LEARNING FILTER BANKS WITHIN A
DEEP NEURAL NETWORK FRAMEWORK

Tara N. Sainath', Brian Kingsbury', Abdel-rahman Mohamed?, Bhuvana Ramabhadran®

1IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
2Department of Computer Science, University of Toronto, Canada.
1{tsainath, bedk, bhuvana} @us.ibm.com, 2asamir @cs.toronto.edu

ABSTRACT

Mel-filter banks are commonly used in speech recognition, as they
are motivated from theory related to speech production and percep-
tion. While features derived from mel-filter banks are quite popular,
we argue that this filter bank is not really an appropriate choice as
it is not learned for the objective at hand, i.e. speech recognition.
In this paper, we explore replacing the filter bank with a filter bank
layer that is learned jointly with the rest of a deep neural network.
Thus, the filter bank is learned to minimize cross-entropy, which is
more closely tied to the speech recognition objective. On a 50-hour
English Broadcast News task, we show that we can achieve a 5%
relative improvement in word error rate (WER) using the filter bank
learning approach, compared to having a fixed set of filters.

1. INTRODUCTION

Designing appropriate feature representations for speech recognition
has been an active area of research for many years. For example, in
large vocabulary continuous speech recognition systems, huge gains
in performance are observed by using speaker-adapted and discrimi-
natively trained-features [1], learned via objective functions such as
feature-space maximum likelihood linear regression (fMLLR), and
feature-space boosted maximum mutual information (fBMMI). In
addition, designing appropriate classifiers given these features has
been another active area of research, where popular modeling ap-
proaches include Deep Neural Networks (DNNs) or Gaussian Mix-
ture Models which have been discriminatively trained.

Oftentimes feature design is done separately from classifier de-
sign. This has a drawback that the designed features might not be
best for the classification task. Deep Neural Networks are attractive
because they have been shown to do feature extraction jointly with
classification [2]. In fact [3] showed that the lower layers of DNNs
produce speaker-adapted features, while the upper layers of DNNs
perform class-based discrimination. For years, speech researchers
have been using separate modules for speaker adaption (i.e. fM-
LLR) and discriminative training (i.e. fBMMI) for GMM training.
One reason we believe DNNs are more powerful than GMMs is that
this feature extraction is done jointly with the classification, such
that features are tuned to the classification task at hand, rather than
separately before classification.

One problem with DNNs is that they are not explicitly designed
to reduce translational frequency variance within speech signals,
which can exist due to different speaking styles. While DNNss could
remove variance with a large enough number of parameters or hav-
ing a lot of data, this can often be infeasible. Alternatively, fMLLR
transformations look to address the issue of translational variance
by mapping speech from different speakers into a canonical space.

978-1-4799-2756-2/13/$31.00 ©2013 IEEE

297

Therefore, fMLLR features are used in conjunction with DNNs
to give optimal performance [4]. Convolutional Neural Networks
(CNNs) [5] are better feature extractors than DNNs, as they reduce
translational variance with far fewer parameters compared to DNN,
jointly while doing class-based discrimination. Therefore, with very
simple features, i.e. VTLN-warped log-mel filter bank features, [6]
showed than CNNs offered a 4-12% relative improvement in WER
over DNNs across a variety of different LVCSR tasks. This result
indicates that giving the CNN very simple features, and having it
learn appropriate feature extraction and discrimination via an objec-
tive function related to speech recognition, is much more powerful
than providing a DNN hand-crafted features.

Yet, one of the drawbacks with current CNN work in speech is
that the most commonly used features are log-mel filter bank fea-
tures. The mel filter bank is inspired by auditory and physiological
evidence of how humans perceive speech signals [7]. We argue that
a filter bank that is designed from perceptual evidence is not always
guaranteed to be the best filter bank in a statistical modeling frame-
work where the end goal is word error rate. We have seen examples
of this with Hidden Markov Models (HMM) in acoustic modeling.
HMMs have remained the dominant acoustic modeling technique to
date, despite their frame independence assumption which is absent
in human speech processing.

