
ACCELERATING HESSIAN-FREE OPTIMIZATION FOR DEEP NEURAL
NETWORKS BY IMPLICIT PRECONDITIONING AND SAMPLING

Tara N. Sainath, Lior Horesh, Brian Kingsbury, Aleksandr Y. Aravkin, Bhuvana Ramabhadran

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A
{tsainath, lhoresh, bedk, saravkin, bhuvana}@us.ibm.com

Hessian-free training has become a popular parallel second or-
der optimization technique for Deep Neural Network training. This
study aims at speeding up Hessian-free training, both by means of
decreasing the amount of data used for training, as well as through
reduction of the number of Krylov subspace solver iterations used
for implicit estimation of the Hessian. In this paper, we develop an
L-BFGS based preconditioning scheme that avoids the need to ac-
cess the Hessian explicitly. Since L-BFGS cannot be regarded as
a fixed-point iteration, we further propose the employment of flexi-
ble Krylov subspace solvers that retain the desired theoretical con-
vergence guarantees of their conventional counterparts. Second, we
propose a new sampling algorithm, which geometrically increases
the amount of data utilized for gradient and Krylov subspace itera-
tion calculations. On a 50-hr English Broadcast News task, we find
that these methodologies provide roughly a 1.5x speed-up, whereas,
on a 300-hr Switchboard task, these techniques provide over a 2.3x
speedup, with no loss in WER. These results suggest that even fur-
ther speed-up is expected, as problems scale and complexity grows.

1. INTRODUCTION

Second order optimization techniques have been extensively ex-
plored for problems involving pathological curvature, such as deep
neural network (DNN) training problems. In fact, [1] demonstrated
success of a second order technique, known as Hessian-free (HF)
optimization [2], with DNNs on various image recognition tasks.
In addition, [3] successfully applied the HF optimization technique
with DNNs for speech recognition tasks. Other second order meth-
ods, including L-BFGS [4] and Krylov Subspace Descent [5], have
also shown great success for DNN training.

Second order methods are particularly important for sequence-
training of DNNs, which provides a 10-20% relative improvement in
WER over a cross-entropy (CE) trained DNN [6]. Because sequence
training must use information from time-sequential lattices corre-
sponding to utterances, sequence training is performed using utter-
ance randomization rather than frame randomization. For mini-batch
stochastic gradient descent (SGD), which is often used for CE train-
ing, frame randomization performs better than utterance randomiza-
tion [7]. However, because sequence-training must be accomplished
at the utterance level, second order methods perform much better
than SGD, as second order methods compute the gradient over a
large batch of utterances compared to utterance mini-batch SGD [3].

At IBM Research, we employ HF optimization techniques for
sequence training [1]. One of the drawbacks of this method is that
training can be very slow, requiring about 3 weeks for training a 300-
hour Switchboard task [3] using 64 parallel machines. There are two
reasons why training is slow. Firstly, a great number of Krylov sub-

space iterations may be required for a solution to approximate the
Hessian within each HF iteration [1], [3]. Secondly, [3] proposes
using a fixed amount of data for all HF iterations in both the gra-
dient and Krylov subspace iteration computations. The purpose of
this research is to explore algorithmic strategies for reduction of the
amount of time spent in both gradient and Krylov subspace compu-
tations, both by reducing the amount of data needed for training, as
well as by reducing the number of Krylov subspace iterations.

In this paper, we exploit a specific instance of Krylov subspace
solvers which are consumed to symmetric positive definite matrices,
known as conjugate gradient (CG) solvers. For simplicity, we will
use the term “conjugate gradient” as the specific Krylov subspace
technique used to estimate the Hessian. However, the algorithms we
propose for reducing training time are generic and can work with
any other flexible Krylov subspace solver variant.

