COMBINING STOCHASTIC AVERAGE GRADIENT AND HESSIAN-FREE OPTIMIZATION
FOR SEQUENCE TRAINING OF DEEP NEURAL NETWORKS

Pierre Dognin, Vaibhava Goel

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{pdognin, vgoel}@us.ibm.com

ABSTRACT

Minimum phone error (MPE) training of deep neural net-
works (DNN) is an effective technique for reducing word er-
ror rate of automatic speech recognition tasks. This training
is often carried out using a Hessian-free (HF) quasi-Newton
approach, although other methods such as stochastic gradi-
ent descent have also been applied successfully. In this paper
we present a novel stochastic approach to HF sequence train-
ing inspired by recently proposed stochastic average gradient
(SAG) method. SAG reuses gradient information from past
updates, and consequently simulates the presence of more
training data than is really observed for each model update.
We extend SAG by dynamically weighting the contribution
of previous gradients, and by combining it to a stochastic HF
optimization. We term the resulting procedure DSAG-HF.
Experimental results for training DNNs on 1500h of audio
data show that compared to baseline HF training, DSAG-HF
leads to better held-out MPE loss after each model parameter
update, and converges to an overall better loss value. Fur-
thermore, since each update in DSAG-HF takes place over
smaller amount of data, this procedure converges in about half
the time as baseline HF sequence training.

Index Terms— Deep Neural Network, Sequence Train-
ing, Stochastic Training, Hessian-free Optimization, Stochas-
tic Average Gradient

1. INTRODUCTION

Deep neural networks (DNN) are gaining wide acceptance
in automatic speech recognition (ASR) by allowing perfor-
mance improvements previously unseen in state-of-the-art
systems. However, new challenges arise from using DNNs in
ASR. Finding the best procedure to train DNNSs is an active
area of research that is rendered more challenging by the
availability of ever more training data.

A key component of the DNN training procedure is the
so-called sequence training (ST) where the network param-
eters are optimized under a sequence classification criterion
such as Minimum Phone Error (MPE) [1, 2]. This training
is often carried out using a Hessian-free (HF) quasi-Newton

978-1-4799-2756-2/13/$31.00 ©2013 IEEE 321

approach, although other methods such as stochastic gradi-
ent descent (SGD) have also recently been applied success-
fully [3]. HF sequence training (HFST) uses a cross-entropy
(CE) trained DNN as starting point, and is run until con-
vergence, which is usually a computationally costly propo-
sition. In this paper we present a novel stochastic approach to
HFST inspired by recently proposed stochastic average gra-
dient (SAG) [4] that alleviates the computational burden of
HFST while allowing for better solutions, as measured by
MPE losses on a held-out set.

This paper is organized as follows: First, second-order
Hessian-free optimization is introduced in Section 2. Sec-
tion 3 presents how to transform this second-order HF opti-
mization into a stochastic Hessian-free (S-HF) optimization.
Then, the concept of SAG is covered in Section 4, and it is ex-
tended and combined with HF sequence training in Section 5
where it is termed DSAG-HF for dynamic SAG Hessian-free
optimization. Finally, experimental setup and results are pre-
sented in Section 6 and Section 7 respectively.

2. SECOND-ORDER HESSIAN-FREE
OPTIMIZATION

Learning for DNN is a difficult task due to the issue of van-
ishing gradients, pathological objective function curves, and
non-convex objective functions. Second-order methods can
alleviate some of the burden from the first two challenges by
leveraging curvature information of the loss function [5].