The creation of log-mel features is done by passing a power
spectrum through a mel-filter bank, followed by a non-linear log op-
eration. This process can be modeled by a layer of a neural network,
which has a linear weight multiplication (i.e. filter bank layer), fol-
lowed by a non-linearity (i.e., log). In this work, with even simpler
features (i.e., power spectral features), we explore learning the mel-
filter bank layer jointly with a deep CNN. This ensures that the filter
bank is learned for the task at hand.

Data-driven learning of filter banks has been explored in a vari-
ety of contexts. For example, [8] derived filter banks directly from
phonetically labeled speech data using Linear Discriminant Analy-
sis (LDA), though the authors argued the derived filter banks were
not optimal as LDA expects the data to have a Gaussian distribution,
which is not true for power spectra. In addition, [9] investigated us-
ing the Kullback-Leibler (KL) distance as the measure in the filter-
bank design, though the filter was still designed independently of
the acoustic model. Alternatively, [10] learned a discriminative filter
bank model jointly with a classifier using a discriminative training
criterion. However, their work looked at a relatively simple distance-
based classifier. In this work, we explore filter bank learning given a
powerful, state-of-the art deep CNN acoustic model [11] where filter
bank learning is incorporated into the learning of CNN parameters.
The benefit of using a neural network is that filter bank learning can
be seen as an extra layer of the neural network, where filter bank

ASRU 2013

parameters are updated along with the parameters in subsequent lay-
ers. To our knowledge, this is the first attempt at doing filter bank
learning with deep neural networks.

Our filter bank learning experiments are performed on a 50-hr
English Broadcast News (BN) task [12]. The baseline system, a
state-of-the art deep CNN [6] trained on log-mel filter bank features,
has a WER of 22.3%. We find that applying filter bank learning
directly into the CNN, we get a modest improvement of 22.0%. By
normalizing features before passing them to the filter bank, which
has been shown to be very important for neural network training
[13], a WER of 21.3% is attained. Finally, incorporating pooling
into the filter bank layer, provides a WER of 21.1%, which gives a
5% relative reduction in WER compared to a strong CNN baseline.

The rest of this paper is organized as follows. Section 2 de-
scribes the basic architecture of doing filter bank learning jointly
with CNN training. The experimental setup and CNN architecture
is discussion in Section 3, while Section 4 presents different exper-
iments with filter bank learning, including results and analysis. Fi-
nally, Section 5 concludes the paper and discusses future work.

2. FILTER BANK LEARNING

The process of generating log mel-filter bank features from the
power spectrum, and then training a convolutional neural network
is depicted in Figure 1. Specifically, mel features are generated by
passing the power spectrum through a set of mel-filters, depicted
as “filter 1-40” in Figure 1. 40 mel-filters is a common number
of filters to use in speech recognition tasks [14]. Then applying a
log-compression gives log-mel filter bank features. The features are
then normalized before passing them as input to the CNN, as this is
critical to neural network training [13].

output targets

Convolutional
Neural Network

1

normalization

log-mel features T

non-linearity (i.e., log)

I

||

power spectrum

mel-filterbank
fean T T ‘x

filter 1 ‘ filter 2 ‘ filter 39 ‘ filter 40

'\ /

Fig. 1. Log Mel-filter bank Feature Generation as Input into a CNN

Typically, the feature-generation process is separate from the
CNN training process. However, looking at the feature generation
process in Figure 1, we can see that log-mel features are produced
by multiplying power spectral features by a set of weights (i.e. fil-
ters), followed by a non-linearity (i.e., log). This is very similar to
the behavior of one layer of a neural network. However, instead
of having one set of weights which are used for all time and fre-
quency components, a limited weight sharing idea is utilized [15],
where weights are replicated at least once within a small localized
frequency region. Because both the weight multiplication and non-
linearity are differentiable functions, this means we should be able

298

to “learn” the filters jointly with the rest of the neural network. The
benefit of this approach is that filters are learned via a cross-entropy
objective function and for the speech recognition objective at hand,
rather than designed ahead of time.