Preconditioning in the context of linear algebra refers to the
process of transforming a system of equations into one that can be
solved more readily [8]. For example, preconditioning has been ex-
tensively used to reduce CG iterations [9]. Obtaining an appropriate
preconditioner for a given problem can be challenging. First, the
type of preconditioner that works best is problem specific. Second,
while in principle, it is possible to design preconditioning strategies
that will reduce the computational burden of the consequent solution
phase radically, the computational investment in attaining such a pre-
conditioner might offset its benefit. Thus, it is critical to identify a
proper balance between computational efforts invested in precondi-
tioning, vs. that invested in the consequent solution phase.

For our optimization problem, it is computationally intractable
to construct the Hessian explicitly. Quasi-Newton approaches con-
struct (typically a low rank) an approximation to the Hessian, and in
their limited memory versions, only form such approximations im-
plicitly. In this work, we propose using the quasi-Newton L-BFGS
method [10] as a preconditioner to the CG solver. Our rationale is
that while both quasi-Newton approaches and CG exploit the under-
lying structure of the linear(ized) system, the postulated structural
assumptions of both (low rank, CG) are complementary. Therefore a
combination of both methods is typically more effective than depen-
dence upon each one solely. The reason L-BFGS was not used di-
rectly for HF optimization of DNNs is that L-BFGS crudely approx-
imates the curvature matrix, whereas the HF method in [1] makes
implicitly available the exact curvature matrix, which allows for the
identification of directions with extremely low curvature.

The use of L-BFGS for preconditioning has been suggested be-
fore [11] for numerical simulations. We extend upon the work in
[11], and demonstrate that L-BFGS serves as an effective precon-
ditioner for CG-based HF training of DNNs on large-scale speech
recognition data. Furthermore, unlike [11] which used a typical fixed
CG approach, we make here an important observation that non-fixed
point preconditioners, as the proposed L-BFGS, cannot be used sta-

303978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

blely with standard CG iterative schemes [8]. Thus, to ensure, sta-
ble and predictable convergence, we propose here the use of flexible
variants of CG methods [12]. These variants avoid the failures and
breakdowns that their standard counterparts are susceptible to.

Second, we introduce a sampling strategy in which the amount
of data used for gradient and CG calculations, is gradually increased.
In optimization problems, gradient-based methods typically operate
within two popular regimes [13]. Stochastic approximation methods
(i.e. such as stochastic gradient descent) select a small sample size
to estimate the gradient. These methods often decrease the objective
function loss quickly during initial training iterations, albeit, dur-
ing later iterations the movement of the objective function is slow.
On the other end of the spectrum, sample approximation techniques
compute the gradient on a large sample of data. While this computa-
tion is expensive, the gradient estimates are much more reliable, and
the objective function progresses well during later training iterations.
In this study, we propose a hybrid method that captures the benefits
of both stochastic and sample approximation methods, by increasing
the amount of sampled data used for gradient and CG calculations.

Sampling the amount of data used for gradient and CG calcula-
tions was explored in [13], which observed the variance of the batch
gradient to determine the amount of data to use for gradient and CG
calculations. Alternatively, [14] explored geometrically increasing
the amount of data used for logistic regression and conditional ran-
dom field problems. The benefit of this approach is that the schedule
for selecting data is given ahead of time, and there is no need to
compute the expensive gradient variance. In this paper, we extend
the idea in [14] for HF DNN training, and compare this to the sam-
pling approach in [13].

Initial experiments are conducted on a 50-hr English Broadcast
News (BN) task [3]. We find that preconditioning allows for more
than 20% speedup by reducing the number of CG iterations. Fur-
thermore, we find that gradient and CG sampling provide roughly
additional 20% improvement in training time. In total, by combin-
ing both sampling and preconditioning speedup ideas we were able
to reduce overall training time by a factor of 1.5. Second, we extend
the preconditioning and sampling ideas to a larger 300-hr Switch-
board (SWB) task, where we find that the proposed techniques pro-
vide more than a 2.3x speedup, with no loss in accuracy.

