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ABSTRACT

An acoustic model based on hidden Markov models with
deep neural networks (DNN-HMM) has recently been pro-
posed and achieved high recognition accuracy. In this paper,
we investigated an elastic spectral distortion method to artifi-
cially augment training samples to help DNN-HMMs acquire
enough robustness even when there are a limited number
of training samples. We investigated three distortion meth-
ods―vocal tract length distortion, speech rate distortion, and
frequency-axis random distortion―and evaluated those meth-
ods with Japanese lecture recordings. In a large vocabulary
continuous speech recognition task with only 10 hours of
training samples, a DNN-HMM trained with the elastic spec-
tral distortion method achieved a 10.1% relative word error
reduction compared with a normally trained DNN-HMM.

Index Terms— Deep neural network, speech recognition,
elastic distortion

1. INTRODUCTION

Making an accurate speech recognizer with limited training
resources is currently a key issue in the speech recognition
field because most languages do not have rich annotated cor-
pora and making such corpora is costly. Recently, deep neural
networks (DNNs) have proven highly effective for several
recognition tasks [1, 2, 3]. For example, Seide et al. showed
that acoustic models based on a combination of DNN and
hidden Markov models (DNN-HMMs [2]) achieved much
higher accuracy than conventional Gaussian mixture model-
based acoustic models (GMM-HMM). In their study [2], a
DNN-HMM trained by 309 hours of speech achieved almost
the same (and sometimes better) accuracy as a GMM-HMM
trained by 2000 hours of speech. Our experiment (discussed
in section 4) also showed that a DNN-HMM trained by only
10 hours of speech achieved almost the same accuracy as
a GMM-HMM trained by 270 hours of speech. Therefore,
acoustic modeling based on DNNs could be a driving force
for speech recognition applications in the low resource lan-
guages.

On the other hand, one previous study [4] showed that
DNNs had a severely degraded performance when the acous-
tic properties of test samples were very different from those of

the training samples. Our assumption is that with only limited
training samples, DNNs cannot obtain sufficient robustness
against several types of distortions, which could be obtained
if such distortions were observed in the training samples. An-
other study [5] showed that, with plenty of training samples,
DNNs could obtain robustness against vocal tract length dif-
ferences. Therefore, we can expect that artificially augment-
ing the training samples will help DNNs acquire enough ro-
bustness against several types of distortions.

In this paper, an elastic spectral distortion method that ar-
tificially augments training samples by varying the spectral
properties of original training data is investigated. In the char-
acter recognition field, an artificial augmentation of training
samples by distorting original samples, called the “elastic dis-
tortion” method, has already been proposed and widely used.
For example, in one study [6], training samples were artifi-
cially augmented by rotating and expanding original samples,
and the neural networks trained with those augmented sam-
ples achieved much higher recognition accuracy. However,
the speech spectrum has a time axis and a frequency axis, each
with clearly different properties, and some distortion meth-
ods, such as image rotation, cannot be applied to it.

We investigated three distinct spectral distortion meth-
ods: vocal tract length distortion, speech rate distortion, and
frequency-axis random distortion. Several experiments were
conducted to evaluate the effect of the spectral elastic disto-
rion method with Japanese lecture recordings. Some studies
have already used DNNs to tackle low resource speech recog-
nition. Those works focused on how to transfer the acoustics
of other resource-rich languages to the target language [7, 8]
or to make the language-independent feature front-end [9].
Compared to those methods, our approach has advantages
that it can be applied to all types of networks and there is
no need to prepare another resouces. Very recently, Jaitly
and Hinton proposed an almost same method as vocal tract
length distortion, and showed its effectiveness in TIMIT task
with DNN-based acoustic models [10]1. Compared to the
paper [10], our work includes two additional distortion meth-
ods and shows their effectiveness even for large vocabulary
continuous speech recognition tasks.

In Section 2, we give an overview of DNN-based acous-
tic models. In Section 3, the three spectral distortion meth-

1We became aware of the paper [10] after the acceptance notification.
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ods we investigated are described. Finally, in Section 4, the
evaluation results with a Japanese lecture recognition task are
presented.