To describe filter bank learning more mathematically, first de-
note f as the input power spectral feature. Furthermore, denote
exp(W;) as the weights for filter bank 4, which span over a small lo-
cal frequency region of the power spectrum. Here exp(W ;) denotes
an element-wise operation. The individual elements j of weight vec-
tor for filterbank ¢ are denoted as exp(W; ;) € exp(W;). The ex-
ponent operation ensures that the filterbank weights are positive. In
addition, f; € f are the power spectral components which corre-
spond to filter bank ¢, and f; ; € f;, are the individual frequency
components j that span over filter bank region ¢. The mel-filter bank
output m; for filter bank ¢ is given by Equation 1.

m; = exp(W])f; = ZeXP(Wi,j)fi,j M
J

Taking the log of m; gives the log-mel filter bank coefficient for
filter bank %, namely

(@)

Finally, a global mean-variance normalization is applied to the
log-mel features. This is given by Equation 3, where { ., o; } define
the mean and variance parameters for feature dimension ¢. These
parameters are estimated on the training data ahead of time.

l; = log(m;)

i
=

(3)

The goal of back propagation is to learn a set of weights that
optimize some objective function £. Typically, these weights are
learned through stochastic gradient descent, by taking the deriva-
tive of the objective function with respect to the weights, and then
updating the weights. For example, the weight update equation for
component j in filter bank %, denoted as weight W; ; is shown in
Equation 4. Note that we really do want the weight update for W;;
and not exp(W; ;), as the exponent can be thought of as another
operation to ensure positive weights.

ng

_ oL
g N oW,
The derivative of the objective function given weights can be
easily calculated by back propagating error gradients from previous
layers. Specifically, if n; in Equation 3 is the output of the filter
bank layer, then using the multivariate chain rule, the derivative of
the objective function with respect to weight W;; can be written as
Equation 5. Here we assume that the term 2% is computed using
the standard back propagation equations for neural networks [16].

ong
oL OL Om,
8Wi,]’ - a’l’Li GWZ-,J-

Given the definitions for m; and [; in Equations 1 and 2 respec-
tively, we can further expand Equation 5 as follows.

Wi;=W;

“

(&)

oL _ oL 6ni 8li ami
8Wi,j o a’ni 8lz 6’/7’1,1 8Wi7j

oL 1 1
= n o exp(Wi ;) fi.j

(6)

Equation 6 demonstrates how gradients from the neural network
stage can be back propagated into the filter bank learning stage.

Rather than having hand-crafted filter banks which are not necessar-
ily tuned to the objective at hand, incorporating filter bank learning
as an extra stage in the neural network allows the weights to be up-
dated according to objective function L. In the next few sections, we
will discuss results with filter bank learning.

3. EXPERIMENTS

Experiments are conducted on a 50-hour English Broadcast News
(BN) task [12]. The acoustic models are trained on 50 hours of data
from the 1996 and 1997 English Broadcast News Speech Corpora.
Results are reported on the EARS dev04f set.

The baseline speaker-independent CNN system is trained with
40 dimensional log mel-filter bank coefficients, which are global
mean-and-variance normalized. The architecture of the CNN is sim-
ilar to [6], which was found to be optimal for BN. Specifically, the
CNN has 2 full weight sharing convolutional layers with 256 hidden
units, and 3 fully connected layers with 1,024 hidden units per layer.
The final softmax-layer consists of 512 output targets.

Following a recipe similar to [4], during fine-tuning, after one
pass through the data, loss is measured on a held-out set and the
learning rate is reduced by a factor of 2 if the held-out loss has not
improved sufficiently over the previous iteration. Training stops after
we have reduced the step size 5 times. All CNNs are trained with
cross-entropy, and results are reported in a hybrid setup.