2. HESSIAN-FREE OPTIMIZATION

Before describing the speedups made to the Hessian-free (HF) algo-
rithm, we briefly summarize the HF algorithm for DNN training, as
described in [1]. Let θ denote the network parameters, L(θ) denote
a loss function,∇L(θ) denote the gradient of the loss with respect to
the parameters, d denote a search direction, and B(θ) denote a ma-
trix characterizing the curvature of the loss around θ (i.e., a Hessian
approximation). The central idea in HF optimization is to iteratively
form a quadratic approximation to the loss,

L(θ + d) ≈ L(θ) +∇L(θ)Td +
1

2
dTB(θ)d (1)

and to minimize this approximation using Krylov subspace methods,
such as conjugate gradient (CG), which access the curvature matrix
only implicitly through matrix-vector products of the form B(θ)d.
Such products can be computed efficiently for neural networks [15].
In the HF algorithm, the CG search is truncated, based upon the rel-
ative improvement in the approximate loss. The curvature matrix
is often chosen to be the Gauss-Newton matrix G(θ) [16], which
may not be positive definite. To avoid breakdown of CG due to neg-
ative curvature, a positive definite approximation can be enforced

by shifting the matrix using an additional damping term: B(θ) =
G(θ) + λI, where λ is set via the Levenberg-Marquardt algo-
rithm. Our implementation of HF optimization, which is illustrated

Algorithm 1 Hessian-free optimization (after [1]).
initialize θ; d0 ← 0; λ← λ0; Lprev ← L(θ)
while not converged do

g← ∇L(θ)
Let qθ(d) = ∇L(θ)Td + 1

2
dT (G(θ) + λI)d

{d1,d2, . . . ,dN} ← CG-MINIMIZE(qθ(d),d0)
Lbest ← L(θ + dN)
for i← N − 1, N − 2, . . . , 1 do . line search
Lcurr ← L(θ + di)
if Lprev ≥ Lbest ∧ Lcurr ≥ Lbest then

i← i+ 1
break

Lbest ← Lcurr

if Lprev < Lbest then
λ← 3

2
λ; d0 ← 0

continue
ρ = (Lprev − Lbest)/qθ(dN)
if ρ < 0.25 then

λ← 2
3
λ

else if ρ > 0.75 then
λ← 3

2
λ

θ ← θ + αdi; d0 ← βdN ; Lprev ← Lbest

as pseudo-code in Algorithm 1, closely follows that of [1]. Gradients
are computed over all the training data. Gauss-Newton matrix-vector
products are computed over a sample (about 1% of the training data)
that is taken each time CG-Minimize is called. The loss, L(θ), is
computed over a held-out set. CG-Minimize(qθ(d),d0) uses CG
to minimize qθ(d), starting with search direction d0. This function
returns a series of steps {d1,d2, . . . ,dN} that are then used in a line
search procedure. The parameter update, θ ← θ + αdi, is based on
an Armijo rule backtracking line search. Distributed computation
to computer gradients and curvature matrix-vector products is done
using a master/worker architecture [3].

3. PRECONDITIONING

One of the problems with the HF technique used in [3] is that CG
algorithms used to obtain an approximate solution to the Hessian
require many iterations. Figure 1 indicates that as HF training itera-
tions increase, training time per iteration is in fact dominated by CG
iterations. In this section, we discuss how to reduce the number of
CG iterations using preconditioning.

3.1. Motivation

2nd-order optimization techniques require computation of Hessian
in order to determine a search direction of the form dk = −H−1

k gk.
In this formulation, Hk is the Hessian approximation and gk the
gradient of the objective function at the kth HF iteration. The afore-
mentioned CG method can be used to solve for this search direc-
tion. Specifically, we set Hk = (Gk + λI), where Gk is the Gauss-
Newton matrix, and solve Hkdk = −gk.

As mentioned above, in principle, L-BFGS [10] can be used for
optimization of the HF DNN training problem. The reason L-BFGS
was not used for optimization of neural networks is that in practice
L-BFGS crudely approximates curvature of such systems, whereas

304

Fig. 1. Time spent in gradient and CG per HF iteration

for this domain problem HF algorithms manage to capture salient
features of the curvature, and thereby identify search directions of
extremely low curvature [1].