Let us consider a DNN with parameters 6 (weights and
biases). The loss function £(@) can be approximated around
0 such that

L(O+8)~L(O)+VLO) 6+ %JTB(G)J, (1)

where the right-hand side is a quadratic approximation of
L(0+6), and VL(0) is the gradient of the loss function at 6.
If B(0) is equal to the Hessian H () (or an approximation
of it), and B(0) is positive-semidefinite, then £(8) is locally
convex and a minimum can be found. A direct optimization

ASRU 2013

of (1) would give the minimizer

§=-B~1(6)VL(®), ©))
which is a solution to the system
B(0)6 = -VL(0). 3)

Minimizing (1) w.r.t § is equivalent to solving the system in
(3) for §. Consequently, minimizing the loss £(0) can be
done iteratively,

0141 = 01 + a0y, 4

where a4y is a step taken in the Newton’s direction dy,
ay € [0,1]. The equivalent of (3) with iterative solutions,
an equation that we will need later in this paper, becomes

B(60y)6, = —VL(Oy).)
Since DNNs have large number of parameters, direct compu-
tation of the Hessian is impractical, but fortunately not neces-
sary when using the conjugate gradient method, or CG. CG
is an iterative algorithm used to find a solution direction &
given a linear system like the one in (3). CG is usually not
run to convergence but to some pre-determined point of rela-
tive solution improvement, and is often limited to a maximum
number of iterations.

An important property of CG is that the Hessian is only
needed in the context of curvature-vector product B(6)d as
seen in (3). It is therefore possible to define a Hessian-free
optimization of (1) when using CG to find an approximate so-
lution §. Such Hessian-free optimization has been described
and investigated thoroughly in [5]. In practice, the Hessian
of the loss function £(8) is not positive-definite for DNNs,
and a Gauss-Newton matrix G(0) is used instead. However
G(0) is positive-semidefinite, and needs to be regularized by
using G(0) + AI. X is a damping factor which is adjusted
heuristically.

3. STOCHASTIC HESSIAN-FREE OPTIMIZATION

The Hessian-free optimization procedure described in [5]
consists of four steps run in sequence at each pass k over all
the training data.

First, the gradient V.L(0},) is computed on all the train-
ing data. Second, CG is used to find iterative solutions dy
to (5). CG requires an initial search direction 62, which is
commonly set to 0. However, faster convergence is attained
when 62 is chosen to be 0d_1, a scaled version (o = 0.95)
of the previous final search direction from CG. This acceler-
ation technique is called -momentum. Furthermore, CG is
usually truncated to a maximum of 250 iterations to balance
the overall CG cost. Third, a “backtrace” over all CG iterates
is done to find a potentially better candidate that minimizes
the loss on a held-out set £"(). Finally, once a valid search

322

direction 0y, is found, a linear search is done to find the best
ay, given the chosen direction, as seen in (4).

Curvature-products dominate the computational cost of
CG after few passes over the data, and can become prohibitive
when compared to the fixed cost for the gradient. Therefore,
it is advised in [5] to use a 1% sample of the training data for
curvature-products, balancing cost and accuracy of CG.

Given the description above, it is tempting to define a
stochastic approach to this Hessian-free procedure. Intu-
itively, it does not appear necessary to process all the training
data to update our model, like for stochastic gradient meth-
ods. Indeed, nothing in the HF training from [5] needs to be
inherently run on all the training data. This seems especially
true for the first few model updates. Therefore, one can easily
define a “vanilla” stochastic HF procedure (S-HF) that would
take a random subsample of the training set, perform one (or
a few) model updates (4), then take a new random sample
and iterate the process till convergence. We explore this S-HF
process in addition to the DSAG-HF procedure as described
in Section 4 and Section 5.

Parallel to our work, a stochastic Hessian-free optimiza-
tion was investigated in [6] starting from the work in [5].
In [6], very short CG runs are performed (only 3-5 itera-
tions), which has the consequence of having to re-tune the
implementation from [5] since decisions about 4-momentum,
Levenberg-Marquardt damping, size of gradient and cur-
vature mini-batches need be revisited. Also, [6] integrates
dropout which we do not address in our paper. Our approach
is different in that it was influenced by ideas developed in [4]
to improve SGD that we adapted to second-order Hessian-free
optimization.