4. RESULTS

In this section, we present experiments and results with various mod-
ifications to the basic filter learning idea presented in Section 2.

4.1. Filter Learning

First, we explore a direct application of filter learning based on Fig-
ure 1. Specifically, the “learned” filter banks are applied directly
on the magnitude of the power spectral coefficients, and then a log
is taken. A global mean/variance normalization is applied after the
log, and these normalized “learned” log-mel features as passed as
input into the CNN. Since it is critical to initialize weights in the
lower layers compared to higher layers [11], the filter bank layer is
initialized to be the mel-filter bank, rather than starting from random
initialization.

Results with this proposed method of filter learning are shown in
Table 1. The learning provides a modest 0.3% improvement in WER
over the baseline system with a WER of 22.3%. In the next section,
we will discuss what assumptions are not appropriate for direct filter
bank learning, and why improvements are small.

Method WER
Baseline 22.3
Filter Learning | 22.0

Table 1. Direct Application of Filter bank Learning

4.2. Feature Normalization

Feature normalization is critical in neural network training to achieve
good convergence in training. As discussed in [13], when features
are not centered around zero, network updates will be biased towards
a particular direction and this will slow down learning. The paper

299

even discusses an extreme case when all inputs into a layer are pos-
itive. This causes all weights to increase or decrease together for a
given input, and thus the weight vector can only change direction by
zigzagging which is extremely slow. This extreme case discussed in
[13] is exactly the problem with the direct application of filter bank
learning for neural networks, as all the inputs into the filter bank
layer are from the magnitude of the power spectrum and are thus
positive. In this section, we discuss how to normalize power spectral
features for filter learning.

4.2.1. Algorithm

One could directly normalize the power spectral features, and then
pass them to a filter bank. However, because the features would be
negative, taking the log is not possible. The non-linear log operation
is also critical in compressing and spreading out features so they can
be better used for classifiers.

Given the constraints that we want to normalize the power spec-
tral features, but want the output of the filter bank stage to be posi-
tive, we explore an idea that is similar to that done in RASTA pro-
cessing [17]. First, as shown in Equation 7, we take the log of the
power spectrum f; ; € f, where again ¢ denotes the filter bank and j
is the individual frequency component which spans over filter bank
4. Then, as shown by Equation 8, the features are normalized to
get [; ;, which is done completely on the power spectral dimension
now. After the normalization is done, an exponent is applied to [; ;
in Equation 9, to ensure that the input features into the filter bank,
ei,;, are positive. Because of the exponent taken after normalization,
the log is taken before normalization in Equation 8, to ensure that the
new “normalized” features are roughly in the same range as the “un-
normalized” features passed into the filter bank in Section 4.1. The
normalized features e; ; € e; are then passed through the filter bank
i to produce output m;, given by Equation 10, which is then passed
as input into the CNN. Equations 7-10 ensure that a normalized and
positive feature is passed to the filter bank stage.

li,; = log(fi.5) @)

nyy = I H ®)
2V}

ei,j = exp(ni,j) (9)

(10)

m; = exp(W})e; = Zexp(Wi’j)em
J

With the addition of power spectrum-normalization, the back
propagation equations change slightly as well. Given objective
function £ and the error gradient from the previous layer, :—751_, the
weight update is now given by Equation 11.

oL oL Om;
8Wi,j a 8m, 8Wi,j
oL
= O exp(Wi,j)ei,j (11)

4.2.2. Results and Analysis

Results with filter bank learning using normalized input features are
shown in Table 2. By normalizing the input features, we can achieve
a0.7% absolute improvement over un-normalized features, and a 1%

Method WER

Baseline 22.3

Filter Learning 22.0
Normalization With Filter Learning | 21.3

Table 2. Normalized Features for filter bank Learning

absolute improvement in WER over the baseline system. This points
to the importance of feature normalization in neural networks.