Yet, the computation of each HF search direction can be com-
putationally excessive, requiring a great number of CG iterations.
Thus, the use of quasi-Newton methods for preconditioning such
implicit systems is sensible, as the structural assumptions of CG and
L-BFGS are complementary. In the section below, we describe the
L-BFGS algorithm and detail using this as a preconditioner for flex-
ible CG.

3.1.1. L-BFGS algorithm

L-BFGS is a quasi-Netwton optimization method that uses a limited
memory technique to approximate the Hessian or its inverse. Specif-
ically, instead of computing the Hessian directly, which can often be
a large and dense matrix, the L-BFGS algorithm stores a small num-
ber of vectors which can be used as a low rank approximation of the
Hessian. The L-BFGS algorithm is outlined below in Algorithm 2.

Algorithm 2 L-BFGS Algorithm
Position at iteration k: xk
gk = ∆f(xk), where f is the function to be minimized
sk = xk+1 − xk
yk = gk+1 − gk
ρk = 1

yT
k
sk

Initial Hessian: H0
k =

yT
k sk

yT
k
yk
I

q = gk
for i← k − 1, k − 2, . . . , k −m do

αi = ρis
T
i q

q = q − αiyi
z = H0

kq
for i← k −m, k −m+ 1, . . . , k − 1 do

βi = ρiy
T
i z

z = z + si(αi − βi)
Hkgk = z . search direction

3.1.2. L-BFGS as a Preconditioner

CG iterative methods can be used to solve for the search direction dk,
by minimizing the following problem H−1

k gk − dk = 0. Precondi-
tioning typically involves a process or transformation (e.g. change
of coordinates) applied upon a system of equations, which in return,

converts the system to of more favorable structure. Precondition-
ing makes the CG problem easier to solve and reduces the num-
ber of CG iterations. If we define M as a preconditioner, precondi-
tioned CG involves the following transformation to the CG problem
M−1(H−1

k gk − dk). The preconditioner M is required to be sym-
metric and positive definite, and fixed for all iterations. If any of
these conditions are violated, the CG method may fail.

Prescription of a suitable preconditioning scheme for a given
problem is challenging. First, each system has its own characteris-
tic structure. Identification of which and respectively determining
the type of preconditioner that works best is generally problem spe-
cific. Second, if the preconditioner is computationally expensive to
obtain, then this will offset any reduction in CG iterations, and thus
the preconditioner will not be cost effective. Third, as challenging as
preconditioning is in ordinary circumstances, a greater challenge is
to precondition an implicit system, that cannot be accessed directly.

Previous preconditioning work for HF optimization has focused
on diagonal matrix preconditioners. [1] explored using the diaogonal
elements of the Fisher information matrix as a preconditioner for HF
training of DNNs. Using diagonal matrix elements has a very lim-
ited ability to precondition the system, and is mainly beneficial when
the matrix suffers scaling issues. In addition, [17] explored using the
Jacobi pre-conditioner, which is computed over a batch of data just
like the curvature-vector products, thus requiring the master/worker
data-parallelization architecture. For our specific DNN speech prob-
lem, we found that the Jacobi preconditioner was costly to compute
and offset reductions in CG iterations. The L-BFGS [11] precondi-
tioner we propose is far more powerful compared to diagonal matrix
preconditioners as it improves the spectral properties of the system,
rather than merely tackling potential scaling issues. Furthermore, it
does not require any data parallelization.

The L-BFGS preconditioner is described as follows. Each itera-
tion i of CG produces a sequence of iterates xi (i.e., di in Algorithm
1) and a sequence of residuals ri [18]. Using these statistics, the vec-
tors si = xi+1 − xi and yi = ri+1 − ri are stored for m iterations
of CG, wherem is specified by the user. Oncem statistics are saved,
an L-BFGS matrix H can be defined using the steps in Algorithm 2.
This L-BFGS matrix is used as the preconditioner for CG.

