel were used in record-
ing training and testing utterances. In set C, a differ-
ent channel condition is introduced. Continuous digits
recognition experiments were carried out with the com-
plex backend scripts with HTK 3.4 [13] . MFCC and the
first and second derivations were used as basic features.
For training DNNs, the KALDI toolkit was used [14].

First, the recognition performance of the proposed
method against the parameters was investigated. Fig. 4
shows WERs. The window length of temporal context
expansion s in (8) and u in (10) were both fixed to 3. The
number of hidden nodes in each layer is 1024. The num-
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Table 2: Performance comparison among our proposal and conventional methods ( word error rates %).
clean condition (WER. %) multi condition (WER. %)

set A set B set C average set A set B set C average
Baseline 48.93 55.80 39.23 47.98 10.57 11.89 14.33 12.27
SPLICE 14.89 19.31 21.59 18.60 9.20 14.50 15.22 12.97
REDIAL 16.70 20.59 21.14 19.48 8.98 13.26 12.45 11.56
DDAE 6.39 20.44 17.20 14.68 5.97 18.50 14.67 13.04
PROPOSED 7.04 14.93 15.54 12.51 5.64 15.20 13.29 11.38

Table 3: The word error rates (%) of DDAE in each noisy condition (clean condition).
closed-noise condition (Set A) open-noise condition (Set B)

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average
Clean 0.58 0.60 0.81 0.46 0.61 0.58 0.60 0.81 0.46 0.61
SNR 20 1.29 0.85 0.78 0.96 0.97 1.11 2.21 1.82 1.14 1.57
SNR 15 1.54 1.45 1.16 1.79 1.49 2.21 6.32 3.91 3.46 3.98
SNR 10 2.27 3.02 2.00 2.81 2.53 6.05 18.02 10.11 8.67 10.71
SNR 5 4.64 8.01 4.47 6.70 5.96 18.33 40.39 25.95 24.38 27.26
SNR 0 14.77 31.29 18.85 19.10 21.00 51.30 69.35 58.75 55.29 58.67
SNR -5 46.58 72.64 63.11 49.27 57.90 97.91 90.93 96.42 86.52 92.95
Average 4.90 8.92 5.45 6.27 6.39 15.80 27.26 20.11 18.59 20.44

Table 4: The word error rates (%) of the proposed method in each noisy condition (clean condition).
closed-noise condition (Set A) open-noise condition (Set B)

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average
Clean 0.49 0.57 0.60 0.65 0.58 0.49 0.57 0.60 0.65 0.58
SNR 20 1.01 0.91 0.66 0.86 0.86 0.71 1.45 1.04 1.05 1.06
SNR 15 1.72 1.21 1.22 1.57 1.43 1.35 2.96 2.00 1.85 2.04
SNR 10 2.36 2.60 2.12 2.81 2.47 3.22 9.98 5.58 4.72 5.88
SNR 5 5.25 7.62 6.80 7.41 6.77 10.96 29.29 17.36 16.17 18.45
SNR 0 16.40 31.59 26.04 20.77 23.70 35.40 62.36 43.48 47.73 47.24
SNR -5 49.86 72.13 69.31 54.46 61.44 78.94 88.09 83.84 84.11 83.75
Average 5.35 8.79 7.37 6.68 7.05 10.33 21.21 13.89 14.30 14.93

ber of output classes, which equals to that of the states of
the clean feature space, was set to 1024. The number of
training utterances was 8,440 in the corpus. They were
divided in this experiment into a development set of 844
utterances and a training set of 7,596 utterances, which
were used in the step of fine tuning. In the experiment,
input utterances with various types of noises added were
tested. In each case of the noises, regularization of linear
transformation matrices was performed similarly to RE-
DIAL. To estimate parameters of regularization, 3-fold
cross validation was done.

According to the results in Fig. 4, the deep architec-
ture was also effective to estimate the state of the clean
features. In addition, the most interesting point is that the
effect of the deep architecture in the open-noise condition
is similar to that of DDAE.

Next, we compare the performance of the proposed
method to that of SPLICE, REDIAL, and DDAE. For
SPLICE, the number of noisy states was set to 1024. For
REDIAL, that of clean states was also set to 1024, and
the dimensionality transformed by LDA was set to 64.
The number of hidden layers was set to 5 in DDAE. As
for context expansion, the same window length were used
for READIAL, DDAE, and our method.

Table 2 shows the results. It was found that the
proposed method realizes significant improvement in the
clean condition. In contrast, REDIAL achieved lower

word error rates in the multi condition. The reason
might be that the linear transformation of LDA in RE-
DIAL can keep the topology of the classes (states) in the
clean space. Table 3 and 4 shows the detailed results of
DDAE and the proposed method in the clean condition.
Although the proposed method shows a slightly higher
WER on average in the closed-nose condition, it achieves
a much lower WER in the open-noise condition.

5. CONCLUSION

We have presented a stochastic mapping technique for ro-
bust speech recognition that uses stereo data. Our novel
approach models the clean features by GMMs and applies
deep neural network to estimate the clean speech features
and linear transform the input features to clean features
weighted by the posterior. We demonstrate the method
is competitive with existing feature denoising approaches
on the Aurora 2 task, then our method outperforms them.

One interesting extension of the proposed method
is to implement piecewise linear transformation based
on DNN with neural network format, then fine tune the
whole parameters. our approach has a possibility to con-
nect the conventional statistical feature mapping and the
deep learning approaches in a proper manner.
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