A visual comparison of the 40 mel-filter banks and learned filter
banks is shown in Figure 2. The power spectral frequency compo-
nents the filters span over are also shown. For visual purposes, the
filters have been normalized so they can be compared on the same
plot. Notice that for low-frequency regions, both the learned and
mel-filters look similar. In the mid-frequency regions, the learned
filters seem to have multiple peaks instead of one, indicating they
are picking up multiple important critical frequencies rather than just
one like the mel. In the high-frequency regions, the filters appear to
be high-pass filters compared to the band-pass mel filters.

Mel Filterbanks
Learned Filterbanks

0
64 66 68 70 72 8 70 7274 76 78

]] o]

%6sss082945698 95 100 105
0.1 0.1 04 0.1
005 0.05 0.05 / 0.05
0 0

Qo0 105 110 110 115 120 140

OOSM M WOOSW

50 145150165160 155160165170 165170175180185

175180185190195 190 200 210 200 210 220 220 230 240
FFT coefficients

Fig. 2. Mel-Fiterbank vs. Learned Filter banks

Figure 3 also plots the log-mel features and learned filter bank
features for a specific utterance. The learned features appear similar
to the log-mel features, indicating the learned features are meaning-
ful. In the high frequency regions, the features are not as smooth
because of the high-pass filters in Figure 2.

Notice that using a limited weight sharing filter bank layer with
one output seems to preserve locality in frequency and allows us
to feed the outputs from this layer into a convolutional layer with
full weight sharing. Previous work with limited weight sharing used
multiple outputs per layer, which did not allow for multiple convo-
lutional layers with full weight sharing as the locality in frequency
was not preserved [15], [18].

300

Log-Mel Filter Bank Features

Fig. 3. Log-Mel Features and Learned Features

4.3. Pooling

Because the filter bank layer weights span over small frequency re-
gions and there are multiple weights, this layer can be seen as a
convolutional layer with limited weight sharing [15]. Pooling is an
important concept in convolutional layers which helps to reduce vari-
ance in the input features. A pooling strategy which varies the pool-
ing size for each filter bank layer makes sense, as each power spec-
trum band is linearly spaced in frequency and contains an unequal
amount of information, as reflected by mel-fiters having constant @
spacing apart.

[18] introduces a varied pooling strategy for each weight that
spans across a localized frequency region (i.e., filter bank), with the
acoustic knowledge that it makes sense to pool more in higher fre-
quency regions and less in lower frequency regions. This strategy
has been coined “heterogeneous pooling”. One of the problems with
heterogeneous pooling is that the filters are generally shifted by a
fixed amount (i.e., one) along the frequency axis during pooling.

Alternatively, we propose a vocal-tract-length-normalization
(VTLN)-inspired pooling strategy. Frequency pooling is performed
to reduce formant translations due to different speaking styles, vo-
cal tract lengths, gender, accents, etc. VTLN is another popular
technique to reduce frequency transformations of the input signal.
VTLN tries to find the optimal frequency warp factor for each
speaker, and map the speech back to a canonical space. Each warp
factor generates a shifted and scaled version of the mel filter banks
in each frequency region (i.e., 1-40). The warp factor for a given
speaker is generally selected via maximum likelihood [19]. For
LVCSR tasks, we typically use about 21 different warp factors [14].

In this paper, we explore a VTLN-inspired pooling strategy in
an unsupervised manner, and use just one filter per frequency region.
For each region, we compute the unique locations of the center fre-
quency of the VTLN filters in this region, but ignore the differences
in shape of the VTLN filters. During pooling, this corresponds to
having filters that are shifted in frequency at center locations defined
by the VTLN filters, rather than spaced by a fixed amount as in het-
erogeneous pooling. However, there is no “optimal” warp factor and
corresponding filter bank that is selected for each speaker as is done
in normal VTLN, just one filter is used per region.