There are a variety of different methodologies to choose the m
statistics to use when estimating the L-BFGS matrix. We adopt a
strategy proposed in [11], namely usingm vectors evenly distributed
throughout the CG run, to estimate the L-BFGS matrix. This implies
that our preconditioner changes for different CG iterations. The re-
quirement that the preconditioner needs to be fixed for all iterations
of CG is inconvenient, since as we obtain more L-BFGS statistics we
can improve the estimate of the preconditioner. Changing the pre-
conditioner for CG requires using a flexible CG approach [12]. More
specifically, instead of using the equivalent of Fletcher-Reeves up-
dating formula for non-preconditioned CG, the Polak-Ribière vari-
ant is required [18]. This is opposed to the approach taken in [11]
which did not use a flexible CG approach.

4. SAMPLING

Another problem with the HF technique used in [3] was that the
gradient was computed using all data, and CG on a fixed data sam-
ple. In this section, we explore reducing the amount of data used
for the gradient and CG computations. Specifically, we explore a
hybrid technique that first starts with a small amount of data simi-
lar to stochastic approximation methods, and gradually increases the
amount of sampled data similar to sample approximation methods.
In the following section, we detail two different hybrid methods.

305

4.1. Sampling From Variance Estimates

[13] proposes a method to increase the sample size based on vari-
ance estimates obtained during the computation of a batch gradient.
This algorithm can be described as follows. Denote f(w;xi) as the
output from the DNN and yi the true output, such that a loss between
predicted and true values can be defined as l(f(w;xi), yi). The loss
over the training set of size N , is defined as the sum of the losses
from the individual training examples xi, as shown by Equation 2.

J(w) =
1

N

N∑
i=1

l(f(w;xi), yi) (2)

In addition, the loss over a subset S ⊂ {1, . . . , N} is defined by
Equation 3.

JS(w) =
1

S

∑
i⊂S

l(f(w;xi), yi) (3)

Denoting the gradients of the full and subset losses as ∇J(w)
and ∇JS(w) respectively, the algorithm ensures that descent made
in JS at every iteration must admit a descent direction for the true
objective function J . The is expressed by Equation 4.

δS(w) ≡ ||∇JS(w)−∇J(w)||2 ≤ θ||∇JS(w)||2, where θ ∈ [0, 1)
(4)

In practice, the quantity δS(w) is not evaluated (the computation
of ∇J(w) is expensive for large data sets), but instead is estimated
from the variance of ∇JS(w). Inequality 4 can be simplified to the
inequality

||V ari∈S(∇l(w; i))||1
|S| ≤ θ2||∇JS(w)||22 . (5)

If this inequality fails, a new sample size Ŝ > S is selected to satisfy
Inequality 5. The same dynamic selection strategy is also applied to
the CG iterations.

In this paper, we explore this sampling approach within a DNN
framework. Given an input utterance u, the output of the DNN is the
sum of the gradients of all training frames L in that utterance, i.e.∑L

i=1∇l(w; i). Therefore, to compute the variance of the gradient
estimate, this requires two passes through each utterance to compute
the gradient and gradient-squared statistics

∑L
i=1∇l

2(w; i). Since
this makes the algorithm computationally expensive, we compute the
average gradient per utterance u, i.e. l̄u = 1

L

∑L
i=1∇l(w; i). The

variance statistics become the sum and sum-squared of l̄u over all
utterances u ∈ S in the training set, as shown by Equation 6. This
only requires one pass through the network per utterance.

V ari∈S(∇l(w; i)) ≈
∑S

u=1 l̄
2
u − (

∑S
u=1 l̄u)2/S

S − 1
(6)

4.2. Geometric Sampling

The sampling approach proposed above uses sampling statistics to
approximate the descent condition (5), but the need to estimate the
variance in (5) adds notable computational complexity to the gradi-
ent computation. In contrast, the framework discussed in [14] pro-
vides an expected guarantee of descent in each iteration, as long as
the sampling errors

E[||∇JS(w)−∇J(W)||22] ≤ Bk

are bounded, and the bounds Bk are decreasing. In fact, [14, The-
orem 2.2] links the sampling errors directly to the expected rate of
convergence. This approach does not require computing statistics
along the way, and the sampling strategy used to select S is linked
directly to the expected convergence rate in [14, 19].