2. ACOUSTIC MODELING BASED ON DEEP
NEURAL NETWORKS

2.1. An overview of deep neural networks

A deep neural network (DNN) is a multi-layer perceptron
model that has several (normally more than three) layers. In
the past, it was believed that deep structures made training
the network parameters so difficult that most of the param-
eters became easily trapped at a poor local optimum. How-
ever, Hinton et al. [11] proposed an efficient layer-wise ini-
tialization method of parameters and showed that deep struc-
tures could produce much better results than shallow ones.
Recently, DNNs have achieved state-of-the-art performance
in many recognition tasks such as image recognition [1] and
speech recognition [2, 3].

In neural networks, the l-th layers’ value zl = (zl
1, ..., z

l
Nl

)T

(Nl indicates the number of nodes in the l-th layer) is propa-
gated to the (l + 1)-th layer as

al+1
j = wl

j · zl + bl
j (1)

zl+1
j = h(al+1

j ), (2)

where wl
j = (wl

j,1, ..., w
l
j,Nl

) and bl
j indicate the weight

and bias parameters in the l-th layer, respectively. In-
put layer’s value z1 is initialized by input feature vector
x = (x1, ..., xD)T as z1 = x. Function h indicates the
activation function of each node. In this paper, a sigmoid
function is used as an activation function in the hidden layers.

h(al+1
j ) =

1
1 + exp(−al+1

j )
(3)

In the output layer, softmax is used as the activation function.

p(yj = 1|x) = h(aL+1
j ) =

exp(aL+1
j )∑NL+1

k=1 exp(aL+1
k )

(4)

Neural networks are trained by maximizing a posteriori
probability over training samples.

L =
∑

i

log p(y(ki) = 1|xi) (5)

Here, ki indicates a reference of the i-th training data. Param-
eters (wl

j , b
l
j) can be optimized by using numerical optimiza-

tion techniques like a stochastic gradient decent, as
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j , b

l
j)← (wl

j , b
l
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∂L
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j , b
l
j)

, (6)

where η is an update parameter. Gradients can be efficiently
calculated by the back-propagation method [12].

2.2. Acoustic models based on deep neural networks

Recently, acoustic models that utilize DNNs to represent out-
put probabilities of the hidden Markov model (HMM), which
are called DNN-HMMs, have been proposed and have shown
high speech recognition accuracy [2]. In this paper, we use a
DNN-HMM for the acoustic modeling.

Conventional HMMs use GMMs to represent an output
probability p(x|s) of the feature vector x from state s. In
the DNN-HMM model [2], GMMs are replaced with DNNs
to represent the output probability. According to Bayes’ the-
orem, an output probability p(x|s) can be calculated from a
posteriori probability p(s|x) produced by DNN, as

p(x|s) =
p(s|x)
p(s)

· p(x), (7)

where p(s) indicates a generative probability of state s and
can be calculated from training samples. In contrast, p(x) in-
dicates a generative probability of input x, which does not
affect the probability difference between states and can be ig-
nored in decoding times.

2.3. Dropout training method

The dropout training method [13] has been proposed to pre-
vent over-fitting of networks. In this method, each output
from hidden layers is forced to be zero with a probability of
γ% in the training phase. When using the neural networks,
each weight parameter is multiplied (100 − γ)% instead of
dropout. This process regards one network as a combination
of many weak classifiers. The dropout training method has
been found to be very effective for improving accuracy in both
image recognition [1] and speech recognition tasks [13].

3. ELASTIC SPECTRAL DISTORTION FOR
ACOUSTIC MODELING

In this section, we describe an artificial augmentation method
of training samples by distorting original speech samples. In
the character recognition field, artificial distortion of training
data has already been proposed. For example, one study [6]
showed that artificially augmenting training samples by ro-
tating and expanding original samples can greatly improve
the recognition accuracy. However, because the speech spec-
trum has time and frequency axes, which have clearly distinct
properties, some distortion methods, such as image rotation,
cannot be applied to it. In this study, we investigated three dis-
tinct spectral distortion methods: vocal tract length distortion,
speech rate distortion, and frequency-axis random distortion.
An overview of each distortion method is shown in Fig. 1.