4. STOCHASTIC AVERAGE GRADIENT

In [4], a new technique called stochastic average gradient is
proposed as a way to improve on conventional stochastic gra-
dient (SG) techniques [7]. Writing the loss function as a sum
of loss values over training samples,

T
miniemize L(6) = 111; fi(8), (6)

where 7' is the number of samples in the training data, and
1:(0) the value of the loss for sample i. With stochastic gra-
dient, parameters 6}, are updated for each random sample iy,
as

011 =01, — BV fi, (O1),

where () is a step size. In contrast, the stochastic average
gradient method updates model parameters as

)

5 &
k 4
Or11 =0 — T 2#1@7 ®)

where, for each training example i; randomly selected,

{

Effectively, SAG re-uses gradient information computed at
previous iterations to help the convergence of its solution.

Vfi(6x)
My

ifi = i,
otherwise.

%

122°

®

5. DYNAMIC STOCHASTIC AVERAGE GRADIENT
WITH HESSIAN-FREE OPTIMIZATION

Reusing gradient information from previous iterations is a
particularly powerful property of SAG that can be directly
used in our second-order HF sequence training. Let the train-
ing data be split into B batches; then (3) can be rewritten
equivalently as

B
B(0)5 =-> VL"), (10)
b=1

where V£%(0) is the gradient of the loss computed from sam-
ples in batch b. We propose to use the following SAG-like
system for our iterative approach:

B
B(0)0x = — > WAL, (11)
b=1

where 72 is a weighting factor at iteration k of the gradient
computed for training batch b, and

{

starting with AS =0, Vb. In (11), each step k=0, 1, ... corre-
sponds to an update over training data contained in batch by.
However, for batches other than b, we use the gradient infor-
mation from previous steps. To find an approximate solution
to (11), we still use truncated CG as in regular HF optimiza-
tion. At iteration k, the CG procedure is carried out on 1% of
data from batch by,.

A key aspect of this approach is to properly define the
weighting factors ’y,l;. Indeed, these weights can make DSAG-
HF behaves purely like a S-HF process if no gradient from
previous batches is used, to an approximation of a full train-
ing if all gradients from previous batches are used uniformly.
However, using uniform weights does not yield good results,
and we found experimentally that those weights need be re-
evaluated at each step k. We use an approach that keeps track
of the held-out losses corresponding to each batch b as fol-

lows:
Ly = {

vLh(0))

b
Ak—l

ifb = by,
otherwise,

b

A} = (12)

L"(0)
Ly,

ifb = by,
otherwise.

13)

323

L"(0},) is the loss on a held-out set. The weights 7? are cho-
sen to be

T = exp (77 {CZ’“ - ﬁZD (14)
where 7 is a tunable parameter that controls the exponenti-
ation of our weights across batches. The weights are dy-
namically estimated to provide a loss function gradient before
any CG iterations take place. In that sense, this is a dynamic
schedule that controls the gradients’ averaging weights. We
term the resulting procedure dynamic stochastic average gra-
dient with hessian-free (DSAG-HF) optimization.

For the first few steps k, (11) is only a rough approxima-
tion to (5); it is indeed closer to the S-HF procedure men-
tioned in Section 3. For the first step & = 0, a gradient com-
puted only from data in by, is used. For further steps, gradients
computed from parameters 6,0 _1, ..., that are expected to
be quite different from one another, are starting to be incor-
porated into the final gradient term. This is particularly true
for a model’s first few updates, as the held-out loss changes
significantly across these first steps. However, as the parame-
ters converge to a solution, the difference between the model
parameters 6y, 0_1, etc. becomes smaller, and (11) asymp-
totically converges to (5).

Therefore, DSAG-HF is able to simulate the use of more
data than is actually observed for gradient computation at
each batch b since we bring in gradients computed for pre-
viously observed batches. After all B batches have been ob-
served, the final gradient contains contribution of virtually
all the training data while only 1/B has been truly observed.
This property enables our updates to be faster than for regular
HF training, but also, not unlike for a SG process, it enables
updates to be potentially quite different from regular HF train-
ing. In the rest of this paper, we compare DSAG-HF used for
sequence training of DNNs to regular HF and stochastic HF
sequence training.