[14] uses a geometrically increasing sample size. We adopt this
strategy for the gradient and CG iteration samples in each iteration.
Specifically, given initial sample size S0, the sample size at each
iteration i is given by Equation 7 where α is the geometric factor
that is tuned on a development set.

|Si| = αi|S0| (7)

This approach fits into the theory proposed in [14], and has the
practical benefit of a priori sample size selection. The sample size
can be used both for gradient and CG iteration calculations.

5. EXPERIMENTS

5.1. Broadcast News

Our initial experiments are conducted on a 50-hr English Broadcast
News (BN) task and results reported on both the EARS dev04f
set. We use a recipe outlined in [20] to extract acoustic features. The
hybrid DNN is trained using speaker-adapted VTLN+fMLLR fea-
tures as input, with a context of 9 frames around the current frame.
In [3], it was observed that a 5-layer DBN with 1,024 hidden units
per layer and a sixth softmax layer with 2,220 output targets was an
appropriate architecture for BN tasks.

We explore the behavior of preconditioning and sampling for
HF training on a smaller BN task first, before moving to a larger
Switchboard task. All timing experiments in this study were run on
an 8 core Intel Xeon X5570@2.93GHz CPU. Matrix/vector opera-
tions for DNN training are multi-threaded using Intel MKL-BLAS.
12 machines were exclusively reserved for HF training to get reliable
training time estimates.

6. RESULTS

6.1. Preconditioning

In this section, we compare CG with preconditioning and no precon-
ditioning (noPC). For preconditioning, we explore the behavior with
different number of statistics used to estimate the L-BFGS precon-
ditioned, namely 16 (PC-16), 32 (PC-32) and 64 (PC-64).

Table 1 shows the total time spent in CG, and total number of
training iterations, to achieve the same loss. In addition, Figure 2
provides a closer look at the cumulative time for CG for the 4 meth-
ods. The Figure indicates that that all preconditioning methods re-
quire less time for CG, particularly as the number of total HF itera-
tions increases (and thus the number of CG iterations increases). We
see that PC-64 manifests a significant reduction in CG time after 30
HF iterations, but this also results in the loss moving much slower
for this method, as explained by increased HF iterations in Table 1.
PC-32 appears to be the most cost-efficient choice for the given task,
both in terms of CG iteration runtime and in terms of loss reduction,
and is roughly 22% faster than the baseline method.

6.2. Gradient+CG Sampling

Next, we compare the behavior of the geometric and variance
sampling methods. Sampling methods require a tradeoff between
amount of data used, and the number of iterations for the training

306

Method Loss HF Iterations Time (min)
noPC 1.9153 39 3,492.2
PC-16 1.9157 35 3,042.2
PC-32 1.9150 33 2,7095.3
PC-64 1.9158 46 2,745.6

Table 1. Total CG runtime for different quasi-Newton PC schemes

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

Iteration

C
u
m

u
la

ti
v
e
 T

im
e
 (

m
in

s
)

 No PC

PC−16

PC−32

PC−64

Fig. 2. Cumulative CG runtime for different PC schemes

loss to converge. Using too little data for gradient and CG will re-
quire more training iterations, while using too much data will make
each iteration computationally expensive.

For geometric sampling, the geometric factor α was tuned on a
held-out set for both gradient and CG. It was found that an αg = 1.2
for the gradient and αcg = 1.3 for CG allowed for the best tradeoff
between reduction in amount of training data used and training time.
This geometric factor corresponds to seeing roughly 100% of the
total data used for gradient and CG calculations when roughly 50%
of the total training iterations are completed. For variance sampling,
θ in Equation 6 is tuned, where smaller θ favors a larger sample size.

Figure 3 shows the percentage of data accessed for the gradient
for the geometric and variance methods, per HF iteration, for three
different values of θ. Notice that the variance methods access a lot
of training data in the beginning relative to the geometric method.
One reason is that during the beginning of training, there is little
data available to get a reliable variance estimate, so a larger sample
size is preferred. The variance method with θ = 0.25 provided the
best tradeoff between training time and data accessed. A similar θ
was also used for estimating amount of data used for CG.