3.1. Vocal tract length distortion

Vocal tract length distortion methods artificially augment the
training samples by varying the vocal tract length of origi-
nal training samples. This is achieved by applying vocal tract
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Fig. 1. An overview of the three elastic spectral distortion
methods. Rectangles indicate the spectrum and arrows within
the rectangles indicate the direction of distortion.

length normalization (VTLN) [14] to training samples with
randomly selected warping factors every time we fetch train-
ing samples. Note that VTLN is normally applied to reduce
inter-speaker variety of test or training samples, while in vo-
cal tract length distortion, it is applied to augument variety
of training samples. In this paper, we used the same simple
linear frequency warping as that implemented in HTK [15].

As discussed in section 1, we assume that with only lim-
ited training samples, DNNs cannot obtain sufficient robust-
ness against vocal tract length differences, which could be
obtained if there were enough training samples. We expect
that artificially augmenting the training samples by varying
the vocal tract length will help DNNs acquire enough robust-
ness even when there is a limited number of training samples.

3.2. Speech rate distortion

By the same discussion as described above, we assume that
DNNs cannot obtain sufficient robustness against speech rate
differences if there is only a limited number of training sam-
ples. To complement the training samples, we investigated
a speech rate distortion method that artificially augments the
training samples by varying the speech rate of the original
training samples. Every time we fetch training samples, we
change the speech rate of the samples with a randomly se-
lected varying factor. We used Praat software [16] to change
only the speech rate (and not the spectral properties).

Note that we need to re-make alignments of the input fea-
tures and output states of DNNs whenever we change the
speech rate. For simplicity, we randomly selected a varying
factor from a fixed set of values, which enabled us to perform
speech rate distortion with limited types of alignment infor-
mation corresponding to a fixed number of varying factors.

3.3. Frequency-axis random distortion

We also investigated a frequency-axis random distortion
method that simulates oscillations in the spectral domain.
To realize a random distortion, we first generate a uniformly
distributed random number between -1 and 1 for each time-
frequency bin of the spectrum:

r(f, t) ∼ U(−1, 1), (8)

where f and t indicate an index of frequency and time, re-
spectively. Then, distortion factor δ(f, t) is calculated by av-
eraging r(f, t) in the small time-frequency region:

δ(f, t) =
λ

(2p + 1)(2q + 1)

f+p∑
f ′=f−p

t+q∑
t′=t−q

r(f ′, t′), (9)

where λ(> 0) is the parameter that controls the magnitude
of distortion. Parameters p and q are introduced for smooth-
ing the randomness of the frequency axis and time axis, re-
spectively. Note that while r(f ′, t′) is calculated according
to Eq. 8 even if t′ is negative or larger than maximum time
index, r(f ′, t′) is set to 0 if f ′ is negative or larger than max-
imum frequency index, which makes δ(f, t) small when it is
nearby the frequency boundary. Spectral power after dis-
tortion S̃(f, t) is calculated from the original spectral power
S(f, t), as

S̃(f, t) = S(f + δ(f, t), t) (10)

Because δ(f, t) is not an integer, we calculate S̃(f, t) as an
interpolation of the adjacent frequency’s power.

4. EVALUATION

4.1. Experimental settings

Large vocabulary continuous speech recognition (LVCSR)
experiments were conducted using the Corpus of Sponta-
neous Japanese (CSJ), which is a collection of Japanese
lecture recordings. As evaluation data, 2.4 hours of lectures
featuring 10 speakers (5 male and 5 female) were used.

As training data for the acoustic models, 10 hours of lec-
ture recordings (5 hours of male speech and 5 hours of female
speech) were used to simulate a low resource scenario2. As a
reference, we also evaluated acoustic models with 270 hours
of lecture recordings3. As a language model, a 3-gram lan-
guage model with 65,000 vocabulary words trained from a
transcription of 2,671 lectures was used. A WFST-based one-
pass decoder was used for LVCSR decoding.