Results with heterogeneous and VTLN-inspired pooling for the
filter bank layer are shown in Table 3. Note that pooling is also
performed in the convolutional layers of the CNN, though this is just
fixed-size pooling as in [6]. All pooling layers use a max-pooling

strategy. For heterogenous pooling, we tuned the pooling size P
in each region, using a linear relationship that pooling in the lower
frequency regions should be small, and pooling in the upper layers
should be high. We found using a pooling distribution between P =
1 — 8 was optimal, as shown in Table 3. However, heterogeneous
pooling does not seem to improve over the baseline.

For VTLN-style pooling, we also tuned the pooling size P. This
was done by taking a percentage of the total unique center frequen-
cies for each region. In lower frequencies, we find few unique center
frequencies (i.e., between 1-3), while in the higher frequency re-
gions, there are 21 unique center frequencies. Table 3 shows the
WER for different % of unique warp factors selected per region,
along with the variance of the actual pooling size. Notice that by
using 15% of the total unique center frequencies, which corresponds
to having a pooling size between 1-3, we can achieve a WER of
21.1%, a 0.2% reduction in WER compared to no pooling.

Method Pooling Size (P) | WER

Baseline none 21.3
Heterogeneous pooling 1-8 21.3
VTLN-inspired pooling 1-3 (15%) 21.1
VTLN-inspired pooling 1-5 (25%) 21.5
VTLN-inspired pooling 1-7 (35%) 22.3
VTLN-inspired pooling 1-16 (75%) 23.0

Table 3. WER with Different Pooling Strategies

A further analysis into the shape of these filters is shown in Fig-
ure 4. The biggest thing to notice is that in the higher-frequency
bands where the pooling size is increased, the filters learned from
pooling appear to having multiple peaks and are less smooth com-
pared to the no pooling filters. One hypothesis is that pooling is
mimicking having the peaks of the multiple VTLN filters, though
now in one filter. The real multiple-VTLN filters however span a
much greater region in frequency, compared to the learned filter.
This inspires us to increase the filter bank size to see if any further
improvements are possible.

4.4. Increasing Filter Bank Size

In this section, we explore giving more freedom to each filter. With
increased filter sizes, this indicates that the mel-filters cannot be used
as an initial filter. Thus, we explore using a Gaussian filter as the
initial filter. Before increasing filter size, we first check if there is a
change in WER by using a Gaussian filter as the initial filter. The
Gaussian filters peaks at the same point the mel-filters do, but tapers
off in a Gaussian manner rather than a triangular manner like the
mel-filters. Table 4 shows there is no change in WER by using a
Gaussian initialization. This justifies using this type of initialization
as we increase filter size.

Filter Size WER
Baseline Size | 21.3
Baseline Size | 21.3

Filter Initalization
Mel-Filter
Gaussian

Table 4. WER With Different Filter Initalizations

We explored increasing filter size for VTLN-style pooling. Re-
sults are shown in Table 5. Notice that for VTLN pooling, increasing
the filter size does not help, and keeping the filter-size the same as the
mel (i.e. Filter Size Multiple 1.0) seems to be the best. One hypothe-
sis is that perhaps when filter size increases, there is more overlap in

301

NP
——— VTLN-P

o
o w
o
23
»E
o
o »
QE
o
o

o
N

N

w

IN

o
/

o

o

o

~

oo <
SRS

\ \
® B

/

/

/

/
o s o

!
©
©
©
15}
5}
Y
@

N
=
N
o
N
@

0 0 0
e 0.4
0.2 =
0 0 0 0
0.2

i

0
38 40 42 44

0.2
0.1

w2 44 46 48 U5 50 50 55

64 66 68 70 72 68 70 72 74 76 78

o
E
A
]
i
/

o

E%

o

— 0 . 0
90 86889092949698 95 100 105

~
a
©
S
©
@
©
S
©
a

0.05

ol ol 0
110 115 120 120 130 1830 140

0.1
0.05

/

0.1
0.0587 |
S\
100 105 110

v - o
0.05 0.05 0.05

0

)