Figure 4 shows the cumulative time for gradient and CG calcu-
lation per HF iteration, for the full gradient/CG and sampling ap-
proaches, where both sampling approaches are tuned to provide best
tradeoff between training time and amount of data accessed. The
geometric method is quicker than the variance sampling method,
particularly because it accesses less data during early training iter-
ations, as shown in Figure 3. Overall, we find that the geometric
method provides roughly a 20% reduction in training time. It is pos-
sible that a technique that starts with geometric sampling, and then
switches to variance sampling once enough data is obtained for a
reliable variance estimate, might provide further speedups.

6.3. Overall Speedups

In this section, we combine the preconditioning and sampling to cal-
culate the overall speedup in training time for BN. Figure 5 shows

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HF Iterations

P
e
rc

e
n
ta

g
e
 G

ra
d
ie

n
t

 Geometric

Variance−0.2

Variance−0.25

Variance−0.3

Fig. 3. Percentage of Gradient Accessed for Sampling Methods

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Iteration

C
u
m

u
la

ti
v
e
 T

im
e
 (

m
in

s
)

Time for CG+Grad

Full

Geom

Var

Fig. 4. Cumulative Training Time for Sampling Methods

the trade-off between loss and overall training time of the baseline
(no speedup) method, preconditioning, and then including gradient
and CG sampling. Overall we can see that PC+Gradient+CG sam-
pling offers the fastest training time compared to the baseline. Table
2 shows the training time and corresponding WER for the baseline
and speedup methods. Training time is reduced from 68.7 hours to
44.5 hours, roughly a 1.5x speedup, with no loss in accuracy.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1

2

3

4

5

6

7

8

Total Time (mins)

L
o
s
s

Baseline

Pre−Conditioning

PC+Grad Sampling

PC+Grad+CG Sampling

Fig. 5. Loss vs. Training Time for Different Speedup Techniques

307

Method WER Total Training Time (hrs)
Baseline 17.8 68.7

PC+Grad+CG Speedups 17.8 44.5

Table 2. Overall Training Time Improvements, Broadcast News

6.4. Speedups on Larger Task

After analyzing the behavior of preconditioning and sampling
speedups on a smaller 50-hour Broadcast News task, in this sec-
tion, we explore training speed improvements on a larger 300-hour
Switchboard task.

6.4.1. Experimental Setup

We explore DNNs performance on 300 hours of conversational
American English telephony data from the Switchboard corpus. De-
velopment is done on the Hub5’00 set, while testing is done on the
rt03 set, where we report performance separately on the Switch-
board (SWB) and Fisher (FSH) portions of the set.

Similar to BN, the training features are speaker-adapted, using
VTLN and fMLLR techniques. The input features into the DNN
have an 11-frame context (±5) around the current frame. Similar
to [3], the DNN has six hidden layers each containing 2,048 sig-
moidal units, and 8,260 output targets. Results with and without HF
speedups are reported after sequence training.

6.4.2. Results

Performance with the baseline and speedup HF techniques are shown
in Table 3. Since using 32 L-BFGS stats performed well for the
smaller 50-hour BN task, we used the same on the Switchboard task
for preconditioning. In addition, because of the increased amount of
training data associated with the larger task, we found that using a
smaller sample size (i.e., α) for the gradient and CG iteration calcu-
lations still allowed for an appropriate estimate of these statistics.

Since we use more parallel machines (i.e. 64) for SWB com-
pared to BN, it was not possible to exclusively reserve machines for
timing calculations. Therefore, training time is estimated by cal-
culating total number of accessed data points for training, which is
correlated to timing. Table 3 shows the total accessed data points
for the baseline and speedup techniques. Notice that with a larger
dataset, because we are able to decrease the fraction of data used
for gradient and conjugate gradient calculations, was can achieve an
even larger speedup of 2.3x over the baseline, with no loss in accu-
racy. This suggests that even further speedups are possible as the
data size grows.