4.2. Baseline 1: Evaluation of GMM-HMM models

We first evaluated conventional GMM-HMM acoustic mod-
els. We used 2,734 tied-state triphones as the units of acoustic
modeling. 13 mel-frequency cepstral coefficients (MFCCs),
delta coefficients, and delta-delta coefficients with mean and
variance normalization per utterance were used as features.
In 10-hour settings, each state was represented by eight mix-
tures of Gaussians and parameters were trained by a maxi-
mum likelihood (ML) criterion. In 270-hour settings, each

2Japanese is of course not a resource restricted language, but it is benefi-
cial to simulate a low resource scenario because we can compare the results
of the proposed method with normal DNNs with several sizes of training
samples. This comparison is presented in Section 4.5.

3This content was all conference lectures from the CSJ, except the evalu-
ation data.
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Table 1. Word accuracy with 10 hours of training data.
Model Feature (dim) Word Acc. (%)

GMM-ML MFCC (39) 71.7
DNN MFCC (39) 80.1

logMFB (75) 81.2

Table 2. Word accuracy with 270 hours of training data.
Model Feature (dim) Word Acc. (%)

GMM-ML MFCC (39) 80.2
GMM-MPE MFCC (39) 82.3

DNN MFCC (39) 86.6
logMFB (75) 87.3

state was represented by 32 mixtures of Gaussians and pa-
rameters were trained by both ML and minimum phone error
(MPE) criteria.

The GMM-HMM results are listed in the upper row of
Table 1 (10-hour training) and Table 2 (270-hour training).
Among the GMM-HMMs, the best result was obtained by
the MPE-trained GMM (GMM-MPE) with 270-hour training
data; it achieved a word accuracy of 82.3%.

4.3. Baseline 2: Evaluation of DNN-HMM models

Next, we evaluated DNN-HMM acoustic models. In these
experiments, neural networks with 7-hidden layers, each of
which has 2048 nodes, were used. Output units of the DNNs
were 2,734 tied-state triphones, the same as those used in
the GMM-HMM models. With 10 hours of training speech
samples, the mini-batch size [17] was set to 128, and the ini-
tial update parameter η was set to 0.05 and 0.01 in the pre-
training and fine-tuning, respectively. We used a discrim-
inative pre-training [5] method for the pre-training and the
AdaGrad method [18] for scheduling the update parameters4.
With 270 hours of training speech samples, the mini-batch
size was set to 1024 and the initial update parameters η were
set to 0.05 in both pre-training and fine-tuning. Other settings
were the same as those used with the 10 hours of training
speech samples.

As input features of DNN, we used 39 MFCCs, the same
as used in the GMM-HMM models. We also evaluated 75
log mel-filter bank features (logMFBs), which consisted of
25 log mel-filter bank coefficients (including one log energy
feature) and delta and delta-delta coefficients. Both MFCCs
and logMFBs were mean and variance normalized. We con-
catenated features of the previous 5 frames and following 5
frames for a total of 429 (= 39 x 11) MFCCs or 825 (= 75 x
11) logMFBs input into the DNNs.

Evaluation results for 10 hours of training data and 270
hours of training data are listed in the lower columns of
Table 1 and Table 2, respectively. As shown in the tables,

4Other studies [19] have pointed out that AdaGrad can possibly make
converged parameters worse. However, in our preliminary experiments, the
parameters obtained by AdaGrad were good enough. We used AdaGrad pri-
marily for its fast convergence property.