0 0 0
145150155160 155160165170 165170175180185

0.1 A 0.2
o.osw O-OSLIM 0.05\ M 0.1
0 0

0 Q
175180185190195 190 200 210 200 210 220

N
N

S

N

@

S

N

&

S r

FFT coefficients
Fig. 4. Learned Filters with No Pooling and VTLN-style pooling

frequency between the different filters. Therefore, filters might co-
adapt together to explain the same frequency regions, while placing
less importance on other frequency components. While dropout [20]
is a methodology to prevent co-adaptation, it is effective only where
there are a large number of hidden units, which is not the case here.

Pooling Type Filter Size Multiple | WER
VTLN-inspired 1.00 21.1
VTLN-inspired 1.25 21.8
VTLN-inspired 1.50 21.8

Table 5. WER With Different Filter Size

4.5. Regularization

Figures 2 and 4 indicate that the learned filters are not smooth and
have multiple peaks. It is not clear if this is a good behavior, mean-
ing we are picking up multiple important signals in each band, or this
behavior is bad because we give too much freedom to the filter bank
weights. In this section, we attempt to answer this question by ex-
ploring if enforcing some smoothing between neighboring weights
might help. Neighboring weight smoothing for neural networks was
first introduced in [21]. Given weights W; ; € W for filter bank 1,
unsmoothness is measured as follows:

W |

> Wi,

j=2

- Wij)? (12)

Given this, the new loss function £ is defined as the sum of the
old loss Ly, plus a second term which measures unsmoothness across
all filter banks, as shown in Equation 13. Here) is a constant which

weights the loss due to unsmoothness.

40 W]

L=Lo+A> > Wiy

i=1 j=2

— Wij1)? (13)

Finally, the new weight update given this reguarlization is shown
in Equation 14. Boundary conditions for the weights when j = 0
and j = |W;] are discussed in more detail in [21].

oL Ly
BWM - 8Wi,j

Table 6 shows the WER with and without neighboring weight
smoothing. Note that A is tuned on a held-out set. For a non-zero
A, we find that smoothing causes an increase in WER. This indicates
that multiple peaks in each filter is good.

+ 2\2W; 5 — Wi 51 — Wi j41] 14)

Method WER
No smoothing | 21.1
Smoothing 21.3

Table 6. WER With Neighboring Weight Smoothing

4.6. Exploration of Negative Weights and Non-Linearities

Having a log as a non-linearity requires that both input features
and corresponding weights are positive. In this section, we explore
changing the non-linearity, which concurrently removes the con-
straint that the weights must be positive. Specifically, we explore
using a sigmoid non-linearity, which is a popular non-linearity used
in neural networks. We also investigate using a cube-root, which is
inspired by its use in Perceptual Linear Predictive (PLP) features.
Since these non-linearities are centered around zero, we allow the
weights to have negative values, which removes the exponent in
Equation 10.

Table 7 shows the results for different non-linearities. It appears
that using the log non-linearity with positive weights is the best. This
experimentally justifies that a filter bank which has a logarithmic
non-linearity that corresponds to human perception of loudness, is a
sensible choice.

Non-Linearity | Weight Constraints | WER
Log Positive 21.3
Sigmoid None 23.5
Cube Root None 243

Table 7. WER With Different Non-Linearities

5. CONCLUSIONS

In this paper, we explored adding a filter bank layer as an extra layer
into a CNN. The filter bank is learned jointly with the rest of the
network parameters to optimize the cross-entropy objective function.
Thus, instead of having a perceptually motivated filter bank which is
not necessarily correlated to the speech recognition objective, the
filter is learned for the task at hand. However, we do find that using
a non-linear perceptually motivated log function is appropriate. We
introduce a novel idea of normalizing filter-bank features while still
ensuring they are positive so that the logarithm non-linearity can be
applied. Second, we explore a VTLN-inspired pooling strategy. On a
50-hour BN task, the proposed filter-learning strategy has a WER of
21.1%, a 5% relative improvement over a baseline CNN with hand-
crated mel-filter bank features with a WER of 22.3%.