Method WER Total Accessed Data Points
Baseline 12.5 2.26e9

PC+Grad+CG Speedups 12.5 9.95e8

Table 3. Overall Training Time Improvements, Switchboard

7. CONCLUSIONS

In this paper, we explored using an L-BFGS pre-conditioner and ge-
ometric sampling approach to accelerate HF training. We find that
both approaches combined provided roughly a 1.5x speedup over a
50-hr Broadcast News task and a 2.3x speedup on a 300-hr Switch-
board task, with no loss in accuracy. We anticipate an even larger
speedup to be attained by more informed selection of quasi-Newton

statistics (potentially adaptive) as well as by application of the pro-
posed algorithmic strategies upon problems of greater scale.

8. REFERENCES

[1] J. Martens, “Deep learning via Hessian-free optimization,” in Proc.
Intl. Conf. on Machine Learning (ICML), 2010.

[2] L. Horesh, M. Schweiger, S.R. Arridge, and D.S. Holder, “Large-scale
non-linear 3d reconstruction algorithms for electrical impedance to-
mography of the human head,” in World Congress on Medical Physics
and Biomedical Engineering 2006, R. Magjarevic and J.H. Nagel, Eds.,
vol. 14 of IFMBE Proceedings, pp. 3862–3865. Springer Berlin Heidel-
berg, 2007.

[3] B. Kingsbury, T. N. Sainath, and H. Soltau, “Scalable Minimum Bayes
Risk Training of Deep Neural Network Acoustic Models Using Dis-
tributed Hessian-free Optimization,” in Proc. Interspeech, 2012.

[4] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z.
Mao, M.A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large Scale Distributed Deep Networks,” in NIPS, 2012.

[5] O. Vinyals and D. Povey, “Krylov Subspace Descent for Deep Learn-
ing,” in AISTATS, 2012.

[6] B. Kingsbury, “Lattice-based optimization of sequence classification
criteria for neural-network acoustic modeling,” in Proc. ICASSP, 2009,
pp. 3761–3764.

[7] H. Su, G. Li, D. Yu, and F. Seide, “Error Back Propagation For Se-
quence Training Of Context-Dependent Deep Networks For Conversa-
tional Speech Transcription,” in Proc. ICASSP, 2013.

[8] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition, SIAM, Philadelphia, PA, 1994.

[9] S. Eisenstat, “Efficient Implementation of a Class of Preconditioned
Conjugate Gradient Methods,” SIAM Journal on Scientific and Statis-
tical Computing, 1981.

[10] J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,”
Mathematics of Computation, vol. 33, pp. 773–782, 1980.

[11] J.L. Morales and J. Nocedal, “Automatic Preconditioning by Limited
Memory Quasi-Newton Updating,” SIAM Journal on Optimization,
1999.

[12] Y. Notay, “Flexible Conjugate Gradients,” SIAM Journal on Scientific
Computing, 2000.

[13] R. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in
optimization methods for machine learning,” Mathematical Program-
ming B, 2012.

[14] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic
methods for data fitting,” SIAM J. Scientific Computing, vol. 34, no. 3,
2012.

[15] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural
Computation, vol. 6, no. 1, pp. 147–160, 1994.

[16] N. N. Schraudolph, “Fast curvature matrix-vector products for second-
order gradient descent,” Neural Computation, vol. 14, pp. 1723–1738,
2004.

[17] O. Chapelle and D. Erhan, “Improved Preconditioner for Hessian-
free Optimization,” in Proc. NIPS Workshop NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[18] J. Shewchuk, “An Introduction to the Conjugate Gradient Method with-
out the Agonizing Pain,” 1994.

[19] A. Aravkin, M. P. Friedlander, F. Herrmann, and T. van Leeuwen, “Ro-
bust inversion, dimensionality reduction, and randomized sampling,”
Mathematical Programming, vol. 134, no. 1, pp. 101–125, 2012.

[20] H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila speech recogni-
tion toolkit,” in Proc. IEEE Workshop on Spoken Language Technology,
2010, pp. 97–102.

308