Table 3. Effect of dropout (10-hour).
Model Frame Acc. Word Acc. (%)
DNN 46.6 81.2

DNN + Dropout 51.8 82.3

Table 4. Effect of vocal tract length distortion (10-hour).
Model Distortion Ratio Frame Word

[αmin, αmax] Acc. (%) Acc. (%)
DNN - 46.6 81.2
DNN [0.9, 1.1] 48.2 82.7

[0.85, 1.15] 48.2 82.9
[0.8, 1.2] 48.0 82.7

DNN-HMM showed great improvement of word accuracy
compared with GMM-HMM: DNN-HMM achieved 81.2%
and 87.3% word accuracy when logMFB features used, which
correspond 33.6% and 28.2% relative error reductions from
the GMM-HMM’s best results. In our experiments, logMFB
features always produced better results than MFCC features,
the same as mentioned in the paper [20]. Moreover, the DNN-
HMM trained using only 10 hours of speech achieved almost
the same word accuracy as the GMM-HMM with 270 hour
training data did. These results demonstrate the effectiveness
of using DNNs in low resource scenarios.

4.4. Evaluation of dropout training

We evaluated the performance of the dropout method. In this
experiment, dropout ratio γ was set to 50%. The update pa-
rameter η was set to 0.1 in both pre-training5 and fine-tuning,
and AdaGrad was used to schedule the update parameters. 75
logMFB features were used as input features. Other settings
were the same as those described in the previous section. Be-
cause so much training time is needed for the dropout method,
we only evaluate DNN-HMM with 10 hours of training data.

Evaluation results are shown in Table 3. In this experi-
ment, we show not only word accuracy but also frame accu-
racy, which in this case means frame-by-frame triphone ac-
curacy. Note that frame accuracy is directly calculated from
the outputs of the DNNs and does not include LVCSR proce-
dures. Since the frame accuracy was not affected by LVCSR,
it can measure the pure identification performance of DNNs.
We found that the dropout method improved the frame ac-
curacy from 46.6% to 51.8%, which corresponds to a rela-
tive error reduction of 9.7%. Improvement of word accuracy
was slightly smaller than the frame accuracy, and dropout
achieved a 1.1-point improvement of word accuracy, which
corresponds to a relative error reduction of 5.9%. We thought
that the dropout method has a similar effect as the combina-
tion of weak classifiers, and therefore it could smooth the dif-
ferences among output probabilities, which is key in LVCSR.

5In the discriminative pre-training method, training samples are normally
used only once when initializing each layer (early stopping [5]), but with
dropout training, we iterated 20 times in each layer, which produced a slight
improvement
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Table 7. Effect of elastic spectral distortion (10-hour).
Model VTL dist. SR dist. FR dist. Dropout Frame Acc. (%) Word Acc. (%)
DNN 46.6 81.2√

48.2 82.9√
47.6 81.4√
47.0 81.6√ √ √
49.5 83.1√ √ √ √
53.4 83.5

VTL: Vocal Tract Length, SR: Speech Rate, FR: Frequency-axis Random

Table 5. Effect of speech rate distortion (10-hour).
Model Distortion Ratio Frame Word

[βmin, βmax] Acc. (%) Acc. (%)
DNN - 46.6 81.2
DNN [0.8, 1.2] 47.4 81.3

[0.7, 1.3] 47.5 81.4
[0.6, 1.4] 47.6 81.4

Table 6. Effect of frequency-axis random distortion (10-
hour).

Model Distortion Ratio Frame Word
λ Acc. (%) Acc. (%)

DNN - 46.6 81.2
DNN 100 46.7 81.3

200 46.9 81.4
400 47.0 81.6
800 46.9 81.2

4.5. Evaluation of elastic spectral distortion

Next, we evaluated the elastic spectral distortion methods
with 10 hours of training samples. In every beginning of the
training epoch, original training samples were fetched and
distorted with random factors at utterance level, and features
extracted from distorted samples were used for DNN-training
in that epoch. We used 75 logMFB as input features. Other
settings were the same as in Section 4.3.

We first evaluated the vocal tract length distortion method.
Every time we fetched training samples, we applied vocal
tract length normalization with a random warping factor be-
tween [αmin, αmax] in a 0.05 step size. We tested three pat-
terns, {0.8, 1.2}, {0.85, 1.15}, and {0.9, 1.1}, as distortion
ratio {αmin, αmax}. The results (shown in Table 4) demon-
strate that the vocal tract length distortion works very well: it
achieved a 1.6-point improvement of the frame accuracy, and
a 1.7-point improvement of the word accuracy. It achieved a
maximum word accuracy of 82.9%, which corresponds to a
relative error reduction of 9.0%.