302

6. REFERENCES

[1] T. N. Sainath, B. Ramabhadran, M. Picheny, D. Nahamoo, and
D. Kanevsky, “Exemplar-Based Sparse Representation Features: From
TIMIT to LVCSR,” 2011.

Y. LeCun, “Learning Invariant Feature Hierarchies,” in European Con-
ference on Computer Vision (ECCV). 2012, vol. 7583 of Lecture Notes
in Computer Science, pp. 496-505, Springer.

A. Mohamed, G. Hinton, and G. Penn, “Understanding how Deep Be-
lief Networks Perform Acoustic Modelling,” in /CASSP, 2012.

T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak,
and A. Mohamed, “Making Deep Belief Networks Effective for Large
Vocabulary Continuous Speech Recognition,” in Proc. ASRU, 2011.

(2]

3]

[4]

[5] Y.LeCun and Y. Bengio, “Convolutional Networks for Images, Speech,
and Time-series,” in The Handbook of Brain Theory and Neural Net-

works. MIT Press, 1995.

T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep Convolutional Neural Networks for LVCSR,” in Proc. ICASSP,
2013.

S. Davis and P. Mermelstein, “Comparison of Parametric Represen-
tations for Monosyllabic Word Recognition in Continuously Spoken
Sentences ,” IEEE Transacations on Acoustics, Speech and Signal Pro-
cessing, vol. 28, no. 4, pp. 357 — 366, 1980.

L. Burget and H. Hefmansky, “Data Driven Design of Filter Bank for
Speech Recognition,” in Text, Speech and Dialogue. Springer, 2001,
pp- 299-304.

Y. Suh and H. Kim, “Data-Driven Filter-Bank-based Feature Extraction
for Speech Recognition,” in Proc. SPECOM, 2004.

A. Biem, E. Mcdermott, and S. Katagiri, “A Discriminative Filter Bank
Model For Speech Recognition,” in Proc. ICASSP, 1995.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep
Neural Networks for Acoustic Modeling in Speech Recognition,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012.

(6]

(71

(8]

91
[10]

[11]

[12] B. Kingsbury, “Lattice-Based Optimization of Sequence Classification
Criteria for Neural-Network Acoustic Modeling,” in Proc. ICASSP,

2009.

Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient Backprop,”
in Neural Networks: Tricks of the Trrade, G. Orr and Muller K., Eds.
1998, Springer.

H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila Speech Recog-
nition Toolkit,” in Proc. SLT, 2010.

O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying
Convolutional Neural Network Concepts to Hybrid NN-HMM Model
for Speech Recognition,” in Proc. ICASSP, 2012.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Neurocomputing: foundations
of research, pp. 696—-699, 1988.

H. Hermansky and N. Morgan, “RASTA Processing of Speech,” IEEE
Transactions on Speech and Audio Processing, vol. 2, no. 4, pp. 578 —
589, 1994.

L. Deng, O. Abdel-Hamid, and D. Yu, “A Deep Convolutional Neural
Network using Heterogeneous Pooling for Trading Acoustic Invariance
with Phonetic Confusion,” in Proc. ICASSP, 2013.

L. Lee and R. C. Rose, “Speaker Normalization using Efficient Fre-
quency Warping Procedures,” in Proc. ICASSP, 1996.

G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving Neural Networks by Preventing Co-
Adaptation of Feature Detectors,” The Computing Research Repository
(CoRR), vol. 1207.0580, 2012.

J. Jean and Jin Wang, “Weight Smoothing to Improve Network Gener-
alization,” Neural Networks, IEEE Transactions on, vol. 5, no. 5, pp.
752-763, 1994.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