6. EXPERIMENTAL SETUP

Our experiments are conducted using an IBM internal US En-
glish ASR task. The training set consists of 1500 hours of
recorded audio. Training transcripts are obtained by decod-
ing the audio using an existing large vocabulary continuous
speech recognition system. Recordings that are deemed to be
all silence or noise, and sentences decoded with very low con-
fidence are excluded from the training data. The final training
data amounts to 1.53M utterances for 3.7k speakers.

The first step in our DNN training procedure is to “pre-
train” our DNN by growing it layer-wise under CE criterion.
Once the final topology is reached, a CE model is trained
fully using SGD with 5 passes over all the training data. This
model (CE-5) is used as initial guess for the DNN parameters
for subsequent HFST. Since HFST requires lattices, the CE-5
model is used to generate lattices on all the training data.

Held-out loss vs. number of iterations (model updates)
115 T T

Baseline (1500hr)
Stochastic Sequence Trainini
Stochastic Sequence Training w/ DSAG ———

110

105

100

95

Held-out loss (x1000)

90

~_

\ -

85

80

10 15 20 25

Sequence Training iterations (model updates)

30 35 40

Fig. 1. Held-out MPE loss as a function of the number of up-
dates for three approaches to sequence training: regular HF
sequence training (Baseline) using 1500 hours of data per it-
eration, stochastic HF using batches of one 10th of training
data, and DSAG-HF using the same data batches. All held-
out MPE losses are computed on a 15 hours held-out set.

Our baseline model is trained using regular HFST, where
each training iteration uses 1500h of training data. It is run
until convergence as measured by a MPE loss on a held-out
set of 15h of data set aside from our training data. The imple-
mentation of HFST for our baseline system is based on [1],
with an HF procedure pretty similar to [5].

Our input features are post-LDA features from a 48 di-
mensional frames composed of 12 static cepstra and their 1st,
2nd, and 3rd time derivatives. These 48-dim features are
projected onto a LDA space of 32 dimensions. Then, tem-
poral context is created by splicing 9 successive frames of
32 dimensional post-LDA features to generate 288 dimen-
sional features. These 288-dim features are the inputs to our
DNNs. The topology of our DNNSs is 6 layers of 1024 hidden
units with sigmoid non-linearities. The output targets are 512
context-dependent states from building a context dependency
tree from our training data.

All models are compared with measure of MPE loss over
our held-out set mentioned previously. We also measure word
error rates (WER) on a dev set composed of 684 utterances.
Our sequence training infrastructure is identical for each of
the three techniques. All computations (gradient, curvature
product, etc.) are distributed over many machines and the
distributed computing topology is kept identical for all our
trainings.

7. EXPERIMENTAL RESULTS

The DSAG-HF, and S-HF procedures were performed start-
ing from CE-5. The training data was split in 10 batches

324

randomly sampled without replacement from the full train-
ing data, with each batch balanced for duration. After the first
10 steps, all batches are processed and the training is ensured
to have seen all the training data. Further training steps rotate
among the batches, and every 10 steps, the model will have
seen all 1500h of training data again. All of the experiments
presented here use DSAG-HF parameter = 0.7.

Figure 1 shows the held-out MPE loss as a function of
model updates for three approaches. Comparing S-HF to the
baseline, we note that for the initial update iterations, the S-
HF procedure results in better held-out loss than the base-
line. However, S-HF saturates early and converges to a signif-
icantly worse held-out loss value. The S-HF and baseline loss
curves cross at around iteration 20, never to recover. In con-
trast, the DSAG-HF procedure appears to consistently out-
perform the baseline, and converges to a better final held-out
loss, as also seen in Table 1. In addition, we note that for both
S-HF and the DSAG-HF procedures, the cost of each update
is substantially less than baseline. Each stochastic update is
indeed processing roughly a 10th of the training data.

Procedure Loss CPU time | WER
(# iterations) | (x1000) (days) (%)
Baseline

10 98.15 1.11 14.0
20 88.77 3.72 124
30 84.60 7.49 11.9
34 84.08 9.06 11.8
Stochastic HF
10 97.38 0.38 13.9
20 88.64 1.13 12.5
30 87.34 1.73 12.2
40 87.20 2.08 12.2
50 87.17 2.49 12.1
DSAG-HF
10 97.13 0.42 14.0
20 86.91 1.46 12.3
30 84.34 2.88 12.0
40 84.04 3.95 11.9
50 83.88 474 11.8

Table 1. Held-out MPE loss, CPU time, and WER for regu-
lar HF (Baseline), Stochastic HF, and DSAG-HF. Values are
reported for every 10 iterations up to convergence.