Next, we evaluated the speech rate distortion method.
Every time we fetched training samples, we changed the
speech rate with a random factor between [βmin, βmax] in a
0.1 step size. We tested three patterns, {0.6, 1.4}, {0.7, 1.3},
and {0.8, 1.2}, as distortion ratio {βmin, βmax}. Results are
shown in Table 5. Speech rate distortion achieved a 1-point

(a) Frame Accuracy (b) Word Accuracy

Fig. 2. Frame and word accuracy of normally trained DNNs.

improvement of the frame accuracy, but the improvement
of the word accuracy was only 0.2 points. It achieved a
maximum word accuracy of 81.4%, which corresponds to a
relative error reduction of just 1.1%.

Finally, we evaluated the frequency-axis random distor-
tion method. We set p = 128 and q = 100 and varied λ from
100 to 800. Results are shown in Table 6. The frequency-axis
random distortion method slightly improved both frame accu-
racy and word accuracy and achieved a maximum 0.4-point
improvement on word accuracy.

Through the above experiments, we observed that frame
accuracies and word accuracies were not necessarily cor-
related, especially in the comparison of different distortion
methods. For example, the frame accuracy obtained by the
speech distortion method at {βmin, βmax} = {0.6, 1.4} was
better than that obtained by the frequency-axis random distor-
tion method at λ = 400; however, the word accuracy obtained
by the former method was worse than that obtained by the
latter. Note that word accuracies were obtained through large
vocabulary continuous speech recognition tasks involving
complicated decoding procedures with language model eval-
uations. We thought that this complexity hides the correlation
between frame accuracies and word accuracies.

Table 7 shows the results of a combination of several dis-
tortion methods. In this experiment, we set {αmin, αmax} =
{0.85, 1.15}, {βmin, βmax} = {0.85, 1.15} and λ = 400.
Combining all distortion methods resulted in 2.9-point im-
provements of frame accuracy and 1.9-point improvements
of word accuracy, which corresponds to relative error reduc-
tions of 5.4 % and 10.1%, respectively. The effect of the dis-
tortion methods was nearly additive, especially in terms of
frame accuracy; namely, the improvement of frame accuracy
(2.9 points) by combining the three distortion methods was
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almost the same as the sum of the improvements obtained by
each method individually (1.6, 1.0, and 0.4 points, respec-
tively). From above observation, we thought that there can be
further improvements by using additional distortion methods.

Also shown in Fig. 2 are additional experimental results
of normally trained DNNs with 20, 50, and 270 hours of
speech6. The horizontal axis indicates the size of the train-
ing samples in the log scale. We found that both the frame
accuracy and the word accuracy nearly followed the log of
the training data sizes. The results demonstrate that the spec-
tral distortion method achieved almost the same accuracy as a
DNN with 20 hours of training data in terms of both the frame
accuracy and the word accuracy. Therefore, it could be said
that the effect of the spectral elastic distortion corresponded
to double the amount of training samples.

Finally, we show the results of a combination of the elas-
tic spectral distortion and dropout training in the last row of
Table 7. This combination further improved the accuracy;
it achieved an additional 3.9-point improvement of frame
accuracy and 0.4-point improvement of word accuracy. Un-
expectedly, the improvement of word accuracy was much
smaller compared to the improvement of frame accuracy, and
we thought this phenomena would be same as we discussed
in Section 4.4.

5. CONCLUSION

In this paper, we investigated the elastic spectral distortion
method to artificially increase the training samples under low
resource scenarios. We investigated three types of distortion
method: vocal tract length distortion, speech rate distortion,
and frequency-axis random distortion. We evaluated the per-
formance of these methods with a Japanese lecture recogni-
tion task and found that they all improved both the frame ac-
curacy and the word accuracy. Combining distortion meth-
ods achieved a 10.1 % relative word error reduction compared
with a normally trained DNN-HMM in a 10-hour training sce-
nario.
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