Table 1 shows the held-out loss at a few specific model up-
date iterations for the three procedures depicted in Figure 1.
It also provides the computation time (CPU time) up to those
respective iterations, as well as a WER on a dev set.From this
table, it is clear that DSAG-HF reaches a better held-out loss
at about half the processing time than our baseline system.
S-HF, despite being quite fast, converges to a much worse
solution. The difference of processing time between S-HF
and DSAG-HF is accounted for by the difference of CG itera-

tions required at each step. Indeed, DSAG-HF requires longer
CG runs than S-HF. This points to some of the comments in
[6] about the need to revisit our Levenberg-Marquardt style
heuristic for damping as we notice a slight oscillation of the
A damping factor over our iterations.

In terms of WERs on the dev set, we observe the com-
mon trend in all our experimental results with sequence
trained DNNs. The held-out losses are positively correlated
to the WERs. Baseline and DSAG-HF models both converge
around 11.8% WER while S-HF is reaching 12.1% at con-
vergence. In fact, one can notice that for the sole purpose of
WER, the models need not completely converge to provide
the best WER. Small improvements in held-out loss do not
completely translate into better WER.

One note worthy property of DSAG-HF is that no tuning
is required except for our 7 parameter, since all scheduling
of the weights are done based on the difference of held-out
losses between the current and previous steps.

8. CONCLUSIONS

In this paper, we have introduced a novel stochastic Hessian-
free sequence training for DNNs. This procedure, termed
DSAG-HF, leverages gradient averaging as proposed recently
in the stochastic average gradient approach, and carries out
a Hessian-free CG-based optimization using these averaged
gradients. Experimentally, we observe that DSAG-HF not
only allows for faster convergence in computation time than
regular HF sequence training (about half the time required),
but also allows for faster held-out loss improvements, espe-
cially in the early updates.

Future work includes further exploration of the CG proce-
dure including pre-conditioning and search characteristics in
stochastic contexts.

9. ACKNOWLEDGMENTS

The authors would like to thank Brian Kingsbury for con-
structive discussions about sequence training. Peder Olsen,
Etienne Marcheret, and Upendra Chaudhari for providing
their help with this research work.

10. REFERENCES

[1] Brian Kingsbury, “lattice-based optimization of sequence
classification criteria for neural-network acoustic model-
ing,” in ICASSP, April 2009, pp. 3761-3764.

[2] Daniel Povey and Philip C. Woodland, “Minimum phone
error and i-smoothing for improved discriminative train-
ing,” in ICASSP, May 2002, pp. 105-108.

[3] Hang Su, Gang Li, Dong Yu, and Frank Seide, ‘“er-
ror back propagation for sequence training of context-

325

(4]

(5]

(6]

(7]

dependent deep networks for conversational speech tran-
scription,” in ICASSP, May 2013, pp. 6664—-6668.

Nicolas Le Roux, Mark Schmidt, and Francis Bach, “A
stochastic gradient method with an exponential conver-
gence rate for finite training sets,” in Advances in Neu-
ral Information Processing Systems 25, pp. 2672-2680.
NIPS, 2012.

James Martens, “Deep learning via hessian-free op-
timization,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Johannes
Fiirnkranz and Thorsten Joachims, Eds., Haifa, Israel,
June 2010, pp. 735-742, Omnipress.

Ryan Kiros, “Training neural networks with stochastic
hessian-free optimization,” in International Conference
on Learning Representations, May 2013.

Léon Bottou and Yann LeCun, “Large scale online learn-
ing,” in Advances in Neural Information Processing Sys-
tems 16, Sebastian Thrun, Lawrence Saul, and Bernhard
Scholkopf, Eds. MIT Press, Cambridge, MA, 2004